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Analysis of a randomized rendezvous algorithm
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Abstract

In this paper we propose and analyze a randomized algorithm to get rendezvous between neighbours in an
anonymous graph. We examine in particular the probability to obtain at least one rendezvous and the expected
number of rendezvous. We study the rendezvous number distribution in the cases of chain graphs, rings, and
complete graphs. The last part is devoted to the efficiency of the proposed algorithm.
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1. Introduction

1.1. The distributed network model

Our model follows standard models for distributed systems given in [15,18]. The communication
model is a point-to-point communication network which is represented as a simple connected undirected
graph where vertices represent processors and two vertices are linked by an edge if the corresponding
processors have a direct communication link. The network is anonymous: unique identities are not avail-
able to distinguish processes. Processors communicate by message passing, and each processor knows
from which channel it receives a message. We consider the asynchronous model: processors cannot
access a global clock and a message sent from a processor to a neighbour arrives within some finite but
unpredictable time (asynchronous message passing).
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1.2. The problem

In synchronous message passing, the sender and the receiver must both be ready to communicate. A
communication takes place only if the participant processors are waiting for the communication: this is
termed a rendezvous.
Angluin [1] proved that there is no deterministic algorithm to implement synchronous message pass-

ing in an anonymous network that passes messages asynchronously (see [18] p. 316). In this paper, we
consider the following distributed randomized procedure where every message will be a single bit.
Each vertex v repeats forever the following actions:

the vertex v selects one of its neighbours c(v) chosen at random;
the vertex v sends 1 to c(v);
the vertex v sends 0 to its neighbours different from c(v);
the vertex v receives messages from all its neighbours.
(* There is a rendezvous between v and c(v) if v receives 1 from c(v) *)

A randomized algorithm to obtain rendezvous

1.3. Main results

The aim of this paper is the analysis of this procedure. It is based on the consideration of rounds: in
order to measure the performance of the algorithm in terms of the number of rendezvous taking place,
we assume that at some instant each node sends and receives messages. Thus this parameter of interest,
which is the (random) number of rendezvous, is the maximal number (i.e., under the assumption that all
nodes are active) authorized by the algorithm.
The first investigations, related to the number of rendezvous, are carried out on the properties of

the expected number of rendezvous. We get the asymptotic lower bound 1− e−1/2 for the probability
of a success in a round. Sharper lower bounds are obtained for the classes of graphs with bounded
degrees. As a direct consequence of the definitions, we compute easily the probability of a rendezvous
for vertices, from which we derive the expected waiting time for a vertex to get a rendezvous. Elemen-
tary computations provide the expected waiting time between two rendezvous for edges. We also study
the rather surprising effect of adding a new edge on the number of rendezvous. It is shown that the
impact is not monotone. In some cases it is positive in others negative, both on the expected number of
rendezvous and on the probability of a success. The asymptotic distribution of the rendezvous number
is fully characterized for the class of complete graphs and the class of ring graphs. We use the expected
number of rendezvous in a round to define the efficiency of the algorithm. It can be interpreted as the
degree of parallelism authorized by the algorithm. We get a lower bound in the case of the trees.
Many problems have no solution in distributed computing [11]. The introduction of randomization

makes it possible to adress tasks (problems) that admit no deterministic solutions; for instance, the
election problem in an anonymous network. The impossibility result on the election problem comes
from the fact that the symmetry between the processors cannot be broken in an anonymous network that
passes messages asynchronously.
Many papers and results are based on the same model. During a basic computation step, two adjacent

vertices exchange their labels and then compute new ones. For example, in [1] an election algorithm
is given for complete graphs or in [5,12] election algorithms are given for prime rings (rings having
a prime size). In these cases, our randomized algorithm may be considered as a basic step for the



Y. Métivier et al. / Information and Computation 184 (2003) 109–128 111

implementation of these algorithms in an anonymous asynchronous system where processors communi-
cate with asynchronous message passing.
General considerations about randomized distributed algorithms may be found in [18] and some tech-

niques used in the design and for the analysis of randomized algorithms are presented in [13,9].
Our paper is organized as follows. Section 2 contains basic notions. Section 3 gives general results.

Section 4 studies the probability to get at least one rendezvous in particular cases. Section 5 gives a
uniform lower bound for the success probability. Section 6 is devoted to the rendezvous number distri-
bution. Section 7 gives a lower bound for the efficiency of our algorithm for trees.
A part of these results has been presented in [14].

