On the join of two pseudovarieties

Marc Zeitoun LITP, IBP, Université Paris 7 e-mail: mz@litp.ibp.fr

The aim of this lecture is to survey some recent developments in the theory of finite semigroups. More precisely, we shall consider the following problem about pseudovarieties of semigroups: given two pseudovarieties \mathbf{V} and \mathbf{W} , find a description of their join $\mathbf{V} \vee \mathbf{W}$ (that is, of the pseudovariety they generate).

This question is motivated by the theory of rational languages: it appears in a natural way when considering parallel operation of automata.

The lattice of semigroup varieties (in Birkhoff's sense) has been studied for a long time. In particular, it was proved that the join of two finitely based varieties might not be finitely based (see for instance Taylor [21]). Other important contributions in this area were given by Biryukov [11], Fennemore [12, 13] and Gerhard [14] who described the lattice of idempotent semigroup varieties, and by Polák [18] who described the lattice of varieties of completely regular semigroups.

The problems appearing in the study of the lattice of pseudovarieties are analogous. Reiterman's theorem [19] is the starting point of an equational theory for pseudovarieties: just as varieties are defined by identities, pseudovarieties are defined by pseudoidentities.

Numerous algorithmic problems on pseudovarieties were proposed, for instance by Rhodes [20], Almeida [5] or Kharlampovich and Sapir [15]. Most of these problems are still open. Given a pseudovariety \mathbf{V} , two important problems appear:

Problem 1. Find a finite pseudoidentity basis for V, or prove that it is not finitely based.

Problem 2. Solve the membership problem for V: given a finite semigroup S, does it exist an algorithm testing the membership of S in V?

A positive answer to problem 1 frequently gives the solution for problem 2. We first survey some

of the solutions given to these problems when \mathbf{V} is a join. In the sequel, we will denote by $[\![\Sigma]\!]$ the pseudovariety defined by a set Σ of pseudoidentities. We will mention the following pseudovarieties:

- A, the pseudovariety of finite aperiodic semigroups.
- \mathbf{J} , the pseudovariety of finite \mathcal{J} -trivial semigroups.
- **B**, the pseudovariety of finite bands.
- G, the pseudovariety of finite groups.

• In the general case, nothing is known about the pseudoidentity basis describing a join, and the problem seems to be very difficult. A recent result of Albert, Baldinger and Rhodes [1] states that even the join of two simple decidable pseudovarieties might not be decidable:

Theorem 3. One can find a finite set Σ of identities such that the join $[\![\Sigma]\!] \vee [\![xy = yx]\!]$ is not decidable.

• Sometimes, one can only determine whether the join has a finite basis. On the positive side, one of the few existing results is due to Almeida [4]:

Theorem 4. Every commutative pseudovariety is finitely based.

On the negative side, Volkov [23] and Trotter and Volkov [22] gave examples of non finitely based joins:

Theorem 5. Let A_2 be the syntactic semigroup of $(a + b)^*a^2(a + b)^*$. Let \mathbf{V} be a semigroup pseudovariety containing A_2 , and let \mathbf{H} be a non trivial group pseudovariety. Then $\mathbf{V} \vee \mathbf{H}$ is not finitely based. In particular, $\mathbf{A} \vee \mathbf{G}$ is not finitely based.

Theorem 6. The pseudovariety $\mathbf{J} \lor \mathbf{G}$ is not finitely based.

We shall give another example of a non finitely based join in this lecture.

• Finally, in some cases, computations can be done explicitly. Few methods are known at present, but Almeida [5] used the theory of implicit operations to find a description of some joins. His method is based on Reiterman's theorem and on topological arguments. Thus, Almeida, Azevedo and Weil computed some difficult joins, using at some point some *ad hoc* facts. Notice that algebraic methods fail so far for most of these computations.

A famous example is the description of $\mathbf{R} \vee \mathbf{L}$ given by Almeida and Azevedo in [6], that was conjectured by König [16]. Recall that $\mathbf{R} = [(xy)^{\omega}x = (xy)^{\omega}]$ is the pseudovariety of \mathcal{R} -trivial semigroups while $\mathbf{L} = [y(xy)^{\omega} = (xy)^{\omega}]$ is the one of \mathcal{L} -trivial semigroups.

Theorem 7. The pseudovariety $\mathbf{R} \vee \mathbf{L}$ is defined by $[(xy)^{\omega} x(zx)^{\omega} = (xy)^{\omega}(zx)^{\omega}]$.

