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—— Abstract

We investigate two problems for a class C of regular word languages. The C-membership problem
asks for an algorithm to decide whether an input language belongs to C. The C-separation
problem asks for an algorithm that, given as input two regular languages, decides whether there
exists a third language in C containing the first language, while being disjoint from the second.
These problems are considered as means to obtain a deep understanding of the class C.

It is usual for such classes to be defined by logical formalisms. Logics are often built on top
of each other, by adding new predicates. A natural construction is to enrich a logic with the
successor relation. In this paper, we obtain new and simple proofs of two transfer results: we
show that for suitable logically defined classes, the membership, resp. the separation problem for
a class enriched with the successor relation reduces to the same problem for the original class.

Our reductions work both for languages of finite words and infinite words. The proofs are
mostly self-contained, and only require a basic background on regular languages. This paper
therefore gives simple proofs of results that were considered as difficult, such as the decidability
of the membership problem for the levels 1, 3/2, 2 and 5/2 of the dot-depth hierarchy.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases separation problem, regular word languages, logics, decidable character-
izations, semidirect product

1 Introduction

A central problem in the theory of formal languages is to characterize and understand the
expressive power of high level specification formalisms. Monadic second order logic (MSO)
is such a formalism, which is both expressive and robust. For several classes of structures,
such as words or trees, it has the same expressive power as finite automata and defines the
class of regular languages. In this paper, we investigate fragments of MSO over words. In
this context, understanding the expressive power of a fragment is associated to two decision
problems: the membership problem and the separation problem.

For a fixed logical fragment F, the F-membership problem asks for a decision procedure
that tests whether some input regular language can be expressed by a formula from F. To
obtain such an algorithm, one has to consider and understand all properties that can be
expressed within F, which requires a deep understanding of the fragment F. On the other
hand, the F-separation problem is more general. It asks for a decision procedure that tests
whether given two input regular languages, there exists a third one in F containing the first
language while being disjoint from the second one.

Since regular languages are closed under complement, membership reduces to separation:
a language is in F if and only if it can be separated from its complement. Usually, the
separation problem is more difficult than the membership problem but also more rewarding
with respect to the knowledge gained on the investigated fragment F.
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These two problems have been considered and solved for many natural fragments of
monadic second order logic. Among these, the most prominent one is first-order logic, FO(<),
equipped with a predicate < for the linear ordering. The solution to the membership problem,
known as the McNaughton-Papert-Schiitzenberger Theorem [20, 10], has been revisited until
recently [5]. The theorem states that a regular language is definable in FO(<) if and only if
its syntactic semigroup is aperiodic. The syntactic semigroup is a finite algebraic object that
can be computed from any regular language. Since aperiodicity can be defined as an equation
that needs to be satisfied by all of its elements, this yields decidability of FO(<)-definability.
This result now serves as a template, which is commonly followed in this line of research.

The separation problem has also been successfully solved for first-order logic [7]. Actually,
the problem was first addressed in a purely algebraic framework, and was later identified as
equivalent to our separation problem [2]. As for membership, this problem is still revisited
today and a new self-contained and combinatorial proof was obtained in [18].

Motivation. We are interested in natural fragments of FO(<) obtained by restricting either
the number of variables or the number of quantifier alternations allowed in formulas. Such
restrictions in general give rise to several variants of the same fragment. Indeed, in most
cases, the drop in expressive power forbids the use of natural relations that could be defined
from the linear order in FO(<). The main example considered in this paper is +1, the
successor relation, together with predicates min and max for the first and last positions
in a word. This means that one can define two distinct variants of the same fragment
depending on whether we decide to explicitly add these predicates in the signature or not.
An example is the fragment ¥,,, which consists of first-order formulas whose prenex normal
form has at most (n — 1) quantifier alternations and starts with an existential block. Since
defining 41 requires an additional quantifier alternation, X, (<, 41, min, max) has indeed
stronger expressiveness than ¥, (<). The motivation of this paper is to obtain decidability
results for such enriched fragments.

State of the Art. Even when the weak fragment is known to have decidable membership,
proving that the enriched one has the same property can be nontrivial. Examples include the
membership proofs of BX (<, +1, min, max) (Boolean combinations of ¥ (<, +1, min, mazx)
formulas) and ¥o(<, +1), which require difficult and intricate combinatorial arguments [8, 6, 9]
or a wealth of algebraic machinery [12, 13]. Another issue is that most proofs directly deal
with the enriched fragment. Given the jungle of such logical fragments, it is desirable to
avoid such an approach, treating each variant of the same fragment independently. Instead,
a satisfying approach is to first obtain a solution of the membership and separation problems
for the less expressive variant and then to lift it to other variants via a generic transfer result.