2. Basic notions and notation on graphs

We use the standard terminology of graph theory [3]. A simple graph G = (V , E) is defined as a
finite set V of vertices together with a set E of edges which is a set of pairs of different vertices,
E ⊆ {{v, v′}|v, v′ ∈ V, v &= v′}. The cardinality of V is called the size of the graph. A tree is a connect-
ed graph containing no cycle. A subgraph ofG is a graph obtainable by the removal of a number of edges
and/or vertices of G. The removal of a vertex necessarily implies the removal of every edge incident to
it. A connected component of a graph is a maximal connected subgraph. A connected spanning subgraph
of a connected graph G is a subgraph of G obtained by removing edges only and such that any pair of
vertices remains connected. A spanning tree is a spanning subgraph which is a tree. A forest is a graph
whose connected components are trees. A spanning forest of a graph G is a forest which contains the
set of vertices of G. In this paper we consider only simple and connected graphs.

3. First results and remarks

Let G = (V , E) be a connected simple graph of size n > 1. The purpose of this section is to provide
a formal basis for the randomized procedure described in the introduction and to give simple general
results on its analysis.

3.1. Definition and characterization of a call

Definition 1. Let G = (V , E) be a graph. A call over G = (V , E) is a function c from V into itself
which maps each v ∈ V to one of its neighbours.

Let c be a call, according to the definition, there is a rendezvous if and only if there exist two vertices
v and w such that c(v) = w and c(w) = v.
A call c over G = (V , E) will be a success, if there is at least one rendezvous otherwise it will be a

failure. It is convenient to represent a call c over G by a directed graph Gc = (V , A), where A contains
an arc from v to w if and only if w = c(v).

Example 2. Let V = {a, b, . . . , q}, and letG be the complete graph over V . Fig. 1 represents the graph
Gc for the call c over G with c(a) = b, c(b) = f , c(f ) = a, c(g) = f , c(h) = i, c(i) = h, etc. . .
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Fig. 1.

For this call there are two rendezvous, one between vertices h and i and one between vertices l
and m.

ClearlyGc is a simple graph (i.e., without loop) whose vertices all have outdegree 1. It has, therefore,
n = |V | arcs. Moreover it is easy to see that:

Remark 3. Let c be a call over the graph G. Then c is a failure if and only if Gc has no cycle of
length 2.

Lemma 4. If G = (V , E) is a tree then any call over G is a success.

Proof. For any c overG, the directed graphGc has n = |V | arcs. Any arc corresponds to an edge from
E, on which an orientation has been chosen. The graph G is a tree having n vertices thus n − 1 edges.
Since each vertex chooses exactly one edge, at least one edge is chosen by two vertices and the lemma
follows. !

There is a one to one correspondence between calls over the graph G and objects obtained by the
following construction:
(1) let F be a spanning forest of G such that each tree of F contains at least two vertices,
(2) for each tree T of F, either we add an edge of G which does not belong to T , or we mark an edge

of T ,

(3) if we add an edge e to T then we choose an orientation of the cycle induced by the introduction
of e.

A marked edge corresponds to a rendezvous between end-points of the edge. Thus the only vertices
of a tree with a marked edge and participating to a rendezvous are the end-points of the marked edge;
vertices of trees to which we add an edge have not obtained a rendezvous.
A quasi-tree τ is a connected graph containing exactly one cycle. A quasi-forest is a graph whose

connected components are quasi-trees. Let Gc be the directed graph corresponding to a call over G
without rendezvous. Let G′

c be the undirected graph associated with Gc. Then G′
c is a spanning quasi-

forest of G. Conversely, let φ be a spanning quasi-forest of G, let τ be a quasi-tree of φ, we choose an
orientation of the unique cycle which induces an orientation of each edge of the cycle; the other edges
of τ are oriented in such a way that from any vertex of τ there is a path towards the cycle. We obtain
a directed graph corresponding to a failure call and conversely any graph Gc of a failure call may be
obtained by this way.
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If we consider the case of Kn the complete graph of size n, a call corresponds to the combinatorial
notion of endofunctions [4].
Let U be a set, an endofunction ψ on U is defined by a subset γ of U × U verifying:

∀x ∈ U ∃!y ∈ U such that (x, y) ∈ γ .

Obviously there is a one-to-one correspondence between a call over Kn and the set of endofunctions
on integers of [1, . . . , n] without fixpoint. A call is a success (resp. a failure) if and only if it corresponds
to an endofunction without a fix-point containing at least one cycle of length 2 (resp. without cycle of
length 2).

Example 5. If we consider the undirected graph corresponding to Gc of Fig. 1, it contains one quasi-
tree defined by vertices a, b, c, . . . , g.

3.2. Probability of at least one rendezvous on the graph

We assume that all the adjacent vertices to v have the same chance equal to 1/d(v) to be chosen,
where d(v) is the degree of the vertex v. Thus any edge e = {v, w} ∈ E has probability 1/d(v) to be
the bearer of the unique message of v to w. The adjacent vertices v and w are said to meet each other, if
v and w contact one other: there is a rendezvous. Throughout this study it is assumed that each vertex
behaves independently in a memoryless manner.
Each vertex v has d(v) possible choices, consider now the probability measure, which assigns to each

call over G the probability α(G) equal to:

α(G) =
∏

v∈V

1
d(v)

.

