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Abstract

We design and analyze a randomized one-passage election algorithm in trees based on a result of Angluin
in [Proceedings of the 12th Symposium on Theory of Computing, 1980, pp. 82]. The election process is a
distributed elimination scheme which removes leaves one-by-one reducing the tree to a single vertex, called
the leader (or elected vertex). We define a locally computable parameter guiding randomly the elimination
process. As a particular instance, we provide a parameter assignment in a Markovian type random process
in which all vertices have the same chance of being elected.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. The distributed network model

Our model follows the standard models for distributed systems given in [9,5,12]. The com-
munication model is a point-to-point communication network which is represented as a simple
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connected undirected graph, where the vertices represent processors and two vertices are linked
by an edge if the corresponding processors have a direct communication link. In this paper, we
assume that the graph is a tree: a connected graph without cycle. The network is anonymous:
unique identities are not available to distinguish processors. Processors communicate by message
passing, and each processor knows from which channel it receives a message. Our algorithm is
synchronous and timer-based: the processors have access to a physical clock device and as in
([12] page 87):

(1) we assume that the timer is a global continuous time to which processors have access: a real-
valued variable whose value continuously increases in time,

(2) we make the global time assumption, that is each event is said to take place at a certain time
and each event itself is assumed to have the duration 0.

1.2. The problem

The election problem is to choose exactly one element in the set of processors. Thus, starting
from a configuration where all processors are in the same state, we must obtain a configuration
where exactly one processor is in the state leader and all other processors are in the state lost. The
leader can be used subsequently to make decisions or to centralize some information.

The main goal of this paper is the study of chances of being elected for the vertices of a tree in a
randomized process described below.

1.3. Known results

The election problem is standard and many solutions are known [10,12]. It was first posed by
LeLann [6]. It has been solved under many different assumptions: the graph can be a ring, a tree,
a complete graph or a general connected graph. The system can be synchronous or asynchronous.
The graph can be directed or undirected. The processors might or might not know the size of the
graph. Communications can be synchronous or asynchronous.

In the case of trees, an election process can roughly be viewed as a leaf-removal-sequence,
yielding a unique vertex. It was first presented by Angluin ([1] Theorem 4.4). For the sequence
viewed as a random process, the probability of being elected for the vertices depends on how
one introduces the choice of the vanishing leaves. In [7] the authors consider two elemen-
tary approaches. The first one is based on the assumption that all sequences of the election
process have the same probability (the p-distribution). The second one assumes that, at each
step, all leaves have the same probability of being removed (the q-distribution). In the first
approach the computation of the involved probabilities is transformed into a mathematical-
ly interesting enumeration problem, which in turn provides a simple characterization of the
searched probabilities on the set of vertices. The difficulty, however, resides in that no one-
passage-local-randomized elimination process, without a preliminary computation on the tree
is available to implement the approach. The second approach can be implemented in a dis-
tributive way and the probability of being elected is computed inductively. Its disadvantage is
that the generated probability distribution, being of a rigid nature, does not allow any simple
characterization.
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1.4. The main results

The randomized election we introduce and study here is based on the work of Angluin [1]. A tree
T of size n is initially given. The elected vertex is the surviving one, following an (n− 1)-sequence
of leaf-eliminations.

We introduce in the algorithm of Angluin a locally computable parameter guiding the elimina-
tion process. We use the description of Tel ([12] page 192, Algorithm 6.3); we give the local algorithm
of a process whose name is used as a subscript to the variables.

In Algorithm 1, the statement wait-exponential (!(v)) generates an exponentially distributed
random waiting time T of parameter !(v); thus the waiting time T is nothing but

(−1/!(v)) ln(x),

where x is an uniform real-valued random variable in [0, 1]. Thus, our algorithm uses a random
exponentially generated lifetime delay for each leaf.

var Neighv : set of nodes (* The neighbors of v *);
recv[w] for each w ∈ Neighv : boolean init false;
(* recv[w] is true if v has received a message from w *);
!(v) : the parameter with the same initial value for all vertices;
(* In the uniform case, initially !(v) := 1 *);

begin
while #{w : recv[w] is false}> 1 do

begin
receive <tok, !(w) > from w;
!(v) := F(!(v), !(w));
(*F is any function; in the uniform case we take F(!(v), !(w)) = !(v)+ !(w)*)
recv[w] := true

end
(* Now there is one w0 with recv[w0] is false; the vertex v is a leaf *)
wait-exponential (!(v));
if a message < tok,p > has arrived then statev := leader
else

begin
statev := lost;
send < tok,!(v) > to w0 with recv[w0] is false

end
end

Algorithm 1. Randomized Election in a Tree.

