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Abstract. Separation is a classical problem asking whether, given two
sets belonging to some class, it is possible to separate them by a set from
another class. We discuss the separation problem for regular languages.
We give a Ptime algorithm to check whether two given regular languages
are separable by a piecewise testable language, that is, whether a BΣ1(<)
sentence can witness that the languages are disjoint. The proof refines an
algebraic argument from Almeida and the third author. When separation
is possible, we also express a separator by saturating one of the original
languages by a suitable congruence. Following the same line, we show that
one can as well decide whether two regular languages can be separated
by an unambiguous language, albeit with a higher complexity.

1 Introduction

Separation is a classical notion in mathematics and computer science. In general,
one says that two structures L1, L2 from a class C are separable by a structure
L if L1 ⊆ L and L2 ∩ L = ∅. In this case, L is called a separator. In separation
problems, the separator L is required to belong to a given class Sep. The problem
asks whether two disjoint elements L1, L2 of C can always be separated by an
element of the class Sep. In the case that disjoint elements of C cannot always be
separated by an element of Sep, several natural questions arise:

(1) given elements L1, L2 in C, can we decide whether a separator exists in Sep?
(2) if so, what is the complexity of this decision problem?
(3) can we, in addition, compute a separator, and what is the complexity?

In this context, it is known for example that separation of two context-free
languages by a regular one is undecidable [9].

Separating regular languages. This paper looks at separation problems for
the class C of regular languages, and for classes Sep closed under complement.
Under this last condition, a separation algorithm for Sep entails an algorithm
for deciding membership in Sep, i.e., membership reduces to separability. Indeed,
membership in Sep can be checked by testing whether the input language is
Sep-separable from its complement.

? Supported by the Agence Nationale de la Recherche ANR 2010 BLAN 0202 01 FREC.



2

Conversely, while finding a decidable characterization for Sep already requires
a deep understanding of the subclass, the search for separation algorithms is
intrinsically more difficult. Indeed, powerful tools are available to decide member-
ship in Sep: one normally makes use of a recognizing device of the input language,
viz. its syntactic monoid. A famous result along these lines is Schützenberger’s
Theorem [14], which states that a language is definable in first-order logic if and
only if its syntactic monoid is aperiodic, a property one can easily decide.

Now for a separation algorithm, the question is whether the input languages
are sufficiently different, from the point of view of the subclass Sep, to allow this
to be witnessed by an element of Sep. Note that we cannot use standard methods
on the recognizing devices, as was the case for the membership problem. We now
have to decide whether there exists a recognition device of the given type that
separates the input: we do not have it in hand, nor its syntactic monoid. An even
harder question then is to actually construct the so-called separator in Sep.

Contributions. In this paper, we study this problem for two subclasses of the
regular languages: piecewise testable languages and unambiguous languages.

Piecewise testable languages are languages that can be described by the
presence or absence of scattered subwords up to a certain size within the words.
Equivalently, these are the languages definable using BΣ1(<) formulas, i.e., first-
order logic formulas that are boolean combinations of Σ1(<) formulas. A Σ1(<)
formula is a first-order formula with a quantifier prefix ∃∗, followed by a quantifier-
free formula. A well-known result about piecewise testable languages is Simon’s
Theorem [16], which states that a regular language is piecewise testable if and
only if its syntactic monoid is J-trivial. This property yields a decision procedure
to check whether a language is piecewise testable, refined by Stern into a Ptime
algorithm [18], of which the complexity has been improved by Trahtman [21].

The second class that we consider is the class of unambiguous languages, i.e.,
languages defined by unambiguous products. This class has been given many
equivalent characterizations [19]. For example, these are the FO2(<)-definable
languages, that is, languages that can be defined in first-order logic using only
two variables. Equivalently, this is the class ∆2(<) of languages that are definable
by a first-order formula with a quantifier prefix ∃∗∀∗ and simultaneously by
a first-order formula with a quantifier prefix ∀∗∃∗. Note that consequently, all
piecewise testable languages are FO2(<)-definable. It has been shown in [10]
for ∆2(<), and in [20] for FO2(<) that these are exactly the languages whose
syntactic monoid belongs to the decidable class DA.