Let s(G) be the probability of a success and f (G) that of a failure. From Remark 3, we deduce:

Lemma 6. We have:

f (G) = α(G)N(G),

and

s(G) = 1− α(G)N(G),

where N(G) is the number of calls c over G for which Gc has no cycle of length 2.

The probability f (G) may be obtained using quasi-forests. Let F(G) be the set of spanning quasi-
forests of G, if φ is a spanning quasi-forest of G then |φ| denotes the number of quasi-trees of φ. With
these notations and using the characterization of failures by means of quasi-forests we obtain:

f (G) =
∏

v∈V

1
d(v)





∑

φ∈F(G)

2|φ|



 .
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In order to get an exact expression for the probability distribution of rendezvous number for a random
call, we consider matchings. A matching over G = (V , E) is a subset M of E such that for any pair
e and e′ in M , e ∩ e′ = ∅. To a matching M, we associate the rendezvous corresponding to meetings
between end-points of edges of the matching, and this set of rendezvous is by definition the rendezvous
over the matchingM. Let e = {v, w} be an edge, e(1) denotes the event of a rendezvous over e and e(0)

the complementary. The probability of a rendezvous over e is

Pr(e(1)) = Pr({v, w}(1)) = 1
d(v)d(w)

.

Let M = {e1, . . . , ek} be a matching, in the same manner the probability Pr(M) of the rendezvous
overM is

Pr(M) = Pr(e
(1)
1 ∧ e

(1)
2 ∧ · · · ∧ e

(1)
k ) =

∏

{v,w}∈M

1
d(v)d(w)

=
∏

e∈M

Pr(e(1)).

For the integer k, a k-matching over G is a matching of cardinality k. Let Mk denote the set of all
k-matchings. Let:

qk =
∑

M∈Mk

P r(M), k = 0, 1, . . . , -n/2..

According to this definition, it should be noted that q0 = 1. By a straightforward application of the
Sieve principle ([17] p. 433), we have:

Proposition 7. Let the sequence qk, k = 0, 1, . . . , -n/2. be defined as above for the connected graphG
of size n. Then, for the integer l in the above stated range, the probability of having exactly l rendezvous
over G is:

Pl =
∑

l"i"-n/2.
(−1)i+l

(

i

l

)

qi.

And the probability of a success is:

s(G) = P1 =
∑

0"i"-n/2.−1
(−1)iqi+1.

It is also possible to derive rather simple expressions for the probability s(G) of success and subsequently
that of the expected number of necessary calls in the case of special classes of graphs. For instance:

Example 8. LetG be a ring graph (cycle) of size n # 2. The number N(G), used in Lemma 6, is equal
to 2. Hence

f (G) = 1
2n−1 ,

and

s(G) = 1− 1
2n−1 .

The expected number of necessary calls to get a success is thus:
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Fig. 2. An example where the addition of an edge may increase the probability of at least one rendezvous.

(

1− 1
2n−1

)

+ 2
1
2n−1

(

1− 1
2n−1

)

+ 3
(

1
2n−1

)2 (

1− 1
2n−1

)

+ · · ·

i.e.,:

2n−1

2n−1 − 1
.

The impact of the addition of an edge on the probability to have at least one rendezvous is not monotone.
• If we add an edge to a tree the probability of at least one rendezvous decreases.
• The graphG of Fig. 2, due to Austinat and Diekert [2], shows that the addition of an edge may increase
this probability. In fact, for this graph, we have s(G) = 1156/1600 = 0.7225. LetG′ denote the graph
obtained from G by adding the edge {1, 2}. Then we have s(G′) = 4742/6400 = 0.7409 . . ..

3.3. The expected time between two successive rendezvous for a vertex or over an edge

For a vertex v the probability p(v) of a rendezvous involving this vertex can be computed easily
thanks to the independence of the choice for vertices and thanks to the fact that events associated to
rendezvous over incident edges are disjoint:

pr(v) =
∑

e incident with v

P r(e(1)),

i.e.,

p(v) = 1
d(v)

∑

w adjacent to v

1
d(w)

.

From this formula it is clear that p(v) = 1 if and only if all w adjacent to v are leaves.
Now, if we consider the successive calls we can define the expected time between two successive

rendezvous for a vertex or over an edge.
Given the above relations we can see that the expected time between two successive rendezvous for a

vertex v is
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d(v)
1

∑

w adjacent to v
1

d(w)

.

Thus, for a graph of degree at most d, the expected time between two successive rendezvous for a
vertex is bounded by d.
The expected time between two successive rendezvous on an edge e = {v, w} is d(v)d(w). Once

more, if we consider a graph of bounded degree this value is bounded by d2.