Let $\mathcal{Ps}(\mathbf{V})$ denote the lattice of subpseudovarieties of \mathbf{V} . The lattice $\mathcal{Ps}(\mathbf{V} \lor \mathbf{W})$ can sometimes be decomposed in the direct product $\mathcal{Ps}(\mathbf{V}) \times \mathcal{P}_{\mathcal{S}}(\mathbf{W})$. Azevedo [9] gave an example of such a decomposition:

Theorem 8. Let $\mathbf{U} = \llbracket (xy)^{\omega} = x^{\omega}y^{\omega}, x^{\omega+1} = x \rrbracket$ and let Φ and Ψ defined by

$$\begin{array}{cccc} \Phi: \mathcal{Ps}(\mathbf{U}) & \longrightarrow & \mathcal{Ps}(\mathbf{G}) \times \mathcal{Ps}(\mathbf{B}) \\ \mathbf{V} & \longmapsto & (\mathbf{V} \cap \mathbf{G}, \mathbf{V} \cap \mathbf{B}) \\ \Psi: \mathcal{Ps}(\mathbf{G}) \times \mathcal{Ps}(\mathbf{B}) & \longrightarrow & \mathcal{Ps}(\mathbf{U}) \\ & (\mathbf{H}, \mathbf{P}) & \longmapsto & \mathbf{H} \lor \mathbf{P} \end{array}$$

Then, Φ and Ψ are mutually inverse isomorphisms. In particular, $\mathbf{G} \vee \mathbf{B} = \mathbf{U}$. Furthermore, if $\mathbf{V} \subseteq \mathbf{G} \vee \mathbf{B}$, then \mathbf{V} is decidable if and only if $\mathbf{V} \cap \mathbf{G}$ is decidable.

Recent results involve the pseudovariety \mathbf{G} , and use more difficult geometrical arguments. For example, Almeida and Weil [7, 8] proved the following. Recall that if \mathbf{H} is a pseudovariety of groups, $\mathbf{\bar{H}}$ denotes the pseudovariety of all monoids whose subgroups lie in \mathbf{H} .

Theorem 9. Let **H** be a group pseudovariety satisfying $(\mathbf{H} \cap [xy = yx]) * \mathbf{H} = \mathbf{H}$. Then

$$(\mathbf{A} \cap \llbracket xy = yx \rrbracket) \lor \mathbf{H} = \llbracket x^{\omega}y = yx^{\omega} \rrbracket \cap \bar{\mathbf{H}}$$
$$(\mathbf{J} \cap \llbracket x^{\omega}y^{\omega} = y^{\omega}x^{\omega} \rrbracket) \lor \mathbf{H} = \mathbf{D}\mathbf{H} \cap \llbracket x^{\omega}y^{\omega} = y^{\omega}x^{\omega} \rrbracket$$

where **DH** denotes the pseudovariety of all semigroups whose regular \mathcal{D} -classes lie in **H**. This holds in particular for $\mathbf{H} = \mathbf{G}$.

Other results giving an idea of the state of the art for such computations can be found in [3, 2, 6, 7, 8, 10, 9].

We finally present the solutions given in [24, 25] of two problems proposed by Almeida [5]. The first question is the computation of the join $\mathbf{LI} \vee \mathbf{B}$ of the pseudovariety $\mathbf{LI} = [\![x^{\omega}yx^{\omega} = x^{\omega}]\!]$ of locally trivial semigroups and of the pseudovariety \mathbf{B} . We find a finite basis and a natural algebraic interpretation for this join:

Theorem 10. The pseudovariety $\mathbf{LI} \vee \mathbf{B}$ is the pseudovariety of all finite semigroups whose idempotents form an ideal. In other terms, $\mathbf{LI} \vee \mathbf{B}$ is defined by

$$\mathbf{LI} \vee \mathbf{B} = \llbracket (x^{\omega}y)^{\omega} = x^{\omega}y, \quad (yx^{\omega})^{\omega} = yx^{\omega}\rrbracket$$

The second question is the computation of the join $\mathbf{J} \vee \mathbf{B}$. It is more complex.

Theorem 11. The pseudovariety $\mathbf{J} \vee \mathbf{B}$ is not finitely based.

Theorem 12. The pseudovariety $\mathbf{J} \vee \mathbf{B}$ is decidable.

