
Distrib. Comput. (2011) 23:331–340
DOI 10.1007/s00446-010-0121-5

An optimal bit complexity randomized distributed MIS algorithm

Y. Métivier · J. M. Robson ·
N. Saheb-Djahromi · A. Zemmari

Received: 9 July 2009 / Accepted: 10 November 2010 / Published online: 27 November 2010
© Springer-Verlag 2010

Abstract We present a randomized distributed maximal
independent set (MIS) algorithm for arbitrary graphs of size
n that halts in time O(log n) with probability 1 − o(n−1),
and only needs messages containing 1 bit. Thus, its bit
complexity par channel is O(log n). We assume that the
graph is anonymous: unique identities are not available to
distinguish between the processes; we only assume that
each vertex distinguishes between its neighbours by locally
known channel names. Furthermore we do not assume that
the size (or an upper bound on the size) of the graph
is known. This algorithm is optimal (modulo a multi-
plicative constant) for the bit complexity and improves
the best previous randomized distributed MIS algorithms
(deduced from the randomized PRAM algorithm due to Luby
(SIAM J. Comput. 15:1036–1053, 1986)) for general graphs
which is O(log2 n) per channel (it halts in time O(log n)

and the size of each message is log n). This result is based
on a powerful and general technique for converting unrealis-
tic exchanges of messages containing real numbers drawn at

This work was supported by grant No ANR-06-SETI-015-03 awarded
by Agence Nationale de la Recherche.

An extended abstract of this paper was presented in the 16th
International Colloquium on Structural Information and
Communication Complexity (SIROCCO 2009).

Y. Métivier · J. M. Robson · N. Saheb-Djahromi · A. Zemmari (B)
Université de Bordeaux, LaBRI UMR CNRS 5800,
351 cours de la Libération, 33405 Talence, France
e-mail: zemmari@labri.fr

Y. Métivier
e-mail: metivier@labri.fr

J. M. Robson
e-mail: robson@labri.fr

N. Saheb-Djahromi
e-mail: saheb@labri.fr

random on each vertex of a network into exchanges of bits.
Then we consider a natural question: what is the impact of
a vertex inclusion in the MIS on distant vertices? We prove
that this impact vanishes rapidly as the distance grows for
bounded-degree vertices and we provide a counter-example
that shows this result does not hold in general. We prove
also that these results remain valid for Luby’s algorithm pre-
sented by Lynch (Distributed algorithms. Morgan Kaufman
1996) and by Wattenhofer (http://dcg.ethz.ch/lectures/fs08/
distcomp/lecture/chapter4.pdf, 2007). This question remains
open for the variant given by Peleg (Distributed computing—
a locality-sensitive approach 2000).

1 Introduction

1.1 The problem

Let G = (V, E) be a simple connected undirected graph.
An independent set of G is a subset I of V such that no two
members of I are adjacent. An independent set I is maximal
if any vertex of G is in I or adjacent to a vertex of I.

In this paper we discuss how greedy selection for the com-
putation of a maximal independent set (MIS) in a network
of processors can be accomplished by the exchange of mes-
sages between adjacent processors. The distributed complex-
ity (time and bit) of computing an MIS is of fundamental
interest for the study and the analysis of distributed com-
puting. The computation of an MIS is a building block for
many distributed algorithms: topology control, routing, col-
oring. Thus an MIS provides an initial clustering which can
be used as an initial structure. Furthermore an MIS induces
a set of processors which can operate in parallel. A survey
of results concerning the MIS problem can be found in [16]
(Chap. 4, pp. 71–76) and in [19] (Chap. 8).

123

http://dcg.ethz.ch/lectures/fs08/distcomp/lecture/chapter4.pdf
http://dcg.ethz.ch/lectures/fs08/distcomp/lecture/chapter4.pdf

332 Y. Métivier et al.

1.2 The model

The network: We consider the standard message passing
model for distributed computing. The communication model
consists of a point-to-point communication network des-
cribed by a simple connected undirected graph G = (V, E)

where the vertices V represent network processors and the
edges represent bidirectional communication channels. Pro-
cesses communicate by message passing: a process sends a
message to another by depositing the message in the corre-
sponding channel. We assume the system to be synchronous
and a synchronous wake-up of processors: processors have
access to a global clock and all processors start the algorithm
at the same time.

Time complexity: A round (cycle) of each processor is
composed of the following three steps: 1. Send messages to
(some of) the neighbours, 2. Receive messages from (some
of) the neighbours, 3. Perform some local computation. As
usual (see for example Peleg [19]) the time complexity is
the maximum number of rounds needed until every node has
completed its computation.

Bit complexity: As is explained by Santoro in [20] (Chap.
6) (see also [6], Chap. 3) the cost of a synchronous distributed
algorithm is both time and bits. By definition, the bit complex-
ity of a distributed algorithm (per channel) is the total num-
ber of bits exchanged (per channel) during its execution. As
in [9], in each bit round each node can send/receive at most
one bit to/from each neighbour. Finally the bit complexity of
an algorithm A is the number of bit rounds to achieve algo-
rithm A. (This may be less than the per channel bit complex-
ity because, in some channels, some bit rounds are “wasted”
with no bits sent.) Thus it is considered as a finer measure of
communication complexity and it has been studied for break-
ing and achieving symmetry for coloring in [3,5,9]. Dinitz et
al. explain in [5] that it can be viewed as a natural extension
of communication complexity (introduced by Yao [23]) to the
analysisof tasks inadistributedsetting.Anintroductionto this
area can be found in Kushilevitz and Nisan [13].

Network and processes knowledge: The network is
anonymous: unique identities are not available to distinguish
the processes. We do not assume any global knowledge of
the network, not even its size or an upper bound on its size.
The processors do not require any position or distance infor-
mation. Each processor knows from which channel it receives
a message. An important fact (see [19] p. 93) due to the ini-
tial symmetry is: there is no deterministic distributed algo-
rithm for arbitrary anonymous graphs for computing an MIS
assuming all vertices wake up simultaneously.