There is a common difficulty in the separation problems for these two classes.
A priori, it is not known up to which level one should proceed in refining
the candidate separators to be able to answer the question of separability. For
piecewise testable languages, this refinement basically means increasing the size
of the considered subwords. For unambiguous languages, it means increasing
the size of the unambiguous products. For both of these classes, we are able to
compute, from the two input languages, a number that suffices for this purpose.
This entails decidability of the separability problem for both classes.
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In both cases, we obtain a better complexity bound to answer the decision
problem starting from NFAs: we show that two languages are separable if and
only if the corresponding automata contain certain forbidden patterns of the
same type. We prove that for piecewise testable languages this property can be
decided in polynomial time wrt. the size of the automata and of the alphabet.
For unambiguous languages this can be done in exponential space.

Related work. The classes of piecewise testable and unambiguous languages are
varieties of regular languages. For such varieties, there is a generic connection
found by Almeida [1] between profinite semigroup theory and the separation
problem: Almeida has shown that two regular languages over A are separable by
a language of a variety A∗V if and only if the topological closures of these two
languages inside a profinite semigroup, depending only on A∗V, intersect. Note
that this theory does not give any information about how to actually construct
the separator, in case two languages are separable. To turn Almeida’s result into
an algorithm deciding separability, we should compute representations of these
topological closures, and test for emptiness of intersections of such closures.

So far, these problems have no generic answer and have been studied in
an algebraic context for a small number of specific varieties. Deciding whether
the closures of two regular languages intersect is equivalent to computing the
so-called 2-pointlike sets of a finite semigroup wrt. the considered variety, see [1].
This question has been answered positively for the varieties of finite group
languages [4,12], piecewise testable languages [3,2], star-free languages [8,7], and
a few other varieties, but it was left open for unambiguous languages.

A general issue is that the topological closures may not be describable by
a finite device. However, for piecewise testable languages, the approach of [3]
builds an automaton over an extended alphabet, of exponential size wrt. the
original alphabet, recognizing the closure of a regular language. The algorithm
is polynomial wrt. the size of the original automaton (the construction was
presented for deterministic automata but also works for nondeterministic ones).
These automata admit the usual construction for intersection and can be checked
for emptiness in Nlogspace. This yields an algorithm which, from two NFAs,
decides separability by a piecewise testable language in time polynomial in the
number of states of the NFAs, and exponential in the size of the original alphabet.

Our proof for separability by piecewise testable languages follows the same
pattern as the method described above. A significant improvement is that we show
that non-separability is witnessed by paths of the same shape in both automata,
which yields an algorithm providing better complexity: it runs in polynomial time
in both the size of the automata and in the size of the alphabet. Also, we do not
make use of the theory of profinite semigroups: we work only with elementary
concepts. We have described this algorithm in [13]. Furthermore, we show how
to compute from the input languages an index that suffices to separate them.
We use the same technique for unambiguous languages. Recently, Czerwinski
et. al. [6] also provided a Ptime algorithm for deciding separability by piecewise
testable languages, but do not provide the computation of such an index.

Due to space constraints, some proofs only appear in the full version of this paper.
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2 Preliminaries

We fix a finite alphabet A = {a1, . . . , am}. We denote by A∗ the free monoid
over A. The empty word is denoted by ε. For a word u ∈ A∗, the smallest B ⊆ A
such that u ∈ B∗ is called the alphabet of u and is denoted by alph(u).

Separability. Given languages L,L1, L2, we say that L separates L1 from L2 if

L1 ⊆ L and L2 ∩ L = ∅.

Given a class Sep of languages, we say that the pair (L1, L2) is Sep-separable if
some language L ∈ Sep separates L1 from L2. Since all classes we consider are
closed under complement, (L1, L2) is Sep-separable if and only if (L2, L1) is, in
which case we simply say that L1 and L2 are Sep-separable.

We are interested in two classes Sep of separators: the class of piecewise
testable languages, and the class of unambiguous languages.

Piecewise Testable Languages. We say that a word u is a piece of v, if

u = b1 · · · bk, where b1, . . . , bk ∈ A, and v ∈ A∗b1A∗ · · ·A∗bkA∗.

For instance, ab is a piece of bbaccba. The size of a piece is its number of letters. A
language L ⊆ A∗ is piecewise testable if there exists κ ∈ N such that membership
of w in L only depends on the pieces of size up to κ occurring in w. We write
w ∼κ w′ when w and w′ have the same pieces of size up to κ. Clearly, ∼κ is a
congruence of finite index. Therefore, a language is piecewise testable if and only
if it is a union of ∼κ-classes for some κ ∈ N. In this case, the language is said to
be of index κ. It is easy to see that a language is piecewise testable if and only if
it is a finite boolean combination of languages of the form A∗b1A

∗ · · ·A∗bkA∗.
Piecewise testable languages are languages definable by BΣ1(<) formulas,

that is, boolean combinations of first-order formulas of the form:

∃x1 . . . ∃xn ϕ(x1, . . . , xn),

where ϕ is quantifier-free. For instance, A∗b1A
∗ · · ·A∗bkA∗ is defined by the

formula ∃x1 . . . ∃xk
[∧

i<k(xi < xi+1)∧
∧
i6k bi(xi)

]
, where the first-order variables

x1, . . . , xk are interpreted as positions, and where b(x) is the predicate testing
that position x carries letter b.

We denote by PT[κ] the class of all piecewise testable languages of index κ or
less, and by PT =

⋃
κ PT[κ] the class of all piecewise testable languages. Given

L ⊆ A∗ and κ ∈ N, the smallest PT[κ]-language containing L is

[L]∼κ = {w ∈ A∗ | ∃u ∈ L and u ∼κ w}.

In general however, there is no smallest PT-language containing a given language.

Unambiguous Languages. A product L = B∗0a1B
∗
1 · · ·B∗k−1akB∗k is called un-

ambiguous if every word of L admits exactly one factorization witnessing its
membership in L. The number k is called the size of the product. An unambiguous
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language is a finite disjoint union of unambiguous products. Observe that unam-
biguous languages are connected to piecewise testable languages. Indeed, it was
proved in [15] that the class of unambiguous languages is closed under boolean
operations. Moreover, languages of the form A∗b1A

∗ · · ·A∗bkA∗ are unambiguous,
witnessed by the product (A \ {b1})∗b1(A \ {b2})∗ · · · (A \ {bk})∗bkA∗. Therefore,
piecewise testable languages form a subclass of the unambiguous languages.

Many equivalent characterizations for unambiguous languages have been
found [19]. From a logical point of view, unambiguous languages are exactly
the languages definable by an FO2(<) formula [20]. Here, FO2(<) denotes the
two-variable restriction of first-order logic. Another logical characterization which
further illustrates the link with piecewise testable languages (i.e., BΣ1(<)-
definable languages) is ∆2(<). A Σ2(<) formula is a first-order formula of
the form:

∃x1 . . . ∃xn ∀y1 . . . ∀ym ϕ(x1, . . . , xn, y1, . . . , ym),

where ϕ is quantifier-free. A language is ∆2(<)-definable if it can be defined both
by a Σ2(<) formula and the negation of a Σ2(<) formula. It has been proven
in [10] that a language is unambiguous if and only if it is ∆2(<)-definable.

For two words w,w′, we write, w ∼=κ w
′ if w,w′ belong to the same unambigu-

ous products of size κ or less. We denote by UL[κ] the class of all languages that
are unions of ∼=κ-classes, and we let UL =

⋃
κUL[κ]. Since unambiguous languages

are closed under boolean operations, UL is the class of all unambiguous languages.
Given L ⊆ A∗ and κ ∈ N, the smallest UL[κ]-language containing L is

[L]∼=κ = {w ∈ A∗ | ∃u ∈ L and u ∼=κ w}.
Again, in general there is no smallest UL-language containing a given language.

Automata. A nondeterministic finite automaton (NFA) over A is denoted by
a tuple A = (Q,A, I, F, δ), where Q is the set of states, I ⊆ Q the set of initial
states, F ⊆ Q the set of final states and δ ⊆ Q×A×Q the transition relation.
The size of an automaton is its number of states plus its number of transitions.
We denote by L(A) the language of words accepted by A. Given a word u ∈ A∗,
a subset B of A and two states p, q of A, we denote

− by p
u−−→ q a path from state p to state q labeled u,

− by p
⊆B−−→ q a path from p to q of which all transitions are labeled over B,

− by p
=B−−→ q a path from p to q of which all transitions are labeled over B, with

the additional demand that every letter of B occurs at least once along it.

Given a state p, we denote by scc(p,A) the strongly connected component of p
in A (that is, the set of states that are reachable from p and from which p can
be reached), and by alph scc(p,A) the set of labels of all transitions occurring in
this strongly connected component. Finally, we define the restriction of A to a

subalphabet B ⊆ A by A �B
def
= (Q,B, I, F, δ ∩ (Q×B ×Q)).

3 Separation by piecewise testable languages

Since PT[κ] ⊂ PT, PT[κ]-separability implies PT-separability. Furthermore, for
a fixed κ, it is obviously decidable whether two languages L1 and L2 are PT[κ]-
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separable: there is a finite number of PT [κ] languages over A, and for each of them,
one can test whether it separates L1 and L2. The difficulty for deciding whether
L1 and L2 are PT-separable is to effectively compute a witness κ = κ(L1, L2),
i.e., such that L1 and L2 are PT-separable if and only if they are PT [κ]-separable.
Actually, we show that PT-separability is decidable, by different arguments:

(1.a) We give a necessary and sufficient condition on NFAs recognizing L1 and L2,
in terms of forbidden patterns, to test whether L1 and L2 are PT-separable.

(1.b) We give a polynomial time algorithm to check this condition.
(2) We compute κ ∈ N from L1, L2, such that PT-separability and PT [κ]-

separability are equivalent for L1 and L2. Hence, if the Ptime algorithm an-
swers that L1 and L2 are PT-separable, then [L1]∼κ is a valid PT-separator.

Let us first introduce some terminology to explain the necessary and sufficient
condition on NFAs. Let A be an NFA over A. For u0, . . . , up ∈ A∗ and nonempty
subalphabets B1, . . . , Bp ⊆ A, let u = (u0, . . . , up) and B = (B1, . . . , Bp). A
(u,B)-path in A is a successful path (leading from the initial state to a final
state of A), of the form shown in Fig. 1.

u0 ⊆ B1 ⊆ B1 u1 up−1 ⊆ Bp ⊆ Bp up

= B1 = Bp

Fig. 1. A (u,B)-path

Recall that edges denote sequences of transitions (see section Automata, p. 5).
Therefore, if A has a (u,B)-path, then L(A) contains a language of the form
u0(x1y

∗
1z1)u1 · · ·up−1(xpy

∗
pzp)up, where alph(xi) ∪ alph(zi) ⊆ alph(yi) = Bi.

Given NFAs A1 and A2, a pair (u,B) is a witness of non PT-separability
for (A1,A2) if there is a (u,B)-path in both A1 and A2. For instance in Fig. 2,
u = (ε, c, ε) and B = ({a, b}, {a}) define such a witness of non PT-separability.

A1

a

b
c a

a
b

a
b c

A2

a

Fig. 2. A witness of non PT-separability for (A1,A2): u = (ε, c, ε), B = ({a, b}, {a})

We are now ready to state our main result regarding PT-separability.

Theorem 1. Let A1 and A2 be two NFAs over A. Let L1 = L(A1) and L2 =
L(A2). Let k1, k2 be the number of states of A1 resp. A2. Define p = max(k1, k2)+1

and κ = p|A|22|A||A|(p|A|+1). Then the following conditions are equivalent:
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(1) L1 and L2 are PT-separable.
(2) L1 and L2 are PT[κ]-separable.
(3) The language [L1]∼κ separates L1 from L2.
(4) There is no witness of non PT-separability in (A1,A2).