3.4. Expected number of rendezvous

Let X be the number of rendezvous of a call over G, the expected number of rendezvous over G,
denoted M(G), is E(X): the expected value of X. This parameter may be considered as a measure of
the degree of parallelism of the rendezvous algorithm.
For each edge e ∈ E, we define χe as follows: if there is a rendezvous between end-points of e then

χe = 1, else χe = 0.We have

X =
∑

e∈E

χe.

Now:
E(X) =

∑

e∈E

E(χe),

as

E(χ{v,w}) = 1
d(v)d(w)

,

we get:

E(X) =
∑

{v,w}∈E

1
d(v)d(w)

.

Finally:

Proposition 9. The expected number of rendezvous over the graph G is:

M(G) =
∑

{v,w}∈E

1
d(v)d(w)

.

Consider the following particular cases.

Example 10. If G is a complete graph of size n # 2, we have:

M(G) =
(

n

2

)

1
(n − 1)2

= n

2(n − 1)
.

Example 11. If G is a cycle of size n # 2, we have:

M(G) = n

4
.
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Example 12. If G = (V , E) has a degree bounded by d then

M(G) #
|E|
d2

.

If we consider the case of a tree T of size n with a degree bounded by d, we get:

M(T ) #
n − 1
d2

.

In the case of regular graphs of degree d, we have:

M(T ) = n

2d
,

where n is the size of the graph.

We are interested in the impact of the addition of an edge onM(G). The above examples illustrate the
fact that the number of edges does not necessarily favour the events of rendezvous. Nevertheless, Figs.
3 and 4 shows that the expected number of rendezvous is not monotone with respect to the addition of
new edges.
Proposition 13 gives a lower bound for the number of rendezvous expectation.

Proposition 13. For a given fixed positive integer n, the complete graph Kn minimizes the expected
number of rendezvous over graphs of size n. The minimal expected value realized by Kn is n/2(n − 1).

Proof. Given a graphG = (V , E), if we denote byM(G) the expected number of rendezvous inG, we
have

M(G) = 1
2
∑

v∈V

p(v).

Fig. 3. An example where the expectation number of rendezvous decreases if we add an edge.

Fig. 4. An example where the expectation number of rendezvous increases if we add an edge.
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Where p(v) is as in Section 3.3. Since

p(v) = 1
d(v)

∑

{w,v}∈E

1
d(w)

,

and d(w) " n − 1, we have p(v) # 1/(n − 1). Summing on all vertices, we get

M(G) #
n

2(n − 1)
.

By Example 10, if G is the complete graph of size n, we have

M(G) = n

2(n − 1)
.

The proposition follows. !

3.5. Expected number of rendezvous in trees

In the previous sections, we have seen that the tree maximizes the success probability, since it is 1. In
this section, we are interested in the expected number of rendezvous if the graph G = (V , E) is a tree.

Proposition 14. Let T = (V , E) be a tree, and T ′ = (V ′, E′) the tree obtained from T by the addition
of a new leaf. If M(T ′) is the expected number of rendezvous over T ′ and M(T ) those on T then
M(T ′) # M(T ).

Proof. Let a be the leaf added and v the vertex of T to which a is attached. Let d be the degree of v in
T . Then we have

M(T ′) = M(T ) + 1
d + 1



1− 1
d

∑

w adjacent to v

1
d(w)



 .

Since
∑

w adjacent to v
1

d(w) " d, it follows thatM(T ′) # M(T ). !

By successive applications of Proposition 14, we obtain:

Corollary 15. Let T be a tree whose maximum degree is k and whose diameter is D. Then

M(T ) " M

(

T

(

k,
D

2

))

,

where T (k, h) denotes the k-ary tree whose height is h.

4. Probability of success in particular cases

In this section we study the probability of getting at least one rendezvous over the graph. The con-
sidered graphs are special classes of graphs. Let e be an edge, we recall that e(1) denotes the event of a
rendezvous over e and e(0) the complementary event.
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4.1. Graphs with bounded degrees

We start by the case where G = (V , E) is a graph of degree at most d. The following proposition
gives a lower bound on the failure probability.

Proposition 16. Let G = (V , E) be a d-bounded degree graph, and s(G) denotes its success proba-
bility. Then we have

s(G) # 1−
(

1− 1
d2

)|E|
.

Proof. If E = {e1, e2, . . . , em}, we have

f (G)=Pr(e
(0)
1 ∧ e

(0)
2 ∧ · · · ∧ e(0)

m )

=Pr(e
(0)
1 )P r(e

(0)
2 |e(0)

1 )P r(e
(0)
3 |e(0)

1 ∧ e
(0)
2 ) · · ·Pr(e(0)

m |e(0)
1 ∧ e

(0)
2 ∧ · · · ∧ e

(0)
m−1).