We shall sketch the techniques used for the proofs of these theorems. They illustrate the fact that the knowledge of implicit operations on $\mathbf{V} \vee \mathbf{W}$ may be difficult even when implicit operations on \mathbf{V} and on \mathbf{W} are known. We conclude by recalling two important problems that are still open:

Problem 13. Is the pseudovariety $\mathbf{A} \lor \mathbf{G}$ decidable?

Problem 14. Is the pseudovariety $\mathbf{J} \lor \mathbf{G}$ decidable?

We conjecture that the answer to problem 14 is positive. Azevedo [9], followed by several authors proposed a basis for this pseudovariety:

$$x^{\omega+1}y_1^{\omega}\dots y_k^{\omega}x^{\omega} = x^{\omega}y_1^{\omega}\dots y_k^{\omega}x^{\omega+1} \quad (k>0), \qquad (xy)^{\omega} = (yx)^{\omega}$$

We now present an array to sumarize some of the known results and some of the open problems. In this array,

[k] stands for a complete answer,

(k) stands for a partial answer,

 $\langle k \rangle$ stands for a guess.

We recall the following standard notations of pseudovarieties.

Nil	: nilpotent semigroups.
$\mathbf{K} \ (\text{resp} \ \mathbf{D})$: semigroups in which every idempotent is a left (resp. a right) zero
$\mathbf{K_1}(\text{resp. } \mathbf{D_1})$: left zero (resp right zero) semigroups.
LI_1	: rectangular bands.
G	: groups.
G_{com}	: commutative groups.
Sl	: commutative and idempotent semigroups.
Com	: commutative semigroups.
\mathbf{ZE}	: semigroups in which idempotents are central.
Inv	: semigroups in which idempotents commute.
Lcom	$= \llbracket x^{\omega}yz = x^{\omega}zy\rrbracket$
Rcom	$= \llbracket yzx^{\omega} = zyx^{\omega} \rrbracket$
Perm	: semigroups satisfying a non trivial permutation identity.
Η	denotes a pseudovariety of groups

When possible, we give general references containing many examples, such as [5], [9], [17] or [24] rather than original articles to keep the bibliography in a reasonable size.

- (1) $\mathbf{G} \lor \mathbf{A}$ is not finitely based (Volkov [23])
- (2), (3), (4), (5) $\mathbf{V} \lor \mathbf{H}$ is not finitely based if $\mathbf{J} \subseteq \mathbf{V} \subseteq \mathbf{A}$ and if \mathbf{H} is not commutative (Trotter and Volkov, [22])
- [6] $\mathbf{G} \lor (\mathbf{J} \cap \mathbf{Inv}) = \mathbf{DG} \cap \mathbf{Inv}$ (Almeida, Weil [7, 8])

[7]	$\mathbf{G} \vee \mathbf{Nil} = \llbracket x^{\omega} = y^{\omega} \rrbracket,$	(8) $\mathbf{H} \lor \mathbf{Nil} = (\mathbf{G} \lor \mathbf{Nil}) \cap \overline{\mathbf{H}}$	decidable, $(Pin [17])$
[9]	$\mathbf{G} \lor \mathbf{K} = \llbracket x^{\omega} y^{\omega} = x^{\omega} \rrbracket,$	(10) $\mathbf{H} \lor \mathbf{K} = (\mathbf{G} \lor \mathbf{K}) \cap \overline{\mathbf{H}}$	idem
[11]	$\mathbf{G} \lor \mathbf{D} = \llbracket y^{\omega} x^{\omega} = x^{\omega} \rrbracket,$	(12) $\mathbf{H} \lor \mathbf{D} = (\mathbf{G} \lor \mathbf{D}) \cap \overline{\mathbf{H}}$	idem
[13]	$\mathbf{G} \vee \mathbf{L} \mathbf{I} = \llbracket x^{\omega} y^{\omega} x^{\omega} = x^{\omega} \rrbracket,$	(14) $\mathbf{H} \lor \mathbf{LI} = (\mathbf{G} \lor \mathbf{LI}) \cap \overline{\mathbf{H}}$	idem
[15]	$\mathbf{G} \vee \mathbf{K_1} = \llbracket xy^{\omega} = x \rrbracket,$	(16) $\mathbf{H} \lor \mathbf{K_1} = (\mathbf{G} \lor \mathbf{K_1}) \cap \bar{\mathbf{H}}$	idem
[17]	$\mathbf{G} \vee \mathbf{D_1} = \llbracket y^{\omega} x = x \rrbracket,$	(18) $\mathbf{H} \lor \mathbf{D_1} = (\mathbf{G} \lor \mathbf{D_1}) \cap \mathbf{\bar{H}}$	idem
[19]	$\mathbf{G} \vee \mathbf{LI_1} = \llbracket xy^{\omega}x^{\omega} = x = x^{\omega}y^{\omega}x \rrbracket,$	$(20) \mathbf{H} \lor \mathbf{LI_1} = (\mathbf{G} \lor \mathbf{LI_1}) \cap \bar{\mathbf{H}}$	idem
[21]	$\mathbf{G_{com}} \vee \mathbf{Nil} = \llbracket x^{\omega} = y^{\omega}, x^{\omega}y = yx^{\omega}, x^{\omega}y = yx^{\omega},$	$\omega yz = x^{\omega} zy$], (Almeida [5])	
[22]	$\mathbf{G} \vee \mathbf{Sl} = \llbracket (xy)^{\omega} = x^{\omega}y^{\omega} = (yx)^{\omega}, x^{\omega+1}$	$[= x^{\omega}]$, (Almeida [5], Azevedo [9])
[23]	$\mathbf{G} \lor \mathbf{Com} = \llbracket x^{\omega}y = yx^{\omega} \rrbracket$ (Almeida [5]	, Azevedo [9])	
[24]	$\mathbf{G} \vee \mathbf{B} = \llbracket (xy)^{\omega} = x^{\omega}y^{\omega}, x^{\omega+1} = x^{\omega} \rrbracket $	Almeida [5], Azevedo [9])	
[25]	$\mathbf{R} \vee \mathbf{L} = \llbracket (xy)^{\omega} x(zx)^{\omega} = (xy)^{\omega} (zx)^{\omega} \rrbracket$	(Almeida [5], Azevedo [9])	