Condition (2) yields an algorithm to test PT-separability of regular languages.
Indeed, one can effectively compute all piecewise testable languages of index κ
(of which there are finitely many), and for each of them, one can test whether it
separates L1 and L2. Before proving Theorem 1, we show that Condition (4) can
be tested in polynomial time (and hence, PT-separability is Ptime decidable).

Proposition 2. Given two NFAs A1 and A2, one can determine whether there
exists a witness of non PT-separability in (A1,A2) in polynomial time wrt. the
sizes of A1 and A2, and the size of the alphabet.

Proof. Let us first show that the following problem is in Ptime: given states
p1, q1, r1 of A1 and p2, q2, r2 of A2, determine whether there exist a nonempty

B ⊆ A and paths pi
⊆B−−→ qi

(=B)−−−→ qi
⊆B−−→ ri in Ai for both i = 1, 2.

To do so, we compute a decreasing sequence (Ci)i of alphabets overapproxi-
mating the greatest alphabet B that can be chosen for labeling the loops around
q1 and q2. Note that if there exists such an alphabet B, it should be contained in

C1
def
= alph scc(q1,A1) ∩ alph scc(q2,A2).

Using Tarjan’s algorithm to compute strongly connected components in linear
time, one can compute C1 in linear time as well. Then, we restrict the automata
to alphabet C1, and we repeat the process to obtain the sequence (Ci)i:

Ci+1
def
= alph scc(q1,A1 �Ci) ∩ alph scc(q2,A2 �Ci).

After a finite number n of iterations, we obtain Cn = Cn+1. Note that n 6
|alph(A1) ∩ alph(A2)| 6 |A|. If Cn = ∅, then there exists no nonempty B for
which there is an (= B)-loop around both q1 and q2. If Cn 6= ∅, then it is
the maximal nonempty alphabet B such that there are (= B)-loops around q1
in A1 and q2 in A2. It then remains to determine whether there exist paths

p1
⊆B−−→ q1

⊆B−−→ r1 and p2
⊆B−−→ q2

⊆B−−→ r2, which can be performed in linear time.
To sum up, since the number n of iterations such that Cn = Cn+1 is bounded

by |A|, and since each computation is linear wrt. the size of A1 and A2, one
can decide in Ptime wrt. to both |A| and these sizes whether such a pair of
paths occurs.

Now we build from A1 and A2 two new automata Ã1 and Ã2 as follows. The
procedure first initializes Ãi as a copy of Ai. Denote by Qi the state set of Ai. For
each 4-uple τ = (p1, r1, p2, r2) ∈ Q2

1 ×Q2
2 such that there exist B 6= ∅, two states

q1 ∈ Q1, q2 ∈ Q2 and paths pi
⊆B−−→ qi

=B−−→ qi
⊆B−−→ ri in Ai both for i = 1 and

i = 2, we add in both Ã1 and Ã2 a new letter aτ to the alphabet, and “summary”
transitions p1

aτ−→ r1 and p2
aτ−→ r2. Since there is a polynomial number of tuples



8

(p1, q1, r1, p2, q2, r2), the above shows that computing these new transitions can
be performed in Ptime. So, computing Ã1 and Ã2 can be done in Ptime.

By construction, there exists some pair (u,B) such that A1 and A2 both
have a (u,B)-path if and only if L(Ã1) ∩ L(Ã2) 6= ∅. Since both Ã1 and Ã2 can
be built in Ptime, this can be decided in polynomial time as well. ut

The following is an immediate consequence of Theorem 1 and Proposition 2.

Corollary 3. Given two NFAs, one can determine in polynomial time, with
respect to the number of states and the size of the alphabet, whether the languages
recognized by these NFAs are PT-separable. ut

In the rest of the section, we sketch the proof of Theorem 1. The implications
(3)⇐⇒(2) =⇒ (1) are obvious. To show (1) =⇒ (2), we introduce some terminol-
ogy. Let us fix an arbitrary order a1 < · · · < am on A.

(p,B)-patterns. Let B = {b1, . . . , br} ⊆ A with b1 < · · · < br, and let p ∈ N. We
say that a word w ∈ A∗ is a (p,B)-pattern if w ∈ (B∗b1B

∗ · · ·B∗brB∗)p. The
number p is called the power of w. For example, set B = {a, b, c} with a < b < c.
The word bbaababccacbabaca is a (2, B)-pattern but not a (3, B)-pattern.

`-templates. An `-template is a sequence T = t1, . . . , t` of length `, such that
every ti is either a letter or a nonempty subset of the alphabet A. The main
idea behind `-templates is that they yield decompositions of words that can
be detected using pieces and provide a suitable decomposition for pumping.
Unfortunately, not all `-templates are actually detectable. Because of this we
restrict ourselves to a special case of `-templates. An `-template is said to be
unambiguous if all pairs ti, ti+1 are either two letters, two incomparable sets or a
set and a letter that is not included in the set. For example, T = a, {b, c}, d, {a}
is unambiguous, while T ′ = b, {b, c}, d, {a} and T ′′ = a, {b, c}, {c}, {a} are not.

p-implementations. A word w ∈ A∗ is a p-implementation of an `-template T =
t1, . . . , t` if w = w1 · · ·w` and for all i either ti = wi ∈ A or ti = B ⊆ A, wi ∈ B∗
and wi is a (p,B)-pattern. For example, abccbbcbdaaaa = a.(bccbbcb).d.(aaaa)
is a 2-implementation of the 4-template T = a, {b, c}, d, {a}, since bccbbcb is a
(2, {b, c})-pattern and aaaa is a (2, {a})-pattern.

We now prove (1) =⇒ (2) by contraposition: we show that if w1 ∈ L1, w2 ∈ L2

are such that w1 ∼κ w2, then for any h, one can build v1 ∈ L1 and v2 ∈ L2 such
that v1 ∼h v2. Therefore, non-PT[κ]-separability entails non-PT-separability.

Lemma 4. From regular languages L1, L2, we can compute p ∈ N such that
whenever L1 and L2 both contain p-implementations of the same `-template T ,
then L1 and L2 are not PT-separable.

Proof. Let p be greater than the number of states of NFAs recognizing L1, L2.
Let w1, w2 be p-implementations of an `-template T = t1, . . . , t`. Fix h ∈ N.
Whenever ti is a set B, the corresponding factors in w1, w2 are (p,B)-patterns.
By choice of p, these factors can be pumped into (h,B)-patterns in v1 ∈ L1 and
v2 ∈ L2, respectively. It is then easy to check that v1 ∼h v2. Hence, L1 and L2

are not PT[h]-separable. Since h is arbitrary, L1, L2 are not PT-separable. ut



9

It remains to prove that if two words contain the same pieces of a large enough
size κ, they are both p-implementations of a common unambiguous `-template,
where p is the number introduced in Lemma 4. We split the proof in two parts.
We begin by proving that it is enough to look for `-templates for a bounded `.

Lemma 5. Let p ∈ N. Every word is the p-implementation of some unambiguous

NA-template, for NA = 22
|A||A|(p|A|+1).

Proof. We first get rid of the unambiguity condition. Any ambiguous `-template T
can be reduced to an unambiguous `′-template T ′ with `′ < ` by merging the
ambiguities. It is then straightforward to reduce any p-implementation of T into
a p-implementation of T ′. Therefore, it suffices to prove that every word is the
p-implementation of some (possibly ambiguous) NA-template.

The choice of NA comes from Erdös-Szekeres’ upper bound of Ramsey numbers.
Indeed, a complete graph with edges labeled over c = 2|A| colors, there exists a
complete monochromatic subgraph of size m = p|A|+ 1 provided the graph has
at least 2mc vertices (see [5] for a short proof that this bound suffices).

Observe that a word is always the p-implementation of the `-template which
is just the sequence of its letters. Therefore, in order to complete our proof, it
suffices to prove that if a word is the p-implementation of some `-template T
with ` > NA, then it is also the p-implementation of an `′-template with `′ < `.