This approach has first been investigated by Straubing for the membership problem [22]
in an algebraic framework, and later adapted to be able to treat classes not closed under
complement [13]. Transferring the logical problem to this algebraic framework requires
preliminary steps, still specific to the investigated class, to prove that:

1. A language is definable in the fragment if and only if its syntactic semigroup belongs to a
specific algebraic variety V (e.g., the variety of aperiodic monoids for FO(<)), and
2. Membership to V is decidable.

Next, though this is not immediate, for most fragments of FO(<), it has been proved that

3. When the weaker variant corresponds to a variety V, the variant with successor corresponds
to the variety V * D, built generically from V.
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Hence, Straubing’s approach was to prove that
4. the operator V — V x D preserves decidability.

Unfortunately, this is not true in general [3]. Actually, while decidability is preserved for all
known logical fragments, there is no generic result that captures them all. In particular, for
the less expressive fragments, one has to use completely ad hoc proofs. In the separation
setting, things behave well: it has been shown that decidability of separation is preserved by
the operation V — V x D [21]. While interesting when already starting from algebra, this
approach has several downsides:

Dealing with algebra hides the logical intuitions, while our primary goal is to understand
the expressiveness of logics.

Going from logic to algebra requires to be acquainted with new notions and vocabulary,
as well as involved theoretical tools. Proofs are also often nontrivial and require a deep
understanding of complex objects, which may be scattered in the bibliography.

Despite step 4, which is generic to some extent, arguments specific to the investigated
class are pushed to steps 1-3, and they are often nontrivial.

Contributions. We give a new proof that decidability of separation can be transferred from
a weak to an enriched fragment. We present the result in two different forms.

The first one is non-algebraic: we work directly with the logical fragments, without using
varieties. The transfer result is generic and its proof mostly is: the only specific argument
is an Ehrenfeucht-Fraissé game that can be adapted to all natural fragments with minimal
difficulty (we prove it in the long version of this paper for all considered fragments, see [19]).
The benefits of this new proof are that:

1. It is self-contained and much simpler than previous ones. It only relies on two basic
well-known notions: recognizability by semigroups and Ehrenfeucht-Fraissé games.

2. Tt works with classes that are not closed under complement, contrary to [21]. This allows
us to capture the ¥ and II levels in the quantifier alternation hierarchy of first-order logic.

3. Under an additional hypothesis on the logical fragment, which is met for most fragments
we investigate and easy to check, the decidability result of the separation problem also
extends to the membership problem.

4. The proof adapts smoothly to infinite words using the notion of w-semigroups, as shown
in the long version of this paper [19].

The second form of our result is algebraic and generic. We prove that V — VD preserves
the decidability of separation for varieties, hence giving an elementary proof of a result of [21].
Even in this algebraic form, we completely bypass involved constructions or notions, such as
pointlike sets for categories developed in [21], thus making the proof accessible.

As corollaries, since B (<) and ¥2(<) both enjoy decidable separation [4, 16, 17], we
obtain that this is also the case for the fragments BY;(<, 41, min, max) and 3a(<,+1),
known as levels 1 and 3/2 of the dot-depth hierarchy. These new results strengthen the
previous ones [8, 6] that showed decidability of membership and were considered as difficult.
We actually obtain that separation for %, (<, +1, min, maz) reduces to separation for X, (<).
Since we also transfer decidability of the membership problem, and since the fragments B (<)
of Boolean combinations of ¥o(<) formulas and X3(<) have decidable membership [17] we
deduce that the same holds for BYs(<,+1) and X3(<,+1), known as levels 2 and 5/2 of the
dot-depth hierarchy.
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Organization of the Paper. In Section 2, we set up the notation and we present the
separation problem and the logics we deal with. Section 3 is devoted to our main tool:
languages of well-formed words. In Section 4, we use it to prove our transfer result for all
fragments from the logical perspective, and in Section 5, we show that decidability of the
separation problem for the variety V entails the same for V % D.

2 Preliminaries

In this section, we provide preliminary definitions on regular languages defined by logical
fragments and on separation. We also present our main contribution.