The algorithm is initiated by leaves at time 0. Each vertex waits for messages until it has received
messages from all but one of its neighbors. Each vertex v, which becomes a leaf has an exponentially
distributed lifetime of parameter !(v) determined at the time when v becomes a leaf. A leaf v which
has expired its lifetime and has not received a message disappears with the incident edge: its state
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is lost; it sends to its father a message with the value !(v). The parameter !(v) of a vertex v which
receives a message <tok,"> with a value " becomes equal to F(!(v),"). A vertex is elected if it
receives a message before the end of its lifetime. We assume that communications take no time, thus
the delay between the elimination of a leaf and the notification to its father is equal to 0. The time
is continuous so that two messages are never sent simultaneously; hence the elected vertex is the
unique vertex which received a message from all neighbors (see [12] page 193).

According to the choice of F we obtain different distributions of chances of being elected. The
election process is modeled by a time-continuous death process as follows. Each vertex v, which
becomes a leaf has an exponentially distributed lifetime of parameter !(v), supposed to be deter-
mined at the time when v becomes a leaf. This assumption is equivalent to the one that the death
probability of v in the time interval [t, t + h] is h!(v)+ o(h), as h → 0 at any time t, and this is
independent of what is going on elsewhere and of what happened in the past. This assumption
seems to us natural in the framework of distributed algorithms. A leaf which has expired its lifetime
disappears with the incident edge. The process continues until the tree is reduced to a single vertex.
This general model leaves open the choice of !(v) depending on F. All we require is that !(v) must
be locally determined when v becomes a leaf; it can be computed as and when vertices are removed.
The intuitive idea behind the model is to control chances of election by the !-assignment: if !(v)
increases then the probability of v being elected decreases.

If the parameter ! is the same for any vertex, then to each leaf-removal at each step is assigned
the same probability as in the second approach in [7] and, therefore, the probability of being elected
will be the q-distribution. Consequently, the present model extends the second approach intro-
duced in [7] (regarding the generated probability distribution). It is, however, possible to assign
different death rates !(v) to vertices according to their initial position in the tree. Clearly, different
considerations lead to different probability distributions in the election process.

A naturally arising question will be how to choose the !s, and give all vertices of T the same
chance of being elected, a task which a priori seems difficult, since the interior vertices of a tree are
more covered than the peripheral ones.

Our main result, Theorem 1, states precisely that this particular instance of the general model,
called the uniform model, can be achieved by equating !(v) to the size of the subtree of T constituted
of the root v and all its removed successor vertices. This assignment can be performed in a distrib-
uted way as follows. Initially, all vertices of T have the same weight 1 : w(v) = 1. For a leaf v, the
parameter !(v) is its weight: !(v) = w(v). As a leaf is removed its father collects its weight, i.e., the
weight of the father is incremented by the weight of the removed son: F(!(v),w(v)) = !(v)+ w(v).

Finally, we can note that the same algorithm can be used for any connected network as soon as
a spanning tree of the network is available.

1.5. Tools

The election process on a tree is viewed as an irreversible continuous-time Markov process. The
behavior of such processes is generally ruled by a system of differential equations subject to an
initial condition. The analysis of the general model can theoretically be achieved in terms of the
solution of the system. In particular, the probability of being elected is nothing but the absorp-
tion probability. However, the system does not allow an explicit solution except in very simple
cases.



44 Y. Métivier et al. / Information and Computation 198 (2005) 40–55

The study of the uniform model brings into play some elementary though powerful tools from
probability theory, such as evaluation techniques for the sum and maximum of independent random
variables. We believe that the basic assumption of exponentially distributed waiting times separating
local events, linked to Poisson processes, is a natural assumption in this context and, thus, variants
of the present model may be adopted in the analysis of randomized distributed algorithms where
the randomization affects local operations duration (random delays).