Fix a word w, and assume that w is the p-implementation of some `-template
T = t1, . . . , t` with ` > NA. By definition, we get a decomposition w = w1 · · ·w`.
We construct a complete graph Γ with vertices {0, . . . , `} and edges labeled by
subsets of A. For all i < j, we set alph(wi+1 · · ·wj) as the label of the edge (i, j).
Since Γ has more than ` > NA vertices, by definition of NA there exists a complete
monochromatic subgraph with p|A|+ 1 vertices {i1, . . . , ip|A|+1}. Let B be the
color of the edges of this monochromatic subgraph. Let w′ = wi1+1 · · ·wip|A|+1

. By
construction, w′ is the concatenation of p|A| > p words with alphabet exactly B.
Hence w′ is a (p,B)-pattern. It follows that w is a p-implementation of the `′-
template t1, . . . , ti1 , B, tip|A|+2

, . . . , t` with `′ = `− p|A|+ 1. Hence `′ < ` (except
for the trivial case p = |A| = 1). ut

The next lemma proves that once ` and p are fixed, given w it is possible to describe
by pieces `-templates that w p-implements, as long as they are unambiguous.

Lemma 6. Let `, p ∈ N. From p and `, we can compute κ such that for every pair
of words w ∼κ w′ and every unambiguous `-template T , w′ is a p-implementation
of T whenever w is a (p+ 1)-implementation of T . ut

We finish the proof of the implication (1) =⇒ (2) by assembling the results.
Let p be greater than the number of states of NFAs recognizing L1 and L2, as
introduced in the proof of Lemma 4. Let NA be as introduced in Lemma 5 for
p+ 1, and let κ = |A|(p+ 1)NA be as introduced in Lemma 6. Fix h > κ and
assume that we have w1 ∈ L1 and w2 ∈ L2 such that w1 ∼κ w2. By Lemma 5, w1

is the (p+ 1)-implementation of some unambiguous NA-template T . Moreover,
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it follows from Lemma 6 that w2 is a p-implementation of T . By Lemma 4, we
finally obtain that L1 and L2 are not PT-separable.

The implication (1) =⇒ (4) of Theorem 1 is easy to show by contraposition,
see [13, Lemma 2]. The remaining implication (4) =⇒ (1) can be shown using
Lemma 6. For a direct proof, see [13, Lemma 3], where the key for getting a
forbidden pattern out of two non-separable languages is to extract a suitable
p-implementation using Simon’s Factorization Forest Theorem [17].

4 Separation by unambiguous languages

This section is devoted to proving that UL-separability is a decidable property.
Again, the result is twofold. Using an argument that is analogous to property
(2) of Theorem 1 in Section 3, we prove that given L1, L2, it is possible to
compute a number κ such that L1, L2 are UL-separable if and only if they are
UL[κ]-separable. It is then possible to test separability by using a brute-force
approach that tests all languages in UL[κ].

The second part of our theorem is an algorithm providing only a ‘yes/no’
answer, but running in exponential space. This algorithm is more complicated
than the one of Section 3. In this case, we cannot search for a witness of non-
separability directly on the NFAs of the languages. A precomputation is needed.
We present the algorithm before stating our main theorem.

UL-intersection. Let A1 = (Q1, A, I1, F1, δ1), A2 = (Q2, A, I2, F2, δ2) be NFAs.
The purpose of our precomputation is to associate to all 4-uples (q1, r1, q2, r2) ∈
Q2

1 ×Q2
2 a set α(q1, r1, q2, r2) of subalphabets. Intuitively, B ∈ α(q1, r1, q2, r2) if,

for all κ ∈ N, there are two words w1, w2 such that

(1) B = alph(w1) = alph(w2),

(2) q1
w1−−→ r1, and q2

w2−−→ r2,
(3) w1

∼=κ w2.

The precomputation of α : Q2
1 ×Q2

2 → 22
A

is performed via a fixpoint algorithm.

For all (q1, r1, q2, r2) ∈ Q2
1 ×Q2

2, we initially set α(q1, r1, q2, r2) = {{a} | q1
a−→

r1 and q2
a−→ r2}. The sets are then saturated with the following two operations:

(1) When α(p1, q1, p2, q2) = B and α(q1, r1, q2, r2) = C, then add B ∪ C to
α(p1, r1, p2, r2).