$$\langle 26 \rangle \mathbf{R} \vee \mathbf{D_1} = \mathbf{R} \vee \mathbf{LI_1} \stackrel{?}{=} \llbracket (xy)^{\omega} xz = (xy)^{\omega} z \rrbracket \qquad \langle 27 \rangle \mathbf{L} \vee \mathbf{K_1} = \mathbf{L} \vee \mathbf{LI_1} \stackrel{?}{=} \llbracket zx(yx)^{\omega} = z(yx)^{\omega} \rrbracket$$

\vee	G	Α	R	L	J	$\mathbf{J} \cap \mathbf{Inv}$	Nil	K	D	LI
G	G	(1,2)	(3)	(4)	(5)	[6]	[7]	[9]	[11]	[13]
Α		Α	Α	Α	Α	Α	Α	Α	Α	Α
R			R	[25]	R	R	R	R		
L				L	L	L	L		L	
J					J	J	J	[32]	[33]	[34]
$\mathbf{J} \cap \mathbf{Inv}$						$\mathbf{J} \cap \mathbf{Inv}$	$\mathbf{J} \cap \mathbf{Inv}$			
Nil							Nil	K	D	LI
K								K	LI	LI
D									D	LI
LI										LI
Sl										
В								[]		
K ₁										
D_1										
LI_{1}			<u> </u>					「 <u> </u>		<u> </u>
$\mathbf{G}_{\mathbf{com}}$										
Com										
\mathbf{Rcom}										
Lcom										
Perm								i		

- [28] $\mathbf{J} \vee \mathbf{B}$ is non finitely based but decidable. A basis is easy to get [24, 25].
- $\begin{bmatrix} 29 \\ 30 \end{bmatrix} \mathbf{J} \lor \mathbf{K_1} = \llbracket x(yz)^{\omega} = x(zy)^{\omega}, x^{\omega+1} = x^{\omega} \rrbracket \\ \begin{bmatrix} 30 \\ 3 \end{bmatrix} \mathbf{J} \lor \mathbf{D_1} = \llbracket (yz)^{\omega}x = (zy)^{\omega}x, x^{\omega+1} = x^{\omega} \rrbracket$