1.6. Basic notions and notation

A tree graph (or simply a tree) T is a connected undirected graph containing no cycles, see [2,11].
Its size n is the number of its vertices. The vertices of degree less than or equal to 1 are called leaves
(in the case of trees of size n ! 2 the leaves are of degree 1). If v is a leaf in the tree T and w is the
neighbor vertex of v, then w is the father of v or v is a son of w. If the tree is reduced to two vertices
each of them are both son and father of the other vertex. A factor T ′ of a tree T is a subgraph of T
which is a tree.

In the sequel, we have to borrow some simple concepts from directed graphs. An arborescence A
(or rooted tree) is a tree in which a distinguished vertex r is considered as the root and the edges (or
arcs) are directed in such a way that there exists a path (in A) from the root to all vertices. If A is
an arborescence then for a given vertex v of A the subgraph of A induced by all vertices of A, which
are accessible to v, is the subtree of A rooted at v. A forest is a set of pairwise disjoint arborescences.
In an arborescence or in a forest a leaf denotes a vertex without son (successor).

1.7. Summary

The paper is organized as follows. In Section 2 we give simple properties which are common
in the general model. We introduce a particular instance of the model and prove the uniformity
property in Section 3. The distribution of the uniform election duration is studied in Section 4 for
two particular instances of trees: chain graphs and star graphs. Section 5 is devoted to some open
questions and to new directions to complete the present study.

This paper is an improved version of the extended abstract [8].

2. Simple properties of the general model

Once a vertex v has become a leaf, its death happens according to a Markovian process with a
given parameter !(v), which is supposed to have been determined by some specific rules detailed
in the sequel. Each leaf v of the residual tree behaves independently and, under the assumption that
it is alive at time t, the probability of its death in the interval [t, t + h] is given by !(v)h+ o(h), as
h → 0. We refer to !(v) as the death rate on v. The quantity 1/!(v) is the mathematical expectation
of the lifetime of v (from the instant when it becomes a leaf). It should be noted that !(v) is not a
fixed parameter initially assigned to v; it can be a function of values transmitted to v (by the van-
ished adjacent vertices). In particular, if v has several neighbor vertices, at the time v becomes a leaf
only one neighbor is surviving and, !(v) computed step-by-step, may depend on the disappeared
neighbor vertices.
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We first recall basic properties associated with Markovian processes (see [3], Chapter XVII).

Proposition 1. Let v be a vertex of a tree T becoming a leaf at some instant t. A death rate !(v) is
assigned to v at this instant. Let L(v) be the lifetime of v (from this instant). Then

(i) L(v) is an exponentially distributed r.v. (random variable) with parameter !(v)

Pr
(

L(v) > x
)

= e−!(v)x, ∀x ! 0.

(ii) L(v) has the mathematical expectation 1
!(v) .

(iii) L(v) satisfies the “memoryless” property

Pr
(

L(v) > x + y | L(v) > x
)

= Pr
(

L(v) > y
)

= e−!(v)y , ∀x, y ! 0.

At some instant t, the tree T of size n is reduced to a factor tree T ′ of size n′, 2 " n′ " n, with
leaves v1, . . . , vk , k ! 2, having death rates !(v1), . . . , !(vk), respectively. Let L(vi) be the r.v. denot-
ing the lifetime of vi, 1 " i " k . The death rate for the tree T ′ is !(T ′) = ∑k

i=1 !(vi); meaning that,
since L(vi) are totally independent, the probability of a death in [t, t + h] is h

∑k
i=1 !(vi)+ o(h), as

h → 0. Therefore, we may consider !(T ′) as the rate of parallelism on the factor tree T ′. This tree
has the lifetime L(T ′) (from the time T ′ appears, till the time when one of its leaves disappears)
which is a r.v. defined by L(T ′) = min1"i"kL(vi), since the next reduction will take place at the time
t + min1"i"kL(vi). This r.v. is characterized by its distribution function

Pr(L(T ′) " x) = 1 − Pr(L(T ′) > x) = 1 − e−x!(T ′), ∀x ! 0.

Thus, L(T ′) is an exponentially distributed r.v. with mathematical expectation 1
!(T ′) .