(2) When B ∈ α(q1, q1, q2, q2)∩α(r1, r1, r2, r2) and there exist words w1, w2 ∈ B∗
such that q1

w1−−→ r1 and q2
w2−−→ r2 then add B to α(q1, r1, q2, r2).

Since every set α(q1, r1, q2, r2) only grows with respect to inclusion, and is
bounded from above by 2A, the computation terminates. It is straightforward to
see that α can be computed in EXPspace using a fixpoint algorithm. Finally,
we say that L1, L2 have empty UL-intersection if α(q1, r1, q2, r2) = ∅ for all
q1, q2 ∈ I1, I2 and r1, r2 ∈ F1, F2. We now state the main theorem of this section.

Theorem 7. Let A1 and A2 be two NFAs over alphabet A. Let L1 = L(A1)
and L2 = L(A2). Let k1, k2 be the number of states of A1, resp. A2. Define
κ = (2k1k2 + 1)(|A|+ 1)2. Then the following conditions are equivalent:
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(1) L1 and L2 are UL-separable.
(2) L1 and L2 are UL[κ]-separable.
(3) The language [L1]∼=κ separates L1 from L2.
(4) L1, L2 have empty UL-intersection.

As in the previous section, Conditions (2) and (4) yield algorithms for testing
whether two languages are separable. Moreover, it can be shown that empty
UL-intersection can be tested in Pspace from α. Therefore, we get the following
corollary.

Corollary 8. It is decidable whether two regular languages can be separated by
an unambiguous language. Moreover, this can be done in EXPspace in the size
of the NFAs recognizing the languages.

Observe that by definition of UL[κ], the bound κ is defined in terms of
unambiguous products. A rephrasing of the theorem would be: there exists a
separator iff there exists one defined by a boolean combination of unambiguous
products of size κ. It turns out that the same κ also works for FO2(<), i.e., there
exists a separator iff there exists one defined by an FO2(<)-formula of quantifier
rank κ. This can be proved by minor adjustements to the proof of Theorem 7.

The proof of Theorem 7 is inspired from techniques used in [11] and relies
heavily on the notion of (p,B)-patterns. It works by induction on the size of the
alphabet. There are two non-trivial implications: (1) =⇒ (4) and (4) =⇒ (3). We
now provide an insight into the most difficult one, i.e., (4) =⇒ (3). The following
proposition is used to prove this.

Proposition 9. Let B ⊆ A and κ = (2k1k2 + 1)(|B|+ 1)2. For all pairs of words
w1
∼=κ w2 such that B = alph(w1) = alph(w2) and all pairs of states (q1, r1) ∈ Q2

1

and (q2, r2) ∈ Q2
2 such that q1

w1−−→ r1 and q2
w2−−→ r2, we have B ∈ α(q1, r1, q2, r2).

Observe that a consequence of Proposition 9 is that as soon as there exists
w1 ∈ L1,w2 ∈ L2 such that w1

∼=κ w2 (i.e., [L1]∼=κ is not a separator), there exists
a witness of nonempty UL-intersection. This is the contrapositive of (4) =⇒ (3).

5 Conclusion

We proved separation results for both piecewise testable and unambiguous lan-
guages. Both results provide a means to decide separability. In the PT case, we
even prove that this can be done in Ptime. Moreover, in both cases we give an
insight on the actual separator by providing a bound on its size, should it exist.

There remain several interesting questions in this field. First, one could
consider other subclasses of regular languages, the most interesting one being
full first-order logic. Separability by first-order logic has already been proven to
be decidable using semigroup theory [7]. However, this approach is difficult to
understand, and it yields a costly algorithm that only provides a yes/no answer,
without insight about a possible separator. Another question is to get tight
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complexity bounds. For unambiguous languages for instance, it is likely that
our EXPspace upper bound can be improved, and even for piecewise testable
languages, we do not know any tight bounds.

A final observation is that right now, we have no general approach and are
bound to use ad-hoc techniques for each subclass. An interesting direction would
be to invent a general framework that is suitable for this problem in the same
way that monoids are a suitable framework for decidable characterizations.
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