Nevertheless, if we did not get a rendezvous on an edge e, this favours the rendezvous on the incident
edges and does not change the probability of rendezvous on other edges. To see this, consider an edge
e = {v, w}. Let e1, . . . , ek be some edges incident to v and w different from e and f1, . . . , fl be some
edges not incident to v and w. Clearly we have:

Pr(e(1)|e(0)
1 ∧ · · · ∧ e

(0)
k ∧ f

(0)
1 ∧ · · · ∧ f

(0)
l ) = Pr(e(1) ∧ e

(0)
1 ∧ . . . ∧ e

(0)
k |f (0)

1 ∧ · · · ∧ f
(0)
l )

P r(e
(0)
1 ∧ · · · ∧ e

(0)
k |f (0)

1 ∧ · · · ∧ f
(0)
l )

.

Since Pr(e
(0)
1 ∧ · · · ∧ e

(0)
k |f (0)

1 ∧ · · · ∧ f
(0)
l ) " 1, we have:

Pr(e(1)|e(0)
1 ∧ . . . ∧ e

(0)
k ∧ f

(0)
1 ∧ . . . ∧ f

(0)
l ) # Pr(e(1) ∧ e

(0)
1 ∧ . . . ∧ e

(0)
k |f (0)

1 ∧ . . . ∧ f
(0)
l ).

Once there is a rendezvous on the edge e there will be no rendezvous on the edges e1, . . . , ek. So we
have:

Pr(e(1) ∧ e
(0)
1 ∧ . . . ∧ e

(0)
k |f (0)

1 ∧ . . . ∧ f
(0)
l ) = Pr(e(1)|f (0)

1 ∧ . . . ∧ f
(0)
l ),

yielding

Pr(e(1)|e(0)
1 ∧ · · · ∧ e

(0)
k ∧ f

(0)
1 ∧ · · · ∧ f

(0)
l ) # Pr(e(1)|f (0)

1 ∧ · · · ∧ f
(0)
l ).

The edges f1, . . . , fl and e being not adjacent, the fact that there is no rendezvous on f1, . . . , fl does
not affect the probability of a rendezvous on the edge e. Therefore:

Pr(e(1)|e(0)
1 ∧ · · · ∧ e

(0)
k ∧ f

(0)
1 ∧ · · · ∧ f

(0)
l ) # Pr(e(1)).

Thus for all ej ∈ E j = 2, . . . , m:

Pr(e
(0)
j |e(0)

1 ∧ e
(0)
2 ∧ · · · ∧ e

(0)
j−1) " Pr(e

(0)
j ).

Hence
f (G) " Pr(e(0))|E|.
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Since Pr(e(0)) " (1− (1/d2)), we have

f (G) "
(

1− 1
d2

)|E|
.

The proposition follows. !

The above bound becomes very interesting if the ratio |E| over d is large. Indeed, the above formula
shows that

f (G) " e
−|E|
d2 .

In particular in the case of d-regular graphs G, we have |E| = nd/2 and therefore:

Corollary 17. Let G be a d-regular graph, the failure probability f (G) satisfies:

f (G) " e
−n
2d .

4.2. Complete graphs

For this class of graphs we have:

Proposition 18. Let Kn be the complete graph of size n, then:
• s(Kn) = ∑

k#1(−1)k+1 n!
k!2k(n−2k)!

1
(n−1)2k ,

• s(Kn) is asymptotically 1− e−1/2,
• and the expected number of necessary calls to get a success is asymptotically

√
e/(

√
e − 1).

Proof. For a fixed k, the k-matchings of Kn all have the same probability

qk = 1
(n − 1)2k

.

On the other hand, an easy computation yields the k-matching number of Kn, which is
n!/(k!2k(n − 2k)!). We have thus:

s(Kn) =
∑

k#1
(−1)k+1 n!

k!2k(n − 2k)!
1

(n − 1)2k
.

The expected number of necessary calls to get a success is 1/s(Kn), where s(Kn) is given by the
above expression. The above expression is difficult to compute, nevertheless, if we use a combinatorial
reasoning, we can estimate it asymptotically.
By the definition of a call, a call c overG is a failure, ifGc is without cycle of length 2. A translation of

specifications of types shows that the exponential generating function F(z) of the number of such graphs
is F(z) = c(t (z)), where t (z) = zet(z) is the EGF (exponential generating function) of the number of
labeled trees and c(z) = (1/(1− z))e−z−z2/2 is the EGF of the number of cycles of length at least 3, see
[8]. The unique singularity of F(z) = c(t (z)) is z0 = 1/e, since t (z0) = 1 if z0 = 1/e.
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In [7,8], the authors show that

t (z) ∼ 1− 21/2
√
1− ez.

Hence,

F(z) ∼ 1√
2e3

(1− ez)−1/2,

which yields the number of failure calls N(Kn) on the complete graph Kn:

N(Kn) = n![zn]F(z) ∼ 1√
2e3

en 1√
!n

.