Words, Languages. We fix a finite alphabet A. Let AT be the set of all nonempty finite
words and let A* be the set of all finite words over A. If u,v are words, we denote by
u - v or by uv the word obtained by concatenating u and v. For convenience, we only
consider, without loss of generality, languages that do not contain the empty word. That is,
a language is a subset of AT. We work with regular languages, that is, languages definable
by finite automata.

Separation. Given three languages K, L, L', we say that K separates L from L’ if
LCKand KNL =0.

If C is a class of languages, we say that L is C-separable from L' if there exists K € C that
separates L from L’. Note that if C is closed under complement, L is C-separable from L’
if and only if L’ is C-separable from L. However, this is not true for a class C not closed
under complement, such as the classes X, (<) of the quantifier alternation hierarchy, which
we shall consider.

Given a class C, the C-separation problem asks for an algorithm which, given as input two
regular languages L, L', decides whether L is C-separable from L’. The C-membership problem,
which asks whether an input regular language belongs to C, reduces to the C-separation
problem, as a regular language belongs to C iff it is C-separable from its complement.

Logics. We investigate several fragments of first-order logic on finite words. We view a finite
word as a logical structure made of a sequence of positions labeled over A. We work with
first-order logic FO(<) using a unary predicate P, for each a € A, which selects positions
labeled with an a, as well as binary predicates ‘=" for equality and ‘<’ for the linear order.
Such a formula defines the regular language of all words that satisfy it. We will freely use
the name of a logical fragment of FO(<) to denote the class of languages definable in this
fragment. Observe that FO(<) is powerful enough to express the following logical relations:

First position, min(x): Yy =(y < z).
Last position, maz(x): Yy =(z < y).
Successor, y = x + 1: r<yA-(Fzx<zAz<y).

However, for most fragments of FO(<) this is not the case. For example, in the two-
variables restriction FO2(<) of FO(<), it is not possible to express successor, as it requires
quantifying over a third variable. For these fragments F, adding the predicates min, max
and +1 yields a strictly more powerful logic F*. Our goal is to prove a transfer result
for such fragments: given a fragment, if the separation problem is decidable for the weak
variant F, then it is decidable as well for the strong variant F+ obtained by enriching F with
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the above relations. The technique is generic, meaning that it is not bound to a particular
logic. In particular, our transfer result applies to the following well-known logical fragments:

FO(=), the restriction of FO(<) in which the linear order cannot be used, and only
equality between two positions can be tested. The enriched fragment FO(=,+1) (min and
mazx can be eliminated from the formulas) defines locally threshold testable languages [24].

All levels in the quantifier alternation hierarchy of first-order logic. A first-order formula
is X,,(<) (resp. II,,(<)) if its prenex normal form contains at most (n — 1) quantifier
alternations and starts with an 3 (resp. a V) quantifier block. Finally, a BY,, (<) formula
is a boolean combination of ¥, (<) and I, (<) formulas.

Since for all fragments above ¥3(<), a formula involving min and mazx can be expressed
without these predicates in the same logic, we shall denote the enriched fragments by
¥1(<, +1, min, max), BX1(<,+1, min, max), and then by ¥a(<,+1), BXa(<,+1), ...

FO?(<), the restriction of FO(<) using only two reusable variables. The corresponding
enriched fragment is FO?(<, 4+1), since min and maz can again be eliminated from the
formulas.

Weak variant FO(=) FO?(<) Y (<) B, (<)
Strong variant | FO(=,+1) | FO*(<,+1) | (<, +1,min,maz) | BX.(<,+1, min, maz)

Figure 1 Logical fragments to which the technique applies.

Figure 1 summarizes all fragments the technique applies to. We prove the following theorem.

» Theorem 1. Let F and F* be respectively the weak and strong variants of one of the logical
fragments in Figure 1. Then F'-separability can be effectively reduced to F-separability.

As explained in the introduction, we prove this theorem in two flavors: the first one,
Theorem 4, is purely logical. It is self-contained and elementary, but is not entirely generic.
The other one, Theorem 15, is purely algebraic and generic: the transfer works from an
algebraic class (for which only fairly general restrictions are assumed) to an enriched one.
Yet, it relies on already established results to be instantiated on the fragments of Figure 1.