1.3 Our contribution

As for a number of randomized algorithms for MIS, our
algorithms work in the following way. They operate in

synchronous rounds grouped into phases. At the end of each
phase, some vertices join the MIS and some others know
they will never be in the MIS: these two sets of vertices erase
themselves from the graph.

One of the main contributions of this paper is the devel-
opment of a powerful and general technique for converting
unrealistic exchanges of messages containing real numbers
drawn at random on each vertex into efficient exchanges of
bits, drawn at random on each vertex, and we apply this tech-
nique to the computation of an MIS.

First we consider in Sect. 2 the model of exchange of mes-
sages containing real numbers and we deduce a very simple
randomized algorithm (Algorithm A) for the computation
of an MIS. We derive logarithmic bounds on the number
of exchanges required; one such bound on the average and
another which holds with probability 1−o(n−1); we deduce
that Algorithm A computes an MIS for arbitrary graphs of
size n in time O(log n) with probability 1 − o(n−1).

Then we discuss in Sect. 3 how, in the model of exchange
of single bit messages, the real number exchanges can be
simulated in finite time (Algorithm B) and we show loga-
rithmic bounds on the number of bits used to complete all
the real exchanges and finally Algorithm B computes an MIS
for arbitrary graphs of size n in time O(log2 n) with proba-
bility 1 − o(n−1).

In Sect. 4 we show how the simulated real number
exchanges can be overlapped (Algorithm C), in this way we
prove Theorem 3:

There exists a randomized distributed MIS algorithm for
arbitrary graphs of size n that halts in time O(log n) with
probability 1 − o(n−1), each message containing 1 bit.

We conclude that the bit complexity per channel of algo-
rithm C is O(log n).

Algorithm C is optimal for the bit complexity as a direct
consequence of two results. First, Kothapalli et al. show in
[9] that if only one bit can be sent along each edge in a round,
then every distributed vertex colouring algorithm (in which
every node has the same initial state and initially only knows
its own edges) needs at least �(log n) rounds with high prob-
ability1 (w.h.p. for short) to colour the cycle of size n with
any finite number of colours. Second, Wattenhofer in [22]
(p. 36) shows that a colouring algorithm can be obtained from
an MIS algorithm. The colouring algorithm ([22] Algorithm
18) has the same (time and bit) complexity as the MIS algo-
rithm, up to a multiplicative constant, for any family of graphs
of bounded degree and in particular for the family of rings.

A fundamental question about distributed computation is:
What can (or cannot) be computed locally? (see [11,18]).
In the context of randomized distributed algorithms, we may
consider a linked natural question: what is the impact of a
vertex inclusion in the MIS on distant vertices?

1 With high probability means with probability 1 − o(n−1).

123

An optimal bit complexity randomized distributed MIS algorithm 333

We prove in Sect. 5 that this impact vanishes rapidly as
the distance grows for bounded-degree vertices. We provide
a counter-example that shows this result does not hold in gen-
eral. We prove also that these results remain valid for Luby’s
algorithms presented by Lynch [16] and by Wattenhofer [22]
and described in the next subsection. This question remains
open for the variant given by Peleg [19].

1.4 Related works: comparisons and comments

The computation of an MIS has been the object of extensive
research on parallel and distributed complexity [1,2,14,15];
Karp and Widgerson [8] have proved that the MIS problem
is in NC. Some links with distributed graph coloring and
some recent results on this problem can be found in [12].
The complexity of some special classes of graphs such as
growth-bounded graphs is studied in [10]. Results have been
obtained also for radio networks [17].

A major contribution is due to Luby [15]: he presented a
randomized PRAM algorithm which requires a linear num-
ber of processors and runs in O(log2 n) time. He assumes
that the number of vertices is known. The main idea is to
obtain for each vertex a local total order or a local election
which breaks the local symmetry and then each vertex can
decide locally whether it joins the MIS or not.

In the context of distributed computation, a first applica-
tion of this idea corresponds to algorithm A of this paper and
to the presentation of Luby’s algorithm (called LubyMIS)
given by Lynch [16] (Chap. 4, pp. 71–76). In this presenta-
tion, the knowledge of the size n of the network is used to
enable each vertex to make a random choice of an integer
from {0, . . . , n4} using the uniform distribution. The anal-
ysis of this presentation is summarised by (Theorem 4.9,
p. 76): With probability one, LubyMIS eventually terminates.
Moreover, the expected number of rounds until termination
is O(log n). Each message contains O(log n) bits thus the
bit complexity per channel is O(log2 n).

A variant of Luby’s algorithm is presented in [19]
(Chap. 8) which allows a simpler analysis. The local election
is done in the following way: at each phase, each vertex v

computes the maximal vertex degree of its 2-neighbourhood
D(v) (vertices at distance 1 or 2) and then draws uniformly
at random a bit with probability depending on D(v). If v

draws 1 and every neighbour draws 0 then v joins the MIS.
Peleg shows that this algorithm halts in time O(log2 n) with
probability 1 − o(n−1). It needs messages containing log n
bits thus the bit complexity per channel is O(log3 n).

Wattenhofer [22] presents and analyses another distrib-
uted implementation of Luby’s algorithm. Each vertex needs
at each phase the knowledge of the degrees of its neighbours,
and marks itself with probability 1/(2d(v)), where d(v) is the
current degree of v. If no higher degree neighbour of v is also
marked then v joins the MIS. If a higher degree neighbour of

v is marked v unmarks itself. If the neighbours have the same
degree ties are broken arbitrarily. This algorithm terminates
in expected O(log n) time and the size of messages is log n,
so its bit complexity per channel is O(log2 n).

Alon et al. [1] presents a parallel randomized algorithm
to find an MIS, its expected time on a PRAM is O(log n).

As for the previous one, each vertex needs at each phase the
degrees of its neighbours, so its bit complexity is O(log2 n).