In order to get the failure probability overKn, we have to divideN(Kn) by (n − 1)n which is the total
number of calls over Kn. Using Stirling formula, we derive

f (Kn) ∼ e−1/2,

or

s(Kn) ∼ 1− e−1/2.

And the expected number of necessary calls to get a success is asymptotically
√

e√
e − 1

. !

5. Uniform lower bound for the probability of a success

Proposition 16 gives a lower bound for the success probability if the graph is of maximum degree
d. Corollary 17 shows how this bound is important if d is small enough in comparison with n. But this
bound becomes uninteresting if d is too large and |E| is not large enough. It is therefore interesting to
find a uniform bound which does not depend on d or on |E|. The goal of this section is to give such a
bound. Indeed, we have the following theorem:

Theorem 19. The probability s(G) of a success in a call over any graph G = (V , E) is bounded from
below by 1− e−M(G), where M(G) denotes the expected number of rendezvous in G.

Proof. By a similar proof for Proposition 16, we have

f (G) = Pr(e
(0)
1 ∧ e

(0)
2 ∧ · · · ∧ e(0)

m ) =

Pr(e
(0)
1 )P r(e

(0)
2 |e(0)

1 )P r(e
(0)
3 |e(0)

1 ∧ e
(0)
2 ) . . . P r(e(0)

m |e(0)
1 ∧ e

(0)
2 ∧ · · · ∧ e

(0)
m−1).

With the same notations and using the same reasoning, we have that

f (G) "
m
∏

i=1
(1− Pr(e

(1)
i )).
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By virtue of Proposition 9, we have
m
∑

i=1
Pr(e

(1)
i ) = M(G).

Thus, the bound on f (G) is maximal when

Pr(e
(1)
i ) = M(G)

m
, ∀i = 1, . . . , m.

Hence,

f (G) "
m
∏

i=1

(

1− M(G)

m

)

=
(

1− M(G)

m

)m

" e−M(G).

The theorem follows. !

By Theorem 19 and Proposition 13, we obtain:

Corollary 20. (Robson1) The probability s(G) of a success call over any graph G = (V , E) is lower
bounded by 1− e−1/2.

Corollary 21. The expected number of necessary calls to get a success is upper bounded by
√

e/
(
√

e − 1).

Remark 22. Since the acceptation of this paper, Martin Dietzfelbinger has proved that the complete
graph Kn minimizes the probability of success on graphs of size n.

6. Rendezvous number distribution

The previous study can be refined by determining the distribution of the rendezvous number in a
given graph. It seems also interesting to evaluate the asymptotic behaviour of this random variable for
graphs of large size. Let us consider for instance star, complete and chain graphs. For the first class of
graphs the number of rendezvous is always 1. For the second class it takes value in the integer interval
[0, n/2] and its mathematical expectation is n/2(n − 1). For the third class it takes value in [1, n/2]
with the mathematical expectation (n + 1)/4. Although the computation of the distribution is feasible in
principle, no simple method is available and a standard technique based on a direct numbering is quite
complicated.
As a first attempt in this direction we calculate the asymptotic distribution of the rendezvous number

for the two extreme cases of complete graphs and chain graphs (which is the same as for ring graphs). In
the case of complete graphs (as n grows to infinity), this random number remains an integer finite valued
random variable with a distribution which will be determined in the sequel; the same study for chain
graphs reveals a quite different behaviour: the expected rendezvous number grows and the normalized
distribution tends to a normal one.

1 A first direct proof of the corollary was provided by J.M. Robson [16].
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6.1. Rendezvous number in ring and chain graphs

We start with the study of chain graphs for which the rendezvous number distribution can easily be
computed. We then prove that this number for the ring graphs is asymptotically the same as in the case of
chain graphs. Let G = (V , E) be a chain of size n and let Xn denote the random variable which counts
the number of rendezvous inG. In this section we are interested in the asymptotic distribution of this r.v.
It is supposed that all vertices are active. We first prove the following lemma which provides an exact
expression for the probability of exactly k rendezvous on the chain graph G.

Lemma 23. For any integer k, the probability of having exactly k rendezvous is

Pr(Xn = k) = 1
2n−2

(

n − 1
2k − 1

)

.

Proof. Let φn(x) be the ordinary probability generating function for the r.v. Xn, i.e., φn(x) = ∑∞
k=0

Pr(Xn = k)xk . It is technically convenient to consider also generating function ψn−1(x) for another r.v.
which counts the rendezvous number on the chain graph whenever one of the endpoints is passive. A
combinatorial reasoning shows that we have the following recurrences:

{

φn(x) = 1
2φn−1(x) + 1

2xψn−1(x) ∀n # 2
ψn(x) = 1

2ψn−1(x) + 1
2φn−1(x) ∀n # 2,

with φ1(x) = ψ1(x) = 1.
A straightforward technique provides the solution

φn(x) = 2
√

x

1+ √
x

(

1+ √
x

2

)n

− 2
√

x

1− √
x

(

1− √
x

2

)n

,

from which we get easily [xk]φn(x) = (1/2n−2)
( n−1
2k−1

)

. The lemma follows. !