All these logical fragments have a rich history and have been extensively studied in
the literature. In particular, the separation problem is known to be decidable for the
following fragments: FO(=), FO*(<), £1(<), BX1(<), Ba(<) [4, 16, 17]. This means
that, from our results, we obtain decidability of separation for FO(=,+1), FO*(<, +1),
Y1(<, +1, min, maz), BXi(<,+1,min,max) and 3a(<,+1). Note that for FO(=,+1),
FO?(<,+1) and BX: (<, +1,min, maz), the results could already be obtained as corollaries
of algebraic theorems of Steinberg [21] and Almeida [2]. As explained in the introduction,
an issue with this approach is that the proof of Steinberg’s result relies on deep algebraic
arguments and is not tailored to separation (the connection with separation is made by
Almeida [2]). For ¥1(<, +1, min, maz) and Yao(<,+1), the result is new, as Steinberg’s result
does not apply to classes of languages that are not closed under complement.

3 Tools: Semigroups and Well-Formed Words

In this section, we define the main tools used in the paper. First, we recall the well-known
semigroup based definition of regular languages: a language is regular if and only if it can
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be recognized by a finite semigroup. Our second tool, well-formed words, is specific to our
problem and plays a key role in our transfer result.

3.1 Semigroups and Monoids

We work with the algebraic representation of regular languages in terms of semigroups. A
semigroup is a set S equipped with an associative product, written s - ¢ or st. A monoid is a
semigroup S having a neutral element 1g, i.e., such that s-1g =1g-s=sforallse S. If §
is a semigroup, then S* denotes the monoid S U {1g} where 15 ¢ S is a new element, acting
as neutral element. Note that we add such a new identity even if S is already a monoid.
An element e € S is idempotent if e - e = e. We denote by E(S) the set of idempotents
of S. Given a finite semigroup S, it is folklore and easy to see that there is an integer w(S)
(denoted by w when S is understood) such that for all s of S, s¥ is idempotent: s¥ = s¥s*.
Note that AT and A* equipped with concatenation are respectively a semigroup and a
monoid called the free semigroup over A and the free monoid over A. Let L C AT be a
language and S be a semigroup (resp. a monoid). We say that L is recognized by S if there
exist a morphism a : AT — S (resp. a: A* — §) and a set FF C S such that L = o~ 1(F).

Semigroups and Separation. The separation problem takes as input two regular languages
L,L'. Tt is convenient to work with a single object recognizing both of them, rather than
having to deal with two. Let S,S" be semigroups recognizing L, L’ together with the
associated morphisms «, o', respectively. Clearly, L and L’ are both recognized by S x S’
with the morphism a x o/ : AT — S x S’ mapping w to (a(w),a/(w)). From now on, we
work with such a single semigroup recognizing both languages. Replacing S x S’ with its
image under «v X o/, one can also assume that this morphism is surjective. To sum up, we
assume from now on, w.l.o.g., that L and L’ are recognized by a single surjective morphism.

3.2 Well-Formed Words

In this section, we define our main tool for this paper. Assume that F is the weak variant of
one of the logical fragments of Figure 1 and let F* be the corresponding enriched variant.
To any semigroup morphism « : AT — S into a finite semigroup S, we associate a new
alphabet A, called the alphabet of well-formed words. The main intuition behind this notion
is that the F'-separation problem for any two regular languages recognized by « can be
reduced to the F-separation problem for two regular languages over A,,.

The alphabet A, called alphabet of well-formed words of c, is defined from o : AT — S by:
Ay =(E(S)xSxE(S) U (SxE(S) U (E(S)xS) U S

We will not be interested in all words of A, but only in those that are well-formed. A word

w € A} is said to be well-formed if one of the following two properties holds:

w is a single letter s € S,
w has length > 2 and is of the form

(50, fo) (€1, 81, f1) -+~ (€n, Sny fn) (€nt1s Sny1) € (SXE(S))-(E(S)xSxE(S))"-(E(S)x.S)
with f; = e;41 for all 0 < i < n.
» Fact 2. The set of well-formed words of AL is a regular language.

We now define a morphism 8 : AY — S as follows. If s € S, we set 3(s) = s, if
(e,s) € E(S) x S, we set B((e,s)) = es, if (s,e) € S x E(S), we set 5((s,¢e)) = se and if
(e,s,f) € E(S) xS x E(S), we set 8((e,s, f)) =esf.
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Associated Language of Well-formed Words. To any language L C A* that is recognized
by «, one associates a language of well-formed words . C AT:

L ={we A} | wis well-formed and B(w) € a(L)}.

By definition, the language . C AT is the intersection of the language of well-formed words
with S~ (a(L)). Therefore, it is immediate by Fact 2 that it is regular, more precisely:

» Fact 3. Let L C A% be recognized by . Then, the associated language of well-formed
words L C A} is a reqular language that one can effectively compute from a recognizer of L.

4 Logical Approach

In this section, we prove Theorem 1 from a logical perspective. We begin with presenting
our separation theorem, which will entail the membership theorem as a simple consequence.

» Theorem 4. Let F and F+ be respectively the weak and strong variants of one of the
logical fragments in Figure 1.

Let L, L' be two languages recognized by a morphism o : AT — S into a finite semigroup S.
Let L, C AT be the languages of well-formed words associated with L, L', respectively.
Then L is FT-separable from L' iff L is F-separable from L.

Theorem 4 reduces F'-separation to F-separation. The latter was already known to
be decidable for several weak variants in Figure 1, namely for FO(=) [15], FO*(<) [16],
¥1(<) [4], BZ1(<) [4, 16] and (<) [17]. Hence, we get the following corollary.

» Corollary 5. Let L, L’ be reqular languages. Then the following problems are decidable:
whether L is FO(=, +1)-separable from L'.
whether L is FO* (<, +1)-separable from L'.
whether L is ¥1(<, +1, min, max)-separable from L.
whether L is BX1(<, +1, min, max)-separable from L’.
whether L is Ya(<,+1)-separable from L'.

Notice that since the membership problem reduces to the separation problem, this also
gives a new proof that all these fragments have a decidable membership problem. This
is of particular interest for FO?(<, +1), BXi(<, +1,min, maz) and Yo(<,+1) for which
the previous proofs, which can be found in, or derived from [22, 1, 14], [8], and [6, 13, 12]
respectively, are known to be quite involved. It turns out that for Xo(<,+1), we can do even
better and entirely avoid separation. Indeed, when F is expressive enough, Theorem 4 can
be used to prove a similar theorem for the membership problem.

» Theorem 6. Let F and F' be respectively the weak and strong variants of one of the
logical fragments in Figure 1. Moreover, assume that for any alphabet of well-formed words,
the set of well-formed words over this alphabet is definable in F.

Let L be a language recognized by a morphism o : AT — S into a finite semigroup S. Let
L C Al be the language of well-formed words associated with L. Then L is definable in F*+
iff L is definable in F.

Proof. Set K = AT\ L and let K be the associated language of well-formed words. Observe
that by definition, K UL is the set of all well-formed words.

If L is definable in F, then L is F-separable from K, hence by Theorem 4, L is FT-
separable from K, and so L is definable in FT. Conversely, if L is definable in F, then L is
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FT-separable from K and by Theorem 4, L is F-separable from K. Since K UL is the set of
all well-formed words, IL is the intersection of the separator with the set of all well-formed
words, which by hypothesis is also definable in F. Therefore, L is definable in F. <

Observe that being well-formed can be expressed in IT(<): essentially, a word is well-
formed if for all pairs of positions, either there is a third one in-between, or the labels of the
two positions are “compatible”. Hence, among the fragments of Figure 1, Theorem 6 applies
to all fragments including and above II3(<) in the quantifier alternation hierarchy. While
such a transfer result was previously known [22, 13], the presentation and the proof are new.
In particular, since membership is known to be decidable for II5(<) [12], BX3(<) [17] and
¥3(<) [17], we obtain new and simpler proofs of the following results.

» Corollary 7. Given a reqular language L, one can decide whether

L is definable by a Yo(<,+1) (resp. by a la(<,+1)) formula.
L is definable by a BXo(<,+1) formula.
L is definable by a 3(<,+1) (resp. by a U3(<,+1)) formula.

It remains to prove Theorem 4. We devote the rest of the section to this proof. An
important remark is that the proof of the right to left direction is constructive: we start with
an JF formula that separates IL from L. and use it to construct an F* formula that separates
L from L'. Note that the argument is generic for all fragments we consider.

On the other hand, the other direction, namely Proposition 9 below, requires a specific
argument tailored to each fragment, which is a straightforward but tedious Ehrenfeucht-
Fraissé argument. Due to lack of space, we provide proofs of this proposition for each
fragment in the long version [19] of this paper.

4.1 From F'-separation to F-separation

We prove that if L is FT-separable from L', then L is F-separable from L’. We actually
prove the contrapositive: if L is not F-separable from L/, then L is not Ft-separable from L'.
We rely on a construction which, to any well-formed word u € Al and any integer i > 0,
associates a canonical word [u], € A™.