The analysis of previous algorithms has concentrated on
the probability of a vertex being eliminated from the graph in
any round. Our analysis, instead, concentrates on the proba-
bility of an edge being eliminated, and thereby reduces the
complexity of both the algorithm and its analysis.

As is explained in [20] (p. 18), the knowledge of vertices
in distributed computing is fundamental. For example, there
exists a deterministic election algorithm for an anonymous
network minimal for the covering relation (see [4]) if the size
or a bound on the size is known and no such algorithm exists
if the size (or a bound) is not known. In the same way, it
is shown that it is possible to break the symmetry in anony-
mous networks but that it is not possible to detect termination
unless the network size is known. About the computation
of the network size one can cite the following impossibil-
ity result for anonymous networks. There exists no process-
terminating algorithm for computing the size that is correct
with probability r > 0. ([21], Chap. 9).

The table below summarises the comparison between the
various MIS algorithms and Algorithm C of this paper.

Knowledge Time Message size Bit complexity
(number of bits) (per channel)

Luby (Lynch) Size of the graph O(log n) log n O(log2 n)

Luby (Peleg) Maximum degree in
2-Neighbourhood

O(log2 n) log n O(log3 n)

Luby (Wattenhofer) Maximum of
neighbours
degrees

O(log n) log n O(log2 n)

Alon et al. Maximum of
neighbours
degrees

O(log n) log n O(log2 n)

Algorithm C no knowledge O(log n) 1 O(log n)

Remark 1 In the column “Knowledge”of this table:

– the size of the graph is the size of the initial graph,
– maximum neighbours degree and maximum degree in

2−neighbourhoud are computed at each phase.

Notation In this paper, as usual, Pr(e) denotes the probabil-
ity of the event e and E(X) the expected value of the random
variable (r.v.) X.

2 Exchange of real numbers

The first distributed algorithm, denoted A, is very simple. It
is composed of phases. At each phase each processor u still in

123

334 Y. Métivier et al.

the graph generates a random variable x(u) and a processor
is included in the independent set if its x is a local minimum,
i.e., x(u) < x(v) for each neighbour v of u. (Algorithm 1
describes a phase of Algorithm A) It is convenient to take
the random variables to be uniformly distributed on [0, 1).

When all local minima have been included in the inde-
pendent set, each surviving processor (not included in the
MIS and not definitely excluded from the MIS) generates a
new random variable and again local minima are included
in the independent set. The algorithm halts when there is no
surviving processor.

The outcome of an MIS computation is defined on each
vertex u by a special variable η(u). A vertex u joining the
MIS sets η(u) to 1 and a vertex u not joining the MIS sets
η(u) to 0; initially η(u) = −1.

For each vertex v of the graph: Not-In-MIS-set(v) and
In-MIS-set(v) are sets of vertices, initially Not-In-MIS-
set(v) = ∅, In-MIS-set(v) = ∅.

Draw uniformly at random a real x(u);
Send x(u) to all neighbours w;
Receive x(w) from all neighbours w;

4: if (x(u) < x(w) for each neighbour of u) then
Set η(u) = 1;
Send In-MIS to each neighbour;

end if
8: Receive a message mess(w) from all neighbours w;

Put w in In-MIS-set(u) for each neighbour w such that
(mess(w) = In-MIS);
if mess(w) = In-MIS for at least one neighbour w then

Set η(u) = 0;
12: Send Not-In-MIS to all neighbours;

end if
Receive a message mess(w) from all neighbours w;
Put w in Not-In-MIS-set(u) for each neighbour w such that
(mess(w) = Not-In-MIS);

16: Erase from neighbours of u in the graph each vertex w in
In-MIS-set(u) or in Not-In-MIS-set(u);
if (η(u) �= −1 and neighbours(u)= ∅) then

terminate;
end if

Algorithm 1: A phase of Algorithm A

We have the following lemma:

Lemma 1 In any phase, the expected number of edges
removed from the remaining graph G is at least half the
number of edges in G.

Proof We say that a vertex u preemptively removes a neigh-
bour v if x(u) is less than x(v) and x(w) for all other
neighbours w of u and v. If this is the case, then u will
be included in the independent set and so v and all edges
(v,w) incident on v will be removed from the graph. We
say that the edges (v,w) are preemptively removed. If the
degrees are d(u) and d(v), the probability that u preemp-
tively removes v is at least 1/(d(u) + d(v)). The aver-
age number of edges preemptively removed is thus at least

(∑
(u,v)∈E

(
d(v)

d(u)+d(v)
+ d(u)

d(u)+d(v)

))
/2 since d(v) edges

are removed if u removes v and d(u) edges are removed
if v removes u and an edge (v,w) can only be preemptively
removed twice, once by the removal of v and once by that

of w. The sum is
(∑

(u,v)∈E 1
)

/2, that is half the number of

edges. ��
Remark 2 We introduce the new notion of “to be preemp-
tively removed” for the proof of this lemma and thanks to
this analysis, we avoid the need, present in previous algo-
rithms, for a vertex to know the maximal degree of its 2-
neighbourhood.

We then obtain:

Corollary 1 There are constants k1 and K1 such that for
any graph G = (V, E) of n vertices the number of phases to
remove all edges from G is:

1. less than k1 log n on average,
2. less than K1 log n with probability 1 − o(n−1).

Proof Using t he fact that |E | < n2, the average follows
easily by induction.

For the second claim, initially the number of edges is less
than n2/2. Therefore after r rounds the expected number
of edges remaining is less than n2/2r+1. In particular after
4 log n rounds it is less than n−2/2 so that the probability that
any edge remains is less than n−2/2. ��

These results are summarised by:

Theorem 1 Algorithm A computes an MIS for arbitrary
graphs of size n in time O(log n) with probability 1−o(n−1).

In what follows we assume that the number of phases is in
fact less than K1 log n.

3 Exchange of bits in phases

The main idea: In this section we present and analyse an
algorithm which simulates exchanges of real numbers in
[0, 1) by exchanges of the bits of their binary representation
with the most significant bit first. Note that the binary rep-
resentation (x1, x2, . . .) of a real number x ∈ [0, 1) satisfies
x = ∑

i≥1 xi/2i .