The above generating function can be used to compute interesting parameters of Xn. We have in
particular:

Corollary 24. The expectation of the random variable Xn defined above is (n + 1)/4 and its variance
(n − 1)/16.

More interesting, the generating function φn(x) can be used to show that the asymptotic behaviour of
this r.v. is normal. Indeed, we have the following theorem. !

Theorem 25. The normalized variable defined by

Yn = 4Xn − n√
n

,

has a distribution which tends to the normal distribution N (0, 1), i.e., for any real interval [a, b]

Pr(a < Yn " b) → 1√
2!

∫ b

a
e−x2/2 dx.
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Proof. For any integer k let j = 2k − 1, and l = n − 2k + 1. Lemma 23 shows that

Pr(Xn = k) ∼ 1
2

n!
j !l!

(

1
2

)j(1
2

)l

.

Applying the Stirling formula we get

Pr(Xn = k) ∼ 1
2

√

n

2!j l

(

n

2j

)j
( n

2l

)l
.

And
j l

n
∼ (

√
nx + n)(n − √

nx)

4n
∼ n

4
.

Therefore

Pr(Xn = k) ∼ 1√
2!n

(

n

2j

)j
( n

2l

)l
,

and

ln
(

n

2j

)j
( n

2l

)l
∼ −x2

2
.

The theorem is now proved by the same reasoning as ([10] p. 22).
The theorem can be also proved by the transformation of the generating function φn(x) into the

characteristic function by setting x = eit . Indeed, it is easily shown that the characteristic function of
the r.v. Yn defined in the theorem tends to e−(1/2)t2 , as n tends to infinity, and this last function is the
characteristic function of the normal distribution. Therefore the normalized variable Yn tends in law to a
normal random variable. !

Let now the r.v. Zn denote the rendezvous number in a ring graph of size n. We have seen that it is of
mathematical expectation E(Zn) = n/2. Indeed we have

Theorem 26. Define the normalized r.v. by Vn = (4Zn − n)/
√

n. Then, as n → ∞:

Pr(a < Vn " b) → 1√
2!

∫ b

a
e−x2/2 dx,

for any real interval [a, b].

Proof. Consider a chain graph with vertices labelled 1, 2, . . . , n and edges {i, i + 1}, 1 " i " n − 1.
The rendezvous number over the chain can be written as the sum Xn = ∑n−1

i=1 Ri , where the r.v. Ri is
defined by

Ri =
{

1 if there is a rendezvous over {i, i + 1}
0 otherwise.

We have clearly
∑n−2

i=2 Ri " Xn " ∑n−2
i=2 Ri + 2. Consider now a ring graph with vertices labelled

1, 2, . . . , n and edges {i, i + 1}, 1 " i " n − 1, {n, 1}. The rendezvous number over the ring is equally
written as the Yn = ∑n

i=1 Si , where the r.v. Si is 1 if there is rendezvous over the edge {i, i + 1} and 0
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otherwise. We have
∑n−2

i=2 Si " Zn " ∑n−2
i=2 Si + 3. Since

∑n−2
i=2 Ri = ∑n−2

i=2 Si , we have |Zn − Xn| "
3. Hence |Vn − Yn| " 12/

√
n. Thus, as n grows, the difference between the two normalized r.v. tends to

0. The theorem follows. !

6.2. Rendezvous number in complete graphs

In this section, we are interested in the asymptotic behaviour of the rendezvous number in complete
graphs. Here G = (V , E) is a complete graph, Xn the random variable which counts the rendezvous
number on G. We prove that, asymptotically, Xn has a Poisson distribution of parameter 1/2. Indeed,
we have:

Theorem 27. For every positive integer m, the probability for Xn to be equal to m is given by

Pr(Xn = m) −→ 1
m!2m

e−1/2, as n −→ ∞.

Proof. By the same argument as in the proof of the first point of Proposition 18 of Section 4.2, and
using the Sieve principle [17], we get

Pr(Xn = m) =
-n/2.
∑

k=m

(−1)k+m

(

m

k

)

n!
k!2k(n − 2k)!

1
(n − 1)2k

.

Using the Stirling formula, we get easily:

limn−→∞ Pr(Xn = m) = ∑

k#m(−1)k+m
(m

k

) 1
k!2k

= 1
m!2m

∑

r#0(−1)r 1
r!2r

= e−1/2(12)
m 1

m! .

Which yields the assertion. !