- [31] $\mathbf{J} \vee \mathbf{LI}_{\mathbf{I}} = \llbracket x(yz)^{\omega}t = x(zy)^{\omega}t, x^{\omega+1} = \mathring{x}^{\omega} \rrbracket$ [32] $\mathbf{J} \vee \mathbf{K} = \llbracket a^{\omega}x(yz)^{\omega} = a^{\omega}x(zy)^{\omega}, x^{\omega} = x^{\omega+1} \rrbracket$ Almeida [5]
- [33] $\mathbf{J} \vee \mathbf{D} = \llbracket (yz)^{\omega} xa^{\omega} = (zy)^{\omega} xa^{\omega}, x^{\omega} = x^{\omega+1} \rrbracket$ Almeida [5]
- [34], [35], [36], [37], [38]: see Azevedo [10].
- [39] Nil \vee B = $\llbracket x^{\omega}y = (xy)^{\omega} = xy^{\omega} \rrbracket$ $[41] \mathbf{K} \vee \mathbf{B} = \llbracket x^{\omega}y = x^{\omega}y^2, xy^{\omega}z = (xy^{\omega}z)^2 \rrbracket$
- [43] $\mathbf{D} \vee \mathbf{B} = \llbracket yx^{\omega}y = y^2x^{\omega}, xy^{\omega}z = (xy^{\omega}z)^2 \rrbracket$
- [45] $\mathbf{L} \vee \mathbf{B} = \llbracket yx \ y = y \ x \ , xy \ z = (xy)$ [45] $\mathbf{L} \vee \mathbf{B} = \llbracket xy^{\omega}z = (xy^{\omega}z)^2 \rrbracket$ [47] $\mathbf{Nil} \vee \mathbf{Com} = \llbracket x^{\omega}y = yx^{\omega}, x^{\omega+1} = x^{\omega} \rrbracket$ [48] $\mathbf{Sl} \vee \mathbf{K_1} = \llbracket xyz = xzy, x^2 = x \rrbracket$ [49] $\mathbf{Sl} \vee \mathbf{D_1} = \llbracket yzx = zyx, x^2 = x \rrbracket$

- $\llbracket 50 \rrbracket \mathbf{Sl} \lor \mathbf{LI_1} = \llbracket xyzx = xzyx, x^2 = x \rrbracket$
- $[51] \mathbf{Sl} \lor \mathbf{G_{com}} = \llbracket xy = yx, x^{\omega} = x \rrbracket$

$$\langle 52 \rangle \mathbf{K} \vee \mathbf{D_1} = \mathbf{K} \vee \mathbf{LI_1} \stackrel{!}{=} \llbracket x^{\omega} yz = x^{\omega} z \rrbracket,$$

 $[40] \mathbf{Sl} \lor \mathbf{Nil} = (\mathbf{Nil} \lor \mathbf{B}) \cap \mathbf{ZE}$ [5, 24][42] $\mathbf{Sl} \lor \mathbf{K} = (\mathbf{K} \lor \mathbf{B}) \cap \mathbf{Lcom}$ [24][44] $\mathbf{Sl} \lor \mathbf{D} = (\mathbf{D} \lor \mathbf{B}) \cap \mathbf{Rcom}$ idem

[46] $\mathbf{Sl} \lor \mathbf{LI} = (\mathbf{LI} \lor \mathbf{B}) \cap \mathbf{Perm}$ idem

$$\langle 53 \rangle \, \mathbf{D} \lor \mathbf{K_1} = \mathbf{D} \lor \mathbf{LI_1} \stackrel{?}{=} \llbracket zyx^{\omega} = zx^{\omega} \rrbracket$$

\vee	Sl	В	\mathbf{K}_{1}	D_1	LI_1	$\mathbf{G}_{\mathbf{com}}$	Com	\mathbf{Rcom}	Lcom	Perm
G	[22]	[24]	[15]	[17]	[19]	G	[23]			
Α	Α	Α	Α	Α	Α					
R	R		R	$\langle 26 \rangle$	$\langle 26 \rangle$					
L	L		$\langle 27 \rangle$	\mathbf{L}	$\langle 27 \rangle$					
J	J	[28]	[29]	[30]	[31]		[35]	[36]	[37]	[38]
J∩InvJ∩Inv										
Nil	[40]	[39]				[8,21]	[47]	\mathbf{Rcom}	Lcom	Perm
K	[42]	[41]	K	$\langle 52 \rangle$	$\langle 52 \rangle$	[10]	Lcom	Perm	Lcom	Perm
D	[44]	[43]	$\langle 53 \rangle$	D	$\langle 53 \rangle$	[12]	\mathbf{Rcom}	\mathbf{Rcom}	\mathbf{Perm}	Perm
LI	[46]	[45]	\mathbf{LI}	LI	\mathbf{LI}	[14]	Perm	Perm	\mathbf{Perm}	Perm
Sl	Sl	В	[48]	[49]	[49]	[51]	\mathbf{Com}	\mathbf{Rcom}	\mathbf{Lcom}	Perm
В		В	В	В	В					
K ₁			$\mathbf{K_1}$	LI_1	LI_1	[16]				Perm
D_1				D_1	LI_1	[18]				Perm
LI_1					LI_1	[20]				Perm
$\mathbf{G}_{\mathbf{com}}$						$\mathbf{G}_{\mathbf{com}}$	Com	\mathbf{Rcom}	Lcom	Perm
Com							Com	\mathbf{Rcom}	Lcom	Perm
\mathbf{Rcom}								\mathbf{Rcom}	Perm	Perm
Lcom									Lcom	Perm
Perm										Perm