If we have to compute the probability qT (v)of being elected for the vertex v in the tree T , we should
sum the probabilities of transitions beginning with the initial tree T , yielding at the end the irreduc-
ible vertex v according to the introduced irreversible random process. Let us reconsider the case of
the factor T ′. Identifying the state of the process at some instant t by the residual factor tree at this
instant, the next configuration will be one of the factor trees Ti = T ′ \ {vi} obtained by removing the
leaf vi and the incident edge, for i = 1, . . . , k . Each of these “next-state” has a probability given by:

Proposition 2. Let T ′ be the state of the election process at some instant t. Let v1, . . . , vk , k ! 2, be the
leaves of T ′. Then the state of the process is one of the trees Ti obtained from T ′ (by removing vi and
the incident edge), with the transition probability

p(T ′, Ti) = !(vi)

!(T ′)
= !(vi)
∑

1"j"k !(vj)
, 1 " i " k.

Proof. According to the previous proposition the random variables L(vi) are memoryless and,
therefore, the distribution of the extra-lifetime from a given instant t, subject to the condition of the
survival up to this instant, is the same as the initial distribution for the lifetime. On the other hand
L(vi), for 1 " i " k , are independent and thus
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p(T ′, Ti) = Pr
(

min{L(v1), . . . ,L(vk)} = L(vi)
)

= Pr
(

L(vi) " L(vj) | 1 " j " k
)

=
∫ +∞

0
!(vi)e−!(vi)xi

(

k
∏

j=1,j /=i

∫ +∞

xi

!(vj)e−!(vj)xj dxj

)

dxi

= !(vi)
∑

1"j"k !(vj)
. #

Remark 3. In the case where all vertices have the same assigned parameter !, the probability of
being elected is the q-distribution given in [7], since according to Proposition 2, all transitions from
a given factor tree T ′ have the same probability.

LetT be a tree of sizen ! 2. Consider the sequence# = 〈#1, #2, . . . , #n〉, with#1 = T , of factor trees,
such that each #i is obtained from #i−1 by a transition (i.e., removing a leaf), for 2 " i " n. Clearly,
the probability of such a sequence should be defined by p(#) = ∏n

i=2 p(#i−1, #i). Denoting by !(T)
the set of all sequences, the probability of being elected for a given vertex v is

∑

#∈!(T),#n={v} p(#).
Another parameter of interest, which may be subject of further studies, is the expected time in

the election process.
For a given # = 〈#1, #2, . . . , #n〉 ∈ !(T), its duration D(#) is the sum of the lifetimes of disap-

pearing leaves in #. The expected duration of the election process is
∑

#∈!(T) p(#)E(D(#)), where
E(D(#)) is the mathematical expectation of D(#). In Section 4, we will study the election duration
for a particular instance of the model in the case of chain and star graphs.

The election process over T is in fact a Markov continuous-time process. The set of states is
the set of factor trees of T , the initial state is T and the transitions are defined by the leaf-removal
process, with probabilities assigned as defined above. According to this point of view we can state
the following proposition, which in principle, allows to represent mathematically all the parameters
of interest.

Proposition 4. Let T ′ be a factor. Let PT ′(t) denote the probability that the state of the election at time
t is T ′.We have

(i)
dPT (t)

dt
= −!(T)PT (t),

(ii) for all factor tree T ′ /= T of size at least 2, dPT ′ (t)
dt = −!(T ′)PT ′(t)+∑

v !(v)PT ′∪{v}(t), where the
summation is extended to all vertices v adjacent to T ′ and which do not belong to T ′, and

(iii) for all vertices v, dP{v}(t)
dt = ∑

v′ adjacent to v !(v
′)P{v,v′}(t),

with the initial condition PT (0) = 1.

Proof. The following proof is a straightforward adaptation of a well-known method (see [3], Chap-
ter XVII, Section 5), based on analyzing the probability of transitions from neighbor states to the
state T ′ in the time interval [t, t + h].
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Consider the evolution of the process in the interval [t, t + h]. Let T ′ be a tree factor of T . Let us
compute the probability of being in the state T ′ at time t + h in terms of the state at time t.

• For T ′ /= T and not reduced to a leaf, we have

PT ′(t + h) =
∑

v

PT ′∪{v}(t)!T ′∪{v},T ′(h)+ PT ′(t)!T ′,T ′(h)+ o(h),

where !S ,T ′(h) is the probability of a (direct) transition from S to T ′ in a time interval of length
h; the summation is extended to all vertices v adjacent to T ′ and not belonging to it. We get

PT ′(t + h) = h
∑

v

!(v)PT ′∪{v}(t)+ PT ′(t)[1 − !(T ′)] + o(h).