3.1 Description of the algorithm

We consider a more realistic algorithm, denoted B, in which
processors exchange messages of finite size; in fact we con-
sider only messages of a fixed finite set of types:

– one bit 0 or 1 of Data
– In-MIS

123

An optimal bit complexity randomized distributed MIS algorithm 335

– Not-In-MIS
– Ineligible (when a vertex v sends this message it means

that until the end of the current phase v cannot be in the
MIS).

At the start of a phase, a processor knows which neigh-
bours are still in the graph and it initialises its set of active
processors to all these neighbours. The status of a vertex
is Eligible (the vertex may be included in the independent
set during this phase), or Ineligible (the vertex cannot be
included in the independent set during this phase). All pro-
cessors still in the graph are initially Eligible.

One phase of exchange of real numbers is replaced by
a phase composed of a sequence of rounds. Each round is
composed of send, receive and internal actions. A message
is one of these types. The Data messages send the bits of a
real number, most significant first. The other messages per-
mit a processor to stop sending Data when the real numbers
are known accurately enough for further bits to be irrelevant
to whether any processor has a local minimum (the exact
simulation of the order induced by real numbers implies that
during the course of a phase, two neighbours exchange bits
as long as they have not determined whether one of them is
or is not a local minimum even if other information implies
that one of them is no longer eligible).

Initially, for each vertex v of the graph: η(v) = −1; and
active-set(v), Not-In-MIS-set(v) and In-MIS-set(v) are sets
of vertices. At the beginning of each phase, for each vertex
v such that η(v) = −1 : status(v) = Eligible, active-set(v)

contains the set of neighbours w of v satisfying η(w) =
−1, and Not-In-MIS-set(v) = ∅, In-MIS-set(v) = ∅ and
Ineligible-set(v) = ∅.

In each round each processor u generates one random bit
and sends it to each active neighbour v and then does the
following:

– If its bit was 0 and it received 1 from each active neigh-
bour, it is a local minimum. It sets η(u) to 1 and it sends
In-MIS to all neighbours and takes no further part in this
or later phases.

– If its bit was different from that received from v, it
removes v from its list of active neighbours for this
phase (the symmetry is broken; now the order relation
between the two vertices is known thus they do not need
to exchange more bits).

– If its bit was 1 and it received 0 from a neighbour, it is not
a local minimum. Its status, for this phase, becomes Inel-
igible and it sends Ineligible to every active neighbour
and removes from its active list all ineligible neighbours.

– If it receives In-MIS from any neighbour, it sets η(u) to 0
and it sends Not-In-MIS to all other neighbours. It takes
no part in subsequent phases but continues to generate
and send bits as long as it has active neighbours.

– If it receives Not-In-MIS from a neighbour v, it notes that
v is not eligible and will be removed from the graph after
this phase. If it is itself ineligible, it removes v from its
active list.

– If it receives Ineligible from a neighbour v, it notes that
v is not eligible in this phase and, if it is itself ineligible,
removes v from its active list.

– If it is ineligible and has no eligible active neighbours
it is the end of the current phase. It takes no part in this
phase and is ready to start another phase if η(u) = −1.

while (η(v) �= 1 and η(v) �= 0 and active-set (v) is not empty)
do

Draw uniformly at random a bit b(v);
Send b(v) to all active neighbours w;

4: Receive b(w) from all active neighbours w;
if b(v) = 0 then

if all active neighbours w have drawn b(w) = 1 then
Set η(v) = 1;

8: Send In-MIS to each neighbour;
end if

else
if there is at least one active neighbour w which has drawn
b(w) = 0 then

12: Set status(v) = Ineligible;
Send Ineligible to each active neighbour;

end if
end if

16: Receive a message mess(w) from all active neighbours w;
Put w in Ineligible-set(v) for each neighbour w such that
(mess(w) = Ineligible);
Put w in In-MIS-set(v) for each neighbour w such that
(mess(w) = I n-MIS);
if mess(w) = I n-MIS for at least one neighbour w then

20: Set η(v) = 0;
Send Not-In-MIS to all neighbours;

end if
Receive a message mess(w) from all active neighbours w;

24: Put w in Not-In-MIS-set(v) for each neighbour w such
that (mess(w) = Not-In-MIS);
if status(v) = Ineligible then

Remove w from active-set(v) for each neighbour w in
Not-In-MIS-set(v) or in In-MIS-set(v) or in Ineligible-set(v)

and for each neighbour w such that b(v) �= b(w);
end if

28: end while
Erase from neighbours of v in the graph each vertex w in
In-MIS-set(v) or in Not-In-MIS-set(v);

Algorithm 2: A phase of Algorithm B

It follows from this:

Remark 3 After an exchange of bits and all consequent other
messages, u and v consider each other as active neighbours
if and only if they have generated exactly the same sequence
of bits so far in this phase and one of them is still eligible.

This is precisely the condition that they still need to exchange
more bits to decide whether one of them is a local minimum.

123

336 Y. Métivier et al.

3.2 Analysis of the algorithm

In this section, we first analyze the time and the bit complex-
ity of Algorithm B. Then we analyse the bit complexity on
each vertex.

Time and bit complexity: We have the following theorem:

Theorem 2 Algorithm B constructs an MIS for any arbi-
trary graph of size n ≥ 1 in O

(
log2 n

)
exchanges of bits on

average and with high probability.

Proof Algorithm B simulates Algorithm A. Thus, by Cor-
ollary 1, it needs O(log n) phases on average and with high
probability to achieve the MIS construction. The main con-
cern is to upper-bound the expected number of rounds needed
to terminate each phase.