References

- D. Albert, R. Baldinger, and J. Rhodes. Undecidability of the identity problem for finite semigroups. J. Symbolic Logic, 57(1):179–192, 1992.
- 2. J. Almeida. Power pseudovarieties of semigroups I. Semigroup Forum, 33:357-373, 1986.
- 3. J. Almeida. Some pseudovariety joins involving the pseudovariety of finite groups. *Semigroup Forum*, 37:53–57, 1988.
- 4. J. Almeida. On the membership problem for pseudovarieties of commutative semigroups. *Semigroup Forum*, 42:47–51, 1991.
- 5. J. Almeida. Semigrupos Finitos e Álgebra Universal. Publicações do Instituto de Matemática e Estatística da Universidade de São Paulo, 1992. Engl. Trans. to appear.
- J. Almeida and A. Azevedo. The join of the pseudovarieties of *R*-trivial and *L*-trivial monoids. J. Pure and Applied Algebra, 60:129–137, 1989.
- 7. J. Almeida and P. Weil. Reduced factorisations in free profinite groups and join decomposition of pseudovarieties. *Int. J. Algebra and Computation*, to appear.
- 8. J. Almeida and P. Weil. Relatively free profinite monoids: an introduction and examples. In J.B. Fountain and V.A.R. Gould, editors, *Semigroups, Formal Languages and Groups*, to appear.
- 9. A. Azevedo. Operações Implícitas sobre Pseudovariedades de Semigrupos. Aplicações. Doctoral dissertation, Universidade do Porto, 1989.
- 10. A. Azevedo. The join of the pseudovariety **J** with permutative pseudovarieties. In J. Almeida et al., editor, *Lattices, Semigroups and Universal Algebra*, London, 1990. Plenum.
- 11. A.P. Biryukov. Varieties of idempotent semigroups. Algebra Logika, 9:255–273, 1970.
- 12. C. Fennemore. All varieties of bands. Semigroup Forum, 1:172-179, 1970.
- 13. C. Fennemore. All varieties of bands. Math. Nachr., 48:237-262, 1971.
- 14. J.A. Gerhard. The lattice of equational classes of idempotents semigroups. J. Algebra, 15:195–224, 1970.
- 15. O.G. Kharlampovich and M. Sapir. Algorithmic problems in varieties. to appear.
- R. König. Reduction algorithms for some classes of aperiodic monoids. R.A.I.R.O.-Informatique Théorique et Applications, 19:233–260, 1985.
- 17. J.E. Pin. Variétés de Langages et Variétés de Semigrupes. Thèse d'état, Université Paris 6, 1981.
- L. Polák. On varieties of completely regular semigroups I, II, III. Semigroup Forum, 32, 36, 37:97–123, 73–883, 1–30, 1985,1987,1988.
- 19. J. Reiterman. The Birkhoff theorem for finite algebras. Algebra Universalis, 14:1–10, 1982.
- J. Rhodes. New techniques in global semigroup theory. In S. Goberstein and P. Higgins, editors, Semigroups and their applications, pages 25–35. Proc. Chico Conf., D. Reidel, 1987.
- W. Taylor. Equational logic. In B. Csákány and J. Schmidt, editors, *Contributions to Universal Algebra*, volume 17, pages 465–501. Colloquia mathematica societatis János Bolyai, 1975.
- 22. P.G. Trotter and M.V. Volkov. The pseudovariety join of \mathcal{J} -trivial semigroups with groups. to appear.
- 23. M.V. Volkov. On a class of semigroup pseudovarieties without finite pseudoidentity basis. Int. J. Algebra and Computation, to appear.
- 24. M. Zeitoun. Opérations Implicites et Variétés de Semigroupes Finis. Thèse de doctorat, Université Paris 7, December 1993.
- 25. M. Zeitoun. On the decidability of the membership problem of the pseudovariety $\mathbf{J} \vee \mathbf{B}$. Int. J. Algebra and Computation, to appear.