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The aim of this lecture is to survey some recent developments in the theory of finite semigroups.
More precisely, we shall consider the following problem about pseudovarieties of semigroups: given
two pseudovarieties V and W, find a description of their join V ∨W (that is, of the pseudovariety
they generate).

This question is motivated by the theory of rational languages: it appears in a natural way when
considering parallel operation of automata.

The lattice of semigroup varieties (in Birkhoff’s sense) has been studied for a long time. In
particular, it was proved that the join of two finitely based varieties might not be finitely based (see
for instance Taylor [21]). Other important contributions in this area were given by Biryukov [11],
Fennemore [12, 13] and Gerhard [14] who described the lattice of idempotent semigroup varieties,
and by Polák [18] who described the lattice of varieties of completely regular semigroups.

The problems appearing in the study of the lattice of pseudovarieties are analogous. Reiterman’s
theorem [19] is the starting point of an equational theory for pseudovarieties: just as varieties are
defined by identities, pseudovarieties are defined by pseudoidentities.

Numerous algorithmic problems on pseudovarieties were proposed, for instance by Rhodes [20],
Almeida [5] or Kharlampovich and Sapir [15]. Most of these problems are still open. Given a
pseudovariety V, two important problems appear:

Problem 1. Find a finite pseudoidentity basis for V, or prove that it is not finitely based.

Problem 2. Solve the membership problem for V: given a finite semigroup S, does it exist an

algorithm testing the membership of S in V?

A positive answer to problem 1 frequently gives the solution for problem 2. We first survey some

of the solutions given to these problems when V is a join. In the sequel, we will denote by [[Σ]] the
pseudovariety defined by a set Σ of pseudoidentities. We will mention the following pseudovarieties:

- A, the pseudovariety of finite aperiodic semigroups.

- J, the pseudovariety of finite J -trivial semigroups.

- B, the pseudovariety of finite bands.

- G, the pseudovariety of finite groups.

• In the general case, nothing is known about the pseudoidentity basis describing a join, and the
problem seems to be very difficult. A recent result of Albert, Baldinger and Rhodes [1] states that
even the join of two simple decidable pseudovarieties might not be decidable:

Theorem 3. One can find a finite set Σ of identities such that the join [[Σ]] ∨ [[xy = yx]] is not

decidable.

• Sometimes, one can only determine whether the join has a finite basis. On the positive side,
one of the few existing results is due to Almeida [4]:

Theorem 4. Every commutative pseudovariety is finitely based.
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On the negative side, Volkov [23] and Trotter and Volkov [22] gave examples of non finitely based
joins:

Theorem 5. Let A2 be the syntactic semigroup of (a + b)?a2(a + b)?. Let V be a semigroup pseu-

dovariety containing A2, and let H be a non trivial group pseudovariety. Then V∨H is not finitely

based. In particular, A ∨G is not finitely based.

Theorem 6. The pseudovariety J ∨G is not finitely based.

We shall give another example of a non finitely based join in this lecture.
• Finally, in some cases, computations can be done explicitly. Few methods are known at present,

but Almeida [5] used the theory of implicit operations to find a description of some joins. His method
is based on Reiterman’s theorem and on topological arguments. Thus, Almeida, Azevedo and Weil
computed some difficult joins, using at some point some ad hoc facts. Notice that algebraic methods
fail so far for most of these computations.

A famous example is the description of R ∨ L given by Almeida and Azevedo in [6], that was
conjectured by König [16]. Recall that R = [[(xy)ωx = (xy)ω ]] is the pseudovariety of R-trivial
semigroups while L = [[y(xy)ω = (xy)ω ]] is the one of L-trivial semigroups.

Theorem 7. The pseudovariety R ∨ L is defined by [[(xy)ωx(zx)ω = (xy)ω(zx)ω]].

Let PS(V) denote the lattice of subpseudovarieties of V. The lattice PS(V∨W) can sometimes
be decomposed in the direct product PS(V) × PS(W). Azevedo [9] gave an example of such a
decomposition:

Theorem 8. Let U = [[(xy)ω = xωyω, xω+1 = x]] and let Φ and Ψ defined by

Φ : PS(U) −→ PS(G) ×PS(B)

V 7−→ (V ∩ G,V ∩ B)

Ψ : PS(G) ×PS(B) −→ PS(U)

(H,P) 7−→ H ∨ P

Then, Φ and Ψ are mutually inverse isomorphisms. In particular, G ∨ B = U. Furthermore, if

V ⊆ G ∨ B, then V is decidable if and only if V ∩ G is decidable.

Recent results involve the pseudovariety G, and use more difficult geometrical arguments. For
example, Almeida and Weil [7, 8] proved the following. Recall that if H is a pseudovariety of groups,
H̄ denotes the pseudovariety of all monoids whose subgroups lie in H.

Theorem 9. Let H be a group pseudovariety satisfying (H ∩ [[xy = yx]]) ∗H = H. Then

(A ∩ [[xy = yx]]) ∨H = [[xωy = yxω]] ∩ H̄

(J ∩ [[xωyω = yωxω]]) ∨H = DH ∩ [[xωyω = yωxω ]]

where DH denotes the pseudovariety of all semigroups whose regular D-classes lie in H. This holds

in particular for H = G.

Other results giving an idea of the state of the art for such computations can be found in
[3, 2, 6, 7, 8, 10, 9].

We finally present the solutions given in [24, 25] of two problems proposed by Almeida [5]. The
first question is the computation of the join LI ∨ B of the pseudovariety LI = [[xωyxω = xω]] of
locally trivial semigroups and of the pseudovariety B. We find a finite basis and a natural algebraic
interpretation for this join:
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Theorem 10. The pseudovariety LI ∨ B is the pseudovariety of all finite semigroups whose idem-

potents form an ideal. In other terms, LI ∨ B is defined by

LI ∨B = [[(xωy)ω = xωy, (yxω)ω = yxω]]

The second question is the computation of the join J ∨ B. It is more complex.

Theorem 11. The pseudovariety J ∨ B is not finitely based.

Theorem 12. The pseudovariety J ∨ B is decidable.

We shall sketch the techniques used for the proofs of these theorems. They illustrate the fact
that the knowledge of implicit operations on V ∨W may be difficult even when implicit operations
on V and on W are known. We conclude by recalling two important problems that are still open:

Problem 13. Is the pseudovariety A ∨G decidable?

Problem 14. Is the pseudovariety J ∨ G decidable?

We conjecture that the answer to problem 14 is positive. Azevedo [9], followed by several authors
proposed a basis for this pseudovariety:

xω+1yω

1 . . . yω

k xω = xωyω

1 . . . yω

k xω+1 (k > 0), (xy)ω = (yx)ω

We now present an array to sumarize some of the known results and some of the open problems.
In this array,
[k] stands for a complete answer,
(k) stands for a partial answer,
〈k〉 stands for a guess.

We recall the following standard notations of pseudovarieties.
Nil : nilpotent semigroups.
K (resp D) : semigroups in which every idempotent is a left (resp. a right) zero
K1(resp. D1) : left zero (resp right zero) semigroups.
LI1 : rectangular bands.
G : groups.
Gcom : commutative groups.
Sl : commutative and idempotent semigroups.
Com : commutative semigroups.
ZE : semigroups in which idempotents are central.
Inv : semigroups in which idempotents commute.
Lcom = [[xωyz = xωzy]]
Rcom = [[yzxω = zyxω]]
Perm : semigroups satisfying a non trivial permutation identity.
H denotes a pseudovariety of groups

When possible, we give general references containing many examples, such as [5], [9], [17] or [24]
rather than original articles to keep the bibliography in a reasonable size.
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(1) G ∨A is not finitely based (Volkov [23])
(2) , (3) , (4) , (5) V∨H is not finitely based if J ⊆ V ⊆ A and if H is not commutative (Trotter

and Volkov, [22])
[6] G ∨ (J ∩ Inv) = DG ∩ Inv (Almeida, Weil [7, 8])
[7] G ∨ Nil = [[xω = yω]], (8) H ∨ Nil = (G ∨Nil) ∩ H̄ decidable, (Pin [17])
[9] G ∨ K = [[xωyω = xω ]], (10) H ∨ K = (G ∨K) ∩ H̄ idem