On the other hand, at each round, each edge has a proba-
bility 1/2 to be removed from the graph, then, after 3 log n
exchanges of bits, there is no edge in the graph with proba-
bility 1 − o

(
n−2

)
. This ends the proof. ��

Local bit complexity: In this section, we investigate the
time for any vertex u to terminate a phase. We first prove the
following lemma:

Lemma 2 In any round of exchange of bits, any processor u
has probability at least 1/4 of entering one of the following
states (if it has not already done so):

– In-MIS
– Not-In-MIS
– End-of-phase.

Proof (In this proof we are concerned only with processors
which are exchanging bits with their active neighbours; the
graph considered is thus that in which edges represent the
links between pairs of active neighbours and all graph termi-
nology is with reference to this graph.)

We define a set C of candidates as the eligible processors
in {u} ∪ N (u) and a set O of opponents as all neighbours,
excluding u, of candidates. The behaviour of u during the
exchange of bits depends on the bits chosen by u and C ∪ O .
We consider an assignment b of bits to (C∪O)\{u} and argue
that for at least half of such assignments, u has probability at
least 1/2 of entering one of the three states.

There are three types of good assignments in which u has
this probability:

– every vertex v in C has a neighbour w in C ∪ O with
b(w) = 0:
With probability 1/2, b(u)= 1: if u was eligible it
becomes ineligible since it is in C ; any vertex v in C
with b(v) = 0 is removed from the active neighbour list
of u; any vertex v in C\{u} with b(v) = 1 becomes inel-
igible because it has a neighbour w with b(w) = 0. Now
u is ineligible and has no eligible active neighbours; it is
in the state End-of-phase.

– u has no neighbour v with b(v) = 0:
With probability 1/2, b(u) = 0 : u sends In-MIS.

– Some v ∈ C\{u} has all its neighbours w in (C ∪ O)\{u}
with b(w) = 1 and b(v) = 0:
With probability 1/2 b(u) = 1 : v sends In-MIS to its
neighbours including u and u sends Not-In-MIS.

The remaining bad assignments are those where some v ∈
C\{u} has all its neighbours w in (C ∪O)\{u} with b(w) = 1
and all such v have b(v) = 1. We argue that the set B of these
bad assignments is at most half of all assignments.

Consider the function f from bad assignments to assign-
ments defined by f (b)(v) = 0 where v is the first vertex
v with the property stated and f (b)(x) = b(x) otherwise.
f (b) is a good assignment because it has a vertex v with
b(v) = 0 and b(w) = 1 for the neighbours of v (other than
u); moreover f (b) has no other vertex v′ with this property
so that f is one-one. Hence | f (B)| = |B|, f (B) ∩ B = ∅
and so |B| = (| f (B) ∪ B|)/2 and B is as claimed at most
half of all assignments. ��
Then:

Corollary 2 There exist constants k2 and K2 such that the
maximum number of Data bits generated by any processor u
in all phases is:

– less than k2 log n on average
– less than K2 log n with probability 1 − o(n−2).

Proof From Sect. 2 we know that u takes part on average
in at most k1 log n phases. From the lemma we deduce that
u performs on average at most 4 bit exchanges per phase.
Hence the average total number of bit exchanges is at most
4k1 log n.

From Sect. 2 we can suppose that the total number of
phases is at most K1 log n. For suitably large K2, we have
that a sequence of K2 log n bit exchanges, each with prob-
ability at least 1/4 of producing one of the messages of the
lemma, will have produced K1 log n messages with proba-
bility 1 − o(n−2); hence with probability 1 − o(n−2), after
K2 log n bit exchanges, u has finished every phase. ��
Yielding:

Corollary 3 There exists k3 such that the maximum number
of Data bits generated by any processor is less than k3 log n
on average and with probability 1 − o(n−1).

Proof From Corollary 2 we have that with probability
1 − o(n−1) every processor has finished all phases after
K2 log n bit exchanges. If f (n) is the worst case average
number of bit exchanges, f must be monotonic non-decreas-
ing in n and we have f (n) ≤ K2 log n + o(n−1) f (n) imply-
ing f (n) = O(log n). ��

123

An optimal bit complexity randomized distributed MIS algorithm 337

From these results, we deduce another proof of Theorem 2.

Remark 4 As the system is synchronous, some vertices may
need to wait to be synchronised. This explains why the bit
complexity is O(log n2) although only O(log n) bits are
exchanged.

4 Exchange of bits with desynchronised
phases between adjacent edges

We present a method of simulating Algorithm B by means of
1-bit messages sent along edges between neighbouring verti-
ces, obtaining a new algorithm: Algorithm C. The maximum
number of messages sent and received on any edge will be
O(log n) on average and with high probability.

The main idea: Algorithm B simulates exchange of real
numbers by exchange of bits. The exchange of bits is centra-
lised on the vertex: the vertex exchanges bits (corresponding
to a real number) with neighbours until the symmetry is bro-
ken: at each round a vertex sends the same bit to all its neigh-
bours. In this section, the main idea is, for each vertex u, a
desynchronisation between edges incident on u: the vertex u
exchanges bits with a given neighbour v until the symmetry
is broken between u and v. If, in a round, u breaks the sym-
metry with v1 and does not break the symmetry with v2 then
u considers that a phase with v1 is completed and starts, in
anticipation, a new phase with v1 and it continues the previ-
ous phase with v2. When a bit is drawn by anticipation, it is
memorized to be used later by another edge when it accom-
plishes the same round in the same phase. Thus, in the same
round, the vertex u may send the bit b1 to the vertex v1 cor-
responding to the phase t1 and the bit b2 to v2 corresponding
to the phase t2 with t1 �= t2.

Remark 5 The fundamental fact is that each round has prob-
ability 1/2 of breaking the symmetry over an edge.

General description of the algorithm on each vertex: Each
vertex runs two processes in interleaved fashion, alternating
one round of process calc_win and one round of calc_mis.
The process calc_win computes for each pair of neighbour-
ing vertices and for each phase, which of the two has the
smaller value in the phase. The process calc_mis uses this
information to find the MIS computed by the algorithm and
eventually to halt the first process.

From time to time a vertex running calc_mis will decide
that it is to be removed from the graph and signal this fact to
its neighbours. Any reference to the neighbours of a vertex
is to be understood to mean those neighbours from whom no
such signal has yet been received.

With the same notation defined previously, initially, for
each vertex u of the graph: η(u) = −1; and active-set(v),

Not-In-MIS-set(v) and In-MIS-set(v) are sets of vertices. The

variable active-set(u) contains the set of neighbours v of u
satisfying η(v) = −1.

while (η(u) �=1 and η(u) �=0 and active-set(u) is not empty) do
1 round of calc_win;
1 round of calc_mis

4: end while
Algorithm 3: Algorithm C

4.1 Variables of algorithm C

For each process u, the following variables are available:

– for each neighbour v of u, phaseu(v) is a nonnegative
integer, it is the number of the current phase between u
and v; initially phaseu(v) is equal to 1; by symmetry
we have: phaseu(v) = phasev(u);

– for each neighbour v of u, bitu(v) is a nonnegative inte-
ger which denotes the number of the bit which will be
sent by u to v in the current phase; initially, bitu(v) is
equal to 1;

– for a phase t, Xu[t, j] is the j th bit used in phase t , pro-
vided j ≤ l(t); otherwise it is undefined;

– for each neighbour v of u and for each number t of a
phase winu(v)(t) is a boolean which will be true if in
phase t the symmetry is broken for the edge between u
and v and u has the smaller value.

Let u be a vertex and let v be a neighbour of u; let t be the
number of a phase; we denote by xu(v, t) the word defined
by the bits sent by u to v since the beginning of the phase t .
The length of the phase t is denoted by �(t), it is equal to
Max{|x(v, t)| | v is a neighbour of u}, where |x(v, t)| is the
length of the word x(v, t), initially, �(t) = 0.

Let u be a vertex, the phase t is active if there exists
an active neighbour v of u such that t = phaseu(v) and
xu(v, t) = xv(u, t).

4.2 Computing the win bits: process calc_win

At the beginning of a round of calc_win, the process u draws
uniformly at random a new bit b(t) for each phase t having
an active neighbour v with bitu(v) = l(t) + 1 and puts it
in X, i.e., X [t, l(t) + 1] := b(t) and l(t) := l(t) + 1. For
each neighbour v, u will find b(v) = X [phaseu(v), bitu(v)],
send b(v) to v and receive the bit b(u) from v. If b(v) =
b(u) then it is necessary to look at succeeding bits to dis-
tinguish xu(v, phaseu(v)) and xv(u, phasev(u)) of phase
phaseu(v) = phasev(u) thus u does bitu(v) := bitu(v) + 1.

Otherwise, the result is recorded and the next phase can be
considered; thus u does:
(1) winu(v)(phaseu(v)) := (b(v) = 0); (2) phaseu(v) := phaseu(v) +
1; and (3) bitu(v) := 1.

123

338 Y. Métivier et al.

4.3 Computing the MIS: process calc_mis

For a vertex u, the computations for a phase t in which u
is active take place in three stages. Initially u knows which
neighbours v are active in the phase and it waits until it knows
all its winu(v)(t) variables for them. Then it knows whether
it is included in the MIS in the phase and sends an appropriate
1-bit in message to each v. In the second stage it waits until
it has received an in message from each v. Then it knows
whether it is excluded from the graph in the phase and sends
an appropriate 1-bit out message to each v. In the final stage
it waits until it has received an out message from each v.
Then it knows which neighbours are active at the start of
phase t + 1. It updates η(u) and its set of active neighbours
and it is ready to start phase t + 1 if it is still active.

4.4 Analysis of algorithm C

Let T be the number of phases of Algorithm A (which equals
the number of phases for algorithms B and C). We know that
on average and with high probability, T is at most K1 log n.
We conclude that after a number O(log n) of rounds all values
winu(v)(t) of all vertices with t ≤ T have been computed.
More precisely, we have:

Lemma 3 There exists a constant k such that, for any
edge e, with probability 1 − o

(
n−3

)
, e has completed

K1 log n phases after k log n rounds, if it has not terminated
before then.

Proof Let e = (u, v) be any edge and Xe(t) the number of
phases that would be completed by e in t rounds, if e con-
tinued bit exchanges even after the termination of algorithm
C.Xe(t) is a binomial r.v. with parameters 1/2 and t .

On the other hand, we have the following form of the
Chernoff bound [7]:

Pr (Xe(t) ≤ E(Xe(t)) − a) ≤ 2e− a2
2t , for any a > 0.

We have E(Xe(t)) = t
2 , then, taking t = 16K1 log n and

a = 7K1 log n, we obtain:

Pr (Xe(t) ≤ K1 log n) ≤ 2e
− 49(K1 log n)2

32K1 log n ,

yielding

Pr (Xe(t) ≤ K1 log n) = O

(
1

n3

)
.

Therefore, it suffices to set k = 16K1. This ends the proof.
��

Now we prove the main result of this section:

Theorem 3 The randomized distributed MIS Algorithm C
for arbitrary graphs of size n halts in time O(log n) with
probability 1 − o(n−1), each message containing 1 bit.

Proof By Lemma 3, the probability that after 16K1 log n
rounds any edge e has not completed K1 log n phases is o(1

n3).

Then the probability that it happens for some edge is o(n−1).
On the other hand, at any phase, the time for any vertex
v to execute the calc_mis process is a constant. Therefore
the probability that the algorithm has not terminated within
16K1 log n rounds at all vertices, either because the algo-
rithm requires more than K1 log n phases or because some
edge has not completed this number of phases, is o(n−1).

This completes the proof. ��
Finally:

Corollary 4 The bit complexity per channel of Algorithm C
is O(log n) with high probability and on average.

Proof Theorem 3 shows immediately that the complexity
is O (log n) with high probability. For the average, we note
simply that the probability of exceeding k log n is o(n−1), the
remaining time is O

(
log2 n

)
on average, since the average

number of phases and the average number of bits per phase
are O (log n) and, therefore the contribution of these cases
to the average is o

(
n−1 log2 n

)
. ��

5 Asymptotic independence of choices
in MIS for distant vertices

5.1 Algorithm C

Clearly the choice of a vertex inhibits that of the neighbour-
ing ones and favours those at distance 2. A natural question
would be: what is the impact of a vertex inclusion in the MIS
on distant vertices? It is tempting to conjecture that the cor-
relation vanishes rapidly as the distance grows. In the sequel
we state this assertion for bounded-degree vertices.

We say a vertex u survives the kth phase if it remains nei-
ther chosen nor removed until the end of the kth phase. The
following lemma is easily proved:

Lemma 4 For a given vertex of degree deg the number of
survival phases is dominated by a geometric r.v. of parameter
1/(deg + 1).

Proposition 1 Let u and v be two vertices at distance l in G.
We suppose that they have finite fixed degrees. Let Pr(v|u)

denote the probability that v is chosen conditioned by u hav-
ing been chosen and Pr(v) the probability of the same event
without conditioning. Then, as l → ∞, Pr(v|u) = Pr(v)+
O(δl), for some δ, with |δ| < 1.

Proof According to the previous lemma, the probability that
u survives l phases is at most [1 − 1/(deg(u) + 1)]l . On the
other hand, the probability that v is chosen at one of the first
l/4 phases is the same, unconditioned or conditioned by the

123

An optimal bit complexity randomized distributed MIS algorithm 339

choice of u in one of these phases, since it depends on the
behaviour of the algorithm in a ball of radius l/2−1 centered
on v in these phases. Thus the difference between the con-
ditional probability and the unconditional one is bounded by
the probability of survival for one of the vertices. Let deg =
max{deg(u), deg(v)}. Setting δ = [1−1/(deg +1)]1/4, the
proposition follows. ��
Corollary 5 The same bounding is true for Pr(v|u), which
is the probability that v is chosen subject to the condition
that u is not: Pr(v|u) = Pr(v) + O(δl).

Proof Result of a standard computation, noting that Pr(u) ≥
1/(deg(u) + 1). ��
Remark 6 It is easy to see that Proposition 1 holds under
the weaker assumption that the degrees remain negligible
with respect to the distance. However, the following example
shows that the asymptotic independence of distant vertices
does not hold in general.

Example 1 Consider the following graph G with two vertices
u and v at distance l = 4l ′ +1: the vertices are {ui, j , vi, j |i =
0, . . . , 2l ′, j = 1, . . . , l3i } (u is u0,1 and v is v0,1); the edges
are (ui, j , ui,k), (vi, j , vi,k), (ui, j , ui+1,k), (vi, j , vi+1,k) and
(u2l ′, j , v2l ′,k) for every i, j, k for which these vertices exist.

We call the normal history of the algorithm on G that in
which:

– in phase 1, only one vertex is chosen, namely a u2l ′, j or
v2l ′, j ; (we consider the case that it is a u2l ′, j). This elimi-
nates from the graph all vertices u2l ′,k, v2l ′,k and u2l ′−1,k

(and no others).
– in phase i , (1 < i < l ′), two vertices are chosen,

one u2(l ′−i), j and one v2(l ′−i)+1,k . This eliminates from
the graph all vertices u2(l ′−i),m, u2(l ′−i)−1,m, v2(l ′−i)+1,m

and v2(l ′−i),m (and no others).
– in phase l ′, u and one vertex v1, j are chosen eliminating

all other vertices.

In the first phase, it is impossible that both a u2l ′, j and a
v2l ′,k are chosen because they are all neighbours. The pos-
sibility of any vertex ui, j or vi, j being chosen in any phase
other than according to the normal history is less than l−3(i+1)

provided the normal history has been followed in previous
phases because all its neighbours in level i + 1 are still pres-
ent. Summing over all i and j and all phases we find that
the probability of any behaviour other than the normal his-
tory is O(l−1). If the normal history is followed, either u
or v but not both is chosen and by symmetry, each has the
same probability. Thus Pr(v) = Pr(u) = 1/2+ O(l−1) but
Pr(u and v) = O(l−1).

The authors do not know at present any weaker condition
under which the asymptotic independence of choices holds
for distant vertices.

Remark 7 It is also possible to extend Proposition 1 for sets
of independent vertices. Let U1 and U2 be two nonempty
sets of pairwise independent vertices of finite degrees. Let l
denote the smallest distance between a member of U1 and
a member of U2. Let us denote by Pr(U1) the probabil-
ity that all members of U1 are chosen in the MIS and by
Pr(U1|U2) the probability of the same event conditioned
the event that all members of U2 are. Then, as l → ∞ :
Pr(U1|U2) = Pr(U1) + O(δl), for some δ, with |δ| < 1.

5.2 Luby’s algorithms

The above result will remain valid for any algorithm which
obeys two conditions:

1. The behaviour of the algorithm is local: in each phase the
actions at a vertex depend only on the decisions within
a ball of fixed radius and affect only vertices within this
same ball.

2. Bounding of the probability of removal: a vertex of
initial degree d has probability at least ε/d of being
removed from the graph in each phase until its removal.

The second condition is called a lower bounding property. In
this subsection, we prove that Luby’s algorithms presented
by Lynch and by Wattenhofer satisfy a lower bounding prop-
erty and thus Proposition 1 remains valid.

Lemma 5 The Luby (Lynch) algorithm satisfies a lower
bounding property for ε = 1/3.

Proof Recall that vertex i generates a random integer in
[1, n4] and joins the independent set if its integer is less
than any of its neighbours’. i’s integer is different from its
neighbours’ with probability at least 1 − d(i)/n4 and, if so,
is the smallest in N (i) with probability at least 1/(1 + d(i)).
Thus i joins the independent set with probability at least
(1−d(i)/n4)/(1+d(i)) > 1/(1+d(i))−1/n4 > 1/3d(i)
since d(i) < n. ��
Lemma 6 The Luby (Wattenhofer) algorithm satisfies a
lower bounding property for ε = 1/4.