Canonical Word Associated to a Well-formed Word. To any s € S, we associate an
arbitrarily chosen nonempty word [s] € AT such that a([s]) = s (which is possible since
a has been chosen surjective). Let i > 0. From a well-formed word u € A}, we build a

word [u], € AT as follows. If u = s € S, then [u], = [s] for all i. Otherwise, we have by
definition

u = (so,e1)(€1,51,€2) - (En—15n—1€n)(€n, Sn).

For a natural ¢ > 0, we set

M), = [so] el [s1] Te2]" - - [en—11" [sn-1] Ten]" [sn] -

Recall that (3 is the morphism 3 : A7 — S mapping u to spe1s1 - Sp—1€,8,. Since e; € E(S)
for all j, it is immediate that a([u],) = S(u), hence we get the following fact:

» Fact 8. For everyi > 0 and every well-formed word u € AT, we have u € L (resp. u € ')
if and only if [u], € L (respu e L’).
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We now proceed with the proof. We use the classical preorders associated to fragments
of first-order logic. The (quantifier) rank of a first-order formula ¢ is the largest number of
quantifiers along a branch in the parse tree of ¢. Given u,v € AT, we write u -\<$1 v if any
FT formula of rank k that is satisfied by u is satisfied by v as well. Similarly, for u,v € A7,

we write u < v if any F formula of rank k£ that is satisfied by w is satisfied by v as well.
One can verify that < and ﬁgl are preorders, as well as the following standard fact:

L C A" is definable by an F* formula of rank k iff L = {u’ | Ju € L st. u <* '} .
L C A/ is definable by an F formula of rank k& iff L = {u’ | Ju € L st. u <3 u'}.

Note that when F and FT are closed under complement, then <, and 4# are actually
equivalence relations. We can now state the main proposition of this direction.

» Proposition 9. For any k € N, there exist £ € N and i € N such that for any well-formed

o 1
words u,u’ € AL satisfying u <¢ v, we have [u], < [u'];.

For all fragments of Figure 1, Proposition 9 is proved using classical Ehrenfeucht-Fraissé
arguments. While each proof is specific, the underlying ideas are similar. We present these
proofs in the long version of this paper [19]. We finish the subsection by explaining how
Proposition 9 can be used to terminate the proof of the first direction of Theorem 4.

We argue by contrapositive: assume that L is not F-separable from I’. By definition
this means that no language definable in F separates I from I”. In particular, for any ¢, the
language

{u'|Juelst.u=<,u'},

which is definable in F by (1), cannot be a separator. Note that this language contains L.
Hence, for all £ € N, there exist 1 € L. and u’ € L’ such that u <, /. We deduce from
Proposition 9 and Fact 8 that for all £ € N, there exist u € L and v’ € L’ such that u 4:1 u'.
It follows, again by (1), that L is not FT-separable from L', which terminates the proof.

4.2 From F-separation to F'-separation

We now prove that if L is F-separable from L, then L is F"-separable from L. We do so
by building an F*-definable separator. This proof is this time entirely generic. We rely on a
construction that is dual to the one used previously: to any word w € A", we associate a
canonical well-formed word |w| € AY.

Canonical Well-formed Word Associated to a Word. To any word w of AT, we associate
a canonical well-formed word |w| € A such that a(w) = B(|w]). This construction is
adapted from [14] and is originally inspired by [22].

Fix an arbitrary order on the set F(S). For a position z of w, let u, € AT be the
infix of w obtained by keeping only positions = — (|S]| — 1) to . If position = — (|S| — 1)
does not exist, u; is just the prefix of w ending at z. A position x is said distinguished if
there exists an idempotent e € E(S) such that a(uy) - e = a(u,). Additionally, we always
define the rightmost position as distinguished, even if it does not satisfy the property. Set
x1 < --- < xpy1 as the distinguished positions in w, so that ,4; is the rightmost position.
Let ey,...,e, € E(S) be such that for all 1 <i < n— 1, e; is the smallest idempotent such
that a(ug,) - e; = a(ug,).

If n = 0, 4.e., if the only distinguished position is the rightmost one, set |w| = a(w) € A,.
Otherwise, we define |w| € AT as the word:

I_wJ = (a(wo), el) : (61, O‘(wl)a 62) e (en—h a(wn—l)a en) : (ema(wn)) (2)
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where wy is the prefix of w ending at position x1, for all 1 < i < n — 1, w; is the infix of w
obtained by keeping positions z; + 1 to x;41, and w, is the suffix of w starting at position
2, + 1. Note that by construction, |w] is well-formed.

The next statement follows from the definition of 5, and from the fact that by definition
of the words w; and of the chosen idempotents, we have a(wq - - - w;)e;+1 = a(wg - - - w;).

» Fact 10. For all w € A", we have a(w) = B(|w]). Therefore, w € L iff |[w| € L and
we L iff |lw] el

To any distinguished position z; in w, we now associate the position |z| =4 in |w]. Our
main motivation for using this construction is its local canonicity, which is stated in the
following lemma.

» Lemma 11. Let w € AT. Then we have the following properties:

(a) whether a position x is distinguished in w, and if so the label of position |x] in |w] only
depends on the infix of w of length 2|S| ending at position x. That is, if the infizes of
length 2|S| ending at x and y are equal, then x is distinguished iff so is y, and in that
case, the labels of |x] and |y]| in |w] are equal.

(b) the label of the last position of |w| only depends on the suffix of length 2|S| of w.

Proof. It is immediate that whether z is distinguished and if so the associated idempotent
only depends on the infix u, of length at most |S| ending at x. Therefore, to prove (a), it
suffices to show that all infixes w; used in (2) are of size at most |.S|, or in other words, that
among |S| + 1 consecutive positions, at least one is distinguished. So let us consider an infix
ay---ajg4+1 of w of length [S| + 1. It is immediate from the pigeonhole principle that there
exist ¢ < j such that a(ar ---a;) = alar---a;) = a(ar -+~ a;) - (a(ai+1---a;))”. Hence, the
position corresponding to a; is distinguished. The proof of the second assertion is similar. <«

L is FT-separable from L’. We can now construct our separator. The construction follows
from the next proposition.

» Proposition 12. Let K C A} that can be defined using an F formula . Then there exists
an F* formula U over alphabet A such that for every word w € AT:

w = if and only if |w| = .
Proof. Proposition 12 follows from the following simple consequence of Lemma 11.

» Claim 13. For any a € A, there exists a formula va(z) of F* with a free variable x, such
that for any w € AT and any position x of w, we have w = vya(x) iff © is distinguwished and
|| has label & in |w].

This claim holds since by Lemma 11, formula g (x) only needs to explore the neighborhood
of size 2|S| of x, which is trivially possible for all fragments F* we consider. To conclude
the proof of Proposition 12, it suffices to define ¥ as the formula constructed from ¢ by
restricting all quantifiers to positions that are distinguished and to replace all tests Pg ()

by va(x). <

We can now finish the proof of Theorem 4. Assume that L. is F-separable from IL” and
let ¢ be an F formula defining a separator. We denote by ¥ the F+ formula obtained from
¢ as defined in Proposition 12. We prove that ¥ defines a language separating L from L’.

We first prove that L C {w | w = ¥}. Assume that w € L. Then by Fact 10, we have
|w] € L. Hence, |w] |= ¢ and so w |= ¥ by definition of U. The proof that L’ C {w | w = ¥}
is identical: if w € L', we have |w] € L' by Fact 10. Hence, |w] [ ¢ and w & ¥ by definition
of U. |
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5 Algebraic Approach

We now present an algebraic version of Theorem 4: the operator V — V % D preserves
decidability of separation.

We would like to emphasize again that the ideas behind this theorem are essentially the
same as for Theorem 4. In particular, proofs presented in the long version of this paper [19]
only rely on elementary notions, thus bypassing complex constructions usually used to prove
this kind of result, even if the statement itself requires some additional algebraic vocabulary.

The section is organized in three parts.

We first briefly recall how classes of languages corresponding to our logical fragments are
given an algebraic definition: for each fragment, an associated class of finite semigroups
(or monoids) V, a variety, has already been characterized, such that the class of languages
definable in the fragment is exactly the class of languages that are recognized by a
semigroup (or monoid) of V.

In the second part, we define what “adding the successor relation” means in this context.

Given a variety V, this generally corresponds to considering a new variety built on top
of V via an operation called the semidirect product. This new variety is denoted V x D.
Finally, in the last part, we state our main theorem: for any variety V, separability for
the variety V * D reduces to separability for the variety V.

5.1 Varieties

A wvariety of semigroups (resp. monoids) is a class of finite semigroups (resp. monoids) closed
under three natural operations: finite direct product, subsemigroup (or submonoid), and
homomorphic image. A variety V defines a class of languages, also noted V, namely the class
of all of languages recognized by semigroups (resp. monoids) in V. There is an issue however:
all classes of languages defined in this way have to be closed under complement, since the
set of languages recognized by any semigroup is closed under complement. This prevents

us from capturing logical fragments that are not closed under complement, such as ¥5(<).
This problem has been solved in [11] with the notions of ordered semigroups and monoids.

Intuitively, such a semigroup is parametrized by a partial order and the set of languages it
recognizes is then restricted with respect to this partial order. These classical constructions
will be recalled in the long version of this paper [19], as well as varieties corresponding to all
fragments we deal with.

All logical fragments presented in Section 2 correspond to varieties that have been
fully identified. For each fragment, its non-enriched variant corresponds to a variety V of
(ordered) monoids and its enriched version to the variety of (ordered) semigroups V # D built
from V. For example,the fragment F02(<) corresponds to the variety of monoids DA and
the fragment FO?(<,41) to the variety of semigroups DA * D [23] (see the long version [19]
for a bibliography with all correspondences).

5.2 Semidirect Product

The Variety D. The variety D consists of all finite ordered semigroups S such that for
all s € S and all e € E(S), we have se = e. From a language perspective, a language L is
recognized by a semigroup in D iff there exists £ € N such that membership of a word w
to L only depends on the suffix of length k of w.

11
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Semidirect Product. Let M be an ordered monoid and let T" be an ordered semigroup. A
semidirect product of M and T is an operation that is parametrized by an action of T on M
and outputs a new ordered semigroup, whose base set is M x T'. Therefore, one can obtain
different semidirect products out of the same M and T, depending on the chosen action (we
recall the construction in the long version [19]). One can next lift this product at the level of
varieties.

We are interested in the semidirect products of the form V % D, the variety of ordered
semigroups generated by all semidirect products of an ordered monoid of V by an ordered
semigroup of D. The reason why we introduce such semidirect products is the following
theorem, which gathers several nontrivial results from the literature. The reader is referred
to the long version of this paper [19] for details.

» Theorem 14. Let V be a variety corresponding to a fragment F from the ones presented
in Figure 1. Then, the variety corresponding to the fragment F* is V * D.

5.3 Main Theorem

We have now the machinery needed to state our main theorem. For any variety of ordered
monoids V, we reduce (V * D)-separability to V-separability.

» Theorem 15. Let V be a non-trivial variety of ordered monoids. Let L and L' be two
languages both recognized by the same morphism o : AT — S into a finite semigroup S. Set
L,I" C AT as the languages of well-formed words associated to L, L', respectively. Then, L
is (V x D)-separable from L' if and only if 1L is V-separable from 1L'.

The proof of Theorem 15 is presented in the full version of this paper [19]. As it was the
case for Theorem 4, the proof is both elementary and constructive: if there exists a separator
for . and L in V, we use it to construct a separator for L and L’ in V x D.

In view of Theorem 14, Theorem 15 applies to all fragments we introduced. This means
that Theorem 4 can be given an alternate indirect proof within this algebraic framework by
combining Theorem 15 and Theorem 14. Hence, this also yields another proof of Corollary 5.

6 Conclusion

We proved that separation is decidable over finite words for the following logical fragments:
FO(=,+1), ¥1(<, +1,min, maz), BY; (<, +1,min, maz), Lo(<,+1) and FO*(<,+1). To
achieve this, we presented a simple reduction to the same problem for the weaker fragments
FO(=), £1(<), BE1(<), 2(<) and FO*(<).

The reduction itself is entirely generic to all fragments and its proof is elementary, and
also mostly generic. In particular, the technique can be used to prove that the reduction
works for other natural fragments of first-order logic. An interesting example to which
these results apply is the quantifier alternation hierarchy within FO?(<) (known as the
Trotter-Weil hierarchy, and which is decidable [25]). However, the separation problem for
classes in this hierarchy has yet to be investigated. We also obtained direct proofs that
membership is decidable for BXs(<, +1) and X3(<,+1).

Finally, we presented an algebraic formulation of this reduction, which recovers a previously
known result by Steinberg [21], while having a much simpler proof. One can expect extending
these results to other fragments, such as enrichment with modulo predicates. Another
advantage of this technique is that it can be extended in a straightforward way to the same
logical fragments over words of infinite length. This yields identical transfer results. We
leave the presentation of these results for further work.
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