[11] G ∨ D = [[yωxω = xω ]], (12) H ∨ D = (G ∨D) ∩ H̄ idem

[13] G ∨ LI = [[xωyωxω = xω]], (14) H ∨ LI = (G ∨ LI) ∩ H̄ idem

[15] G ∨ K1 = [[xyω = x]], (16) H ∨ K1 = (G ∨K1) ∩ H̄ idem

[17] G ∨ D1 = [[yωx = x]], (18) H ∨ D1 = (G ∨D1) ∩ H̄ idem

[19] G ∨ LI1 = [[xyωxω = x = xωyωx]], (20) H ∨ LI1 = (G ∨ LI1) ∩ H̄ idem

[21] Gcom ∨ Nil = [[xω = yω, xωy = yxω, xωyz = xωzy]], (Almeida [5])
[22] G ∨ Sl = [[(xy)ω = xωyω = (yx)ω, xω+1 = xω]], (Almeida [5], Azevedo [9])
[23] G ∨Com = [[xωy = yxω]] (Almeida [5], Azevedo [9])
[24] G ∨B = [[(xy)ω = xωyω, xω+1 = xω ]] (Almeida [5], Azevedo [9])
[25] R ∨ L = [[(xy)ωx(zx)ω = (xy)ω(zx)ω]] (Almeida [5], Azevedo [9])

〈26〉 R ∨ D1 = R ∨ LI1
?
= [[(xy)ωxz = (xy)ωz]] 〈27〉 L ∨ K1 = L ∨ LI1

?
= [[zx(yx)ω = z(yx)ω]]

∨ G A R L J J∩Inv Nil K D LI

G G (1,2) (3) (4) (5) [6] [7] [9] [11] [13]

A A A A A A A A A A

R R [25] R R R R

L L L L L L

J J J J [32] [33] [34]

J∩Inv J∩InvJ∩Inv

Nil Nil K D LI

K K LI LI

D D LI

LI LI

Sl

B

K1

D1

LI1

Gcom

Com

Rcom

Lcom

Perm
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[28] J ∨ B is non finitely based but decidable. A basis is easy to get [24, 25].
[29] J ∨ K1 = [[x(yz)ω = x(zy)ω, xω+1 = xω ]]
[30] J ∨ D1 = [[(yz)ωx = (zy)ωx, xω+1 = xω]]
[31] J ∨ LI1 = [[x(yz)ωt = x(zy)ωt, xω+1 = xω ]]
[32] J ∨ K = [[aωx(yz)ω = aωx(zy)ω, xω = xω+1]] Almeida [5]
[33] J ∨ D = [[(yz)ωxaω = (zy)ωxaω , xω = xω+1]] Almeida [5]
[34], [35] , [36] , [37] , [38] : see Azevedo [10].
[39] Nil ∨ B = [[xωy = (xy)ω = xyω]] [40] Sl ∨ Nil = (Nil ∨ B) ∩ ZE [5, 24]
[41] K ∨ B = [[xωy = xωy2, xyωz = (xyωz)2]] [42] Sl ∨ K = (K ∨ B) ∩ Lcom [24]
[43] D ∨ B = [[yxωy = y2xω , xyωz = (xyωz)2]] [44] Sl ∨ D = (D ∨ B) ∩ Rcom idem

[45] LI ∨ B = [[xyωz = (xyωz)2]] [46] Sl ∨ LI = (LI ∨ B) ∩ Perm idem

[47] Nil ∨ Com = [[xωy = yxω, xω+1 = xω]]
[48] Sl ∨ K1 = [[xyz = xzy, x2 = x]]
[49] Sl ∨ D1 = [[yzx = zyx, x2 = x]]
[50] Sl ∨ LI1 = [[xyzx = xzyx, x2 = x]]
[51] Sl ∨ Gcom = [[xy = yx, xω = x]]

〈52〉 K ∨ D1 = K ∨ LI1
?
= [[xωyz = xωz]], 〈53〉 D ∨K1 = D ∨ LI1

?
= [[zyxω = zxω]]

∨ Sl B K1 D1 LI1 Gcom Com Rcom Lcom Perm

G [22] [24] [15] [17] [19] G [23]

A A A A A A

R R R 〈26〉 〈26〉

L L 〈27〉 L 〈27〉

J J [28] [29] [30] [31] [35] [36] [37] [38]

J∩InvJ∩Inv

Nil [40] [39] [8,21] [47] Rcom Lcom Perm

K [42] [41] K 〈52〉 〈52〉 [10] Lcom Perm Lcom Perm

D [44] [43] 〈53〉 D 〈53〉 [12] RcomRcom Perm Perm

LI [46] [45] LI LI LI [14] Perm Perm Perm Perm

Sl Sl B [48] [49] [49] [51] Com Rcom Lcom Perm

B B B B B

K1 K1 LI1 LI1 [16] Perm

D1 D1 LI1 [18] Perm

LI1 LI1 [20] Perm

Gcom Gcom Com Rcom Lcom Perm

Com Com Rcom Lcom Perm

Rcom Rcom Perm Perm

Lcom Lcom Perm

Perm Perm
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