Proof Recall that a vertex i of degree d(i) generates a num-
ber 0 or 1 with probability 1/2d(i) of being equal to 1; i
joins the independent set if it has generated 1 and none of its
neighbours have done so, except possibly some neighbours
with higher degree than i . Luby has shown [15] (Lemma
B) that i is removed because a neighbour joins the indepen-
dent set with probability at least min(sum(i)/2, 1)/4 where
sum(i) = ∑

j∈ N (i) 1/d(j). We divide N (i) into two parts
N1(i) containing neighbours with degree < d(i) and N2(i)
all other neighbours. sum(i) = sum1(i) + sum2(i) where
the two sums are taken over N1 and N2.

123

340 Y. Métivier et al.

If sum1(i) > 1, Luby’s lemma shows that i is removed
with probability at least 1/8.

If sum(i) ≤ 1, i is included in the independent set if it
has generated a 1 and no vertex in N1 has done so. This has
probability (

∏
j∈N1(i)(1 − 1/2d(j)))/2d(i) which is at least

(1 − ∑
j∈N1(i) 1/2d(j))/2d(i) or (1 − sum1(i)/2)/2d(i)

which is at least 1/4d(i). ��
Acknowledgments We are grateful to David Peleg and Roger
Wattenhofer for helpful and enlightening e-discussions.

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized
parallel algorithm for the maximal independent set. J. Algo-
rithms 7(4), 567–583 (1986)

2. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network
decomposition and locality in distributed computation. In: Pro-
ceedings of the 30th ACM Symposium on FOCS, pp. 364–369.
ACM Press (1989)

3. Bodlaender, H.L., Moran, S., Warmuth, M.K.: The distributed bit
complexity of the ring: from the anonymous case to the non-anon-
ymous case. Inf. Comput. 114(2), 34–50 (1994)

4. Chalopin, J., Métivier, Y.: An efficient message passing elec-
tion algorithm based on mazurkiewicz’s algorithm. Fundam.
Inform. 80(1-3), 221–246 (2007)

5. Dinitz, Y., Moran, S., Rajsbaum, S.: Bit complexity of breaking
and achieving symmetry in chains and rings. J. ACM. 55(1) (2008)

6. Ghosh, S.: Distributed Systems—An Algorithmic Approach. CRC
Press, Boca Raton (2006)

7. Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B. (eds.):
Probabilistic Methods for Algorithmic Discrete Mathematics, of
Algorithms and Combinatorics, vol. 16. Springer-Verlag, Berlin
(1998)

8. Karp, R.M., Widgerson, A.: A fast parallel algorithm for the max-
imal independent set problem. In: Proceedings of the 16th ACM
Symposium on Theory of Computing (STOC), pp. 266–272. ACM
Press (1984)

9. Kothapalli, K., Onus, M., Scheideler, C., Schindelhauer, C.: Dis-
tributed coloring in Õ

(√
log n

)
bit rounds. In: 20th International

Parallel and Distributed Processing Symposium (IPDPS 2006),
Proceedings April 2006, Rhodes Island, Greece. IEEE pp. 25–29
(2006)

10. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast
deterministic distributed maximal independent set computation on
growth-bounded graphs. In: DISC, pp. 273–287 (2005)

11. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be com-
puted locally! In: Proceedings of the 24 Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC), pp. 300–309
(2004)

12. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph
coloring. In: Proceedings of the 25 Annual ACM Symposium on
Principles of Distributed Computing (PODC), pp. 7–15. ACM
Press (2006)

13. Kushilevitz, E., Nisan, N.: Communication Complexity. Cam-
bridge University Press, Cambridge, MA (1999)

14. Linial, N.: Locality in distributed graph algorithms. SIAM J. Com-
put. 21, 193–201 (1992)

15. Luby, M.: A simple parallel algorithm for the maximal independent
set problem. SIAM J. Comput. 15, 1036–1053 (1986)

16. Lynch, N.A.: Distributed Algorithms. Morgan Kaufman (1996)
17. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio net-

works. Distrib. Comput. 21(4), 271–284 (2008)
18. Naor, M., Stockmeyer, L.J.: What can be computed locally?. SIAM

J. Comput. 24(6), 1259–1277 (1995)
19. Peleg, D.: Distributed computing—A Locality-sensitive approach.

SIAM Monographs on Discrete Mathematics and Applications
(2000)

20. Santoro, N.: Design and Analysis of Distributed Algorithms.
Wiley, London (2007)

21. Tel, G.: Introduction to Distributed Algorithms. Cambridge
University Press, Cambridge, MA (2000)

22. Wattenhofer, R.: http://dcg.ethz.ch/lectures/fs08/distcomp/lecture/
chapter4.pdf. (2007)

23. Yao, A.C.: Some complexity questions related to distributed com-
puting. In: Proceedings of the 11th ACM Symposium on Theory
of Computing (STOC), pp. 209–213. ACM Press (1979)

123

http://dcg.ethz.ch/lectures/fs08/distcomp/lecture/chapter4.pdf
http://dcg.ethz.ch/lectures/fs08/distcomp/lecture/chapter4.pdf

	An optimal bit complexity randomized distributed MIS algorithm
	Abstract
	1 Introduction
	1.1 The problem
	1.2 The model
	1.3 Our contribution
	1.4 Related works: comparisons and comments

	2 Exchange of real numbers
	3 Exchange of bits in phases
	3.1 Description of the algorithm
	3.2 Analysis of the algorithm

	4 Exchange of bits with desynchronised phases between adjacent edges
	4.1 Variables of algorithm mathcal C
	4.2 Computing the win bits: process calc_win
	4.3 Computing the MIS: process calc_mis
	4.4 Analysis of algorithm mathcal C

	5 Asymptotic independence of choices in MIS for distant vertices
	5.1 Algorithm mathcal C
	5.2 Luby's algorithms

	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