7. Performance analysis

Let G be a graph, recall that a matching in G is a set of pairwise nonadjacent edges in the graph; the
matching number of G, denoted K(G), is the cardinality of a matching having the largest size.
Following definitions for approximation algorithms [6]: given any randomized algorithm A for a

rendezvous-type algorithm, its efficiency !A(G) over a graph G is the ratio

!A(G) = MA(G)

K(G)
,

whereMA(G) is the expected number of rendezvous in a round of A.
To illustrate the definition, reconsider the two extremal cases of complete graphs and star graphs. In

both examples the expected rendezvous number is very low:

M(G) =
(

n

2

)

1
(n − 1)2

= n

2(n − 1)
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if G is a complete graph, and M(G) = (n − 1)(1/(n − 1)) = 1 if G is a star graph. In fact in the case
of complete graphs the matching number is -n/2. which is much greater than the expected number for
large values of n. In the second example the algorithm allows an expected number which is the same as
the matching number.
The first consequence of the definition is that the proposed algorithm is not efficient for the class

of complete graphs. A ‘reasonable’ extension of this fact leads to a similar conclusion for families of
densely linked graphs. It seems however that it is not possible to do much better if we restrict the message
size to one bit.
An important class of sparsely linked graph is the class of trees. The rest of the section is devoted to

the search of a uniform lower bound for the efficiency of the introduced algorithm.
Given a graph G = (V , E) with |V | = n and |E| = m, let M be its incidence matrix. For two given

enumerations v1, . . . , vn and e1, . . . , em of vertices and edges, respectively, it is defined by

M[i, j ] =
{

0 if vi is not an endpoint of ej

1 if vi is an endpoint of ej ,

for 0 " i " n and 0 " j " m. A subset F of E is a matching inG iff its indicator, the m-vector column
x

x[j ] =
{

0 if xj ∈ F
1 if xj &∈ F,

for 0 " j " m, satisfies Mx " 1n, x ∈ {0, 1}m, where 1n denotes the n-vector column (1, . . . , 1)T.
Therefore the matching number K(G) is the optimal value of the objective function of the following
integer programming problem [17].

maximize: 〈1m, x〉
subject to: Mx " 1n

x ∈ {0, 1}m.

Thus the value of K(G) cannot be greater than the value of the objective function of the same problem
whenever one removes the entireness condition x ∈ {0, 1}m. But this value is in turn bounded by the
value of the objective function in the following dual problem for any feasible solution (the weak duality
theorem, see [17]):

minimize: 〈1n, y〉
subject to: MTy # 1m

y ∈ Rn, y # 0.

Now, if we add the constraint y ∈ {0, 1}, the optimal solution will be the minimal vertex cover in G,
see [17]. It follows that K(G) is bounded by the cardinality of any vertex cover in G.
We may now state the main theorem of the section.

Theorem 28. The efficiency !RV (T ) of the proposed randomized algorithm RV over any tree T is
stictly greater than 1/3.
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Proof. By comparison to the objective function in the dual problem, it suffices to prove that the tree T
admits a vertex cover of cardinality less than 3M(T ). We assume that this is true for the trees of size less
than n and prove it for a tree T of size n. On the other hand, since the theorem holds for the star graphs,
we may assume that the diameter of T is greater than 2. We have to show that T admits a cover vertex
of cardinality less than 3M(T ). Consider now the tree rooted by one of its centers. Since the diameter is
greater than 2, there will be vertices a and a′ such that a′ is the father of a, all other neighbours of a are
leaves and a′ is not a leaf in T . Let d and d ′ be their degrees.
Let T ′ be the tree induced by removing a and its sons from the rooted tree T . A vertex cover for T

can be obtained by adding the vertex a to a vertex cover for T ′. Thus if the theorem holds for T ′, we
have to proveM(T ) − M(T ′) # 1/3. A simple computation yields the difference. Indeed, we have

M(T ) − M(T ′) = d − 1
d

+ 1
dd ′ −

d ′−1
∑

i=1

[

1
(d ′ − 1)δi

− 1
d ′δi

]

, (1)

where δi’s are the degrees of the neighbour vertices of a′ different from a. The sum

d ′−1
∑

i=1

[

1
(d ′ − 1)δi

− 1
d ′δi

]

,

can be bounded by 1/d ′ and hence

M(T ) − M(T ′) #
d − 1

d
+ 1

dd ′ − 1
d ′ =

(

1− 1
d

)(

1− 1
d ′

)

.

Now, if at least one of the degrees d or d ′ is greater than 2, the computed difference will be at least
1/3. Otherwise d = d ′ = 1 and the difference (2) reduces to (1/2) + (1/4) − (1/2δ), where δ is the
degree of the unique neighbour vertex of a′ different from a. If δ # 2 then the difference is greater than
or equal to 1/2 and we are done; otherwise the whole tree T is reduced to four vertices and a simple
verification proves the theorem. !

Remark 29. There are trees for which the efficiency is less than 1/2. Up to now (and to our knowledge)
no sharper lower bound (than 1/3) is known.
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