Hence

PT ′(t + h)− PT ′(t)

h
= −!(T ′)PT ′(t)+

∑

v

!(v)PT ′∪{v}(t)+
o(h)

h
.

This proves (ii).
• To prove (i), we remark that in the case of PT (t + h), the above sum (

∑

v . . .) on the right vanishes,
since T has no preceding factor trees. This establishes (i).

• Toshow(iii), it suffices toremarkthat thestate {v} isanabsorbingoneand, therefore,${v},{v}(h) = 1.
Thus in P{v}(t + h), the negative term vanishes. A simple computation yields (iii). #

The last proposition is mathematically very strong, since it provides a general solution for the
probability of being elected and the duration of the election in terms of probability of states given
as the solution of a differential equation system. However, no solution seems to be available, except
in obvious instances and more techniques should be developed for an efficient computation.

3. Uniform election model

We study a particular instance of the general model. Let T = (V ,E) be a tree. Initially, all vertices
have the same weight 1 : w(v) = 1, ∀v ∈ V . As a leaf vanishes, its father collects its weight, adding it
to its current weight. At the time where a vertex v becomes a leaf in a residual tree T ′, its weight
is the number of vanished vertices on its side. The lifetime for v, according to this model, is a r.v.
having an exponential distribution of parameter !(v) = w(v). As we shall see this strategy leads to
a totally “fair” randomized election : in a tree of size n all vertices have the same probability 1

n of
being elected. Let us first consider an example.

Example 5. Let T be the tree of Fig. 1. Initially, all vertices have the same weight 1.
There are two transition sequences leading to the choice of the vertex labeled a. These two se-

quences may be identified by the corresponding leaf-removal sequences 〈e, d , c, b〉 and 〈d , e, c, b〉.
Consider the first one. Initially, there are 3 leaves of weight 1 and thus the probability of the e-re-
moval is 1

3 (Proposition 2). In the reduced tree there are now two leaves of weight 1 and thus the
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Fig. 1. A tree with initial weights.

probability of the d-removal is 1
2 . Now in the factor tree on a, b, c the leaf a is of weight 1 and c of

weight 3. Since the parameter ! for a leaf is nothing but its weight, according to Proposition 2, the
probability of the c-removal is 3 times the probability of the a-removal and is therefore 3

4 . The same
argument applied to the tree factor consisting of a and b, assigns the probability 4

5 to the removal of
b. Hence the probability of the first sequence is 1

3
1
2

3
4

4
5 = 1

10 . Clearly, the second sequence 〈d , e, c, b〉
has the same probability and therefore the vertex a is elected with probability 1

5 .
A similar computation shows that any other vertex has the same probability 1

5 of being elected.

To prove this main assertion of uniformity, we first introduce a slight modification of the model
introduced in the section. Maybe, the following proof is not the shortest one. It has, however, the
advantage of translating the model into a variant on directed trees which in turn seems to be in-
teresting. Let F = (V ,A) be a forest of arborescences. We consider a randomized election process
over F as follows. At any time interval [t, t + h], any leaf v (recall that a leaf in an arborescence
has no successor) may vanish with a probability proportional to its weight (initially all vertices
are weighted 1). If a vanishing leaf has a father (i.e., a predecessor vertex) it transmits its weight
to the father whose weight will be added to the weight of the vanishing son. The process goes on
within the reduced forest obtained from F by removing this vanishing leaf and the incident arc (if it
exists), until the forest is totally removed. Since the considered graphs are no longer connected, we
preferably use terms such as eliminating (or death) process, beating vertex here (the last surviving
vertex).

Example 6. Consider the forest of Fig. 2. Let us compute the probability that x beats other vertices
of the forest.

This event is the consequence of one among the eight sequences of leaf-removal: 〈b, c, a, d〉,
〈b, c, d , a〉, 〈b, d , c, a〉, 〈d , b, c, a〉, 〈c, b, a, d〉, 〈c, b, d , a〉, 〈c, d , b, a〉, and 〈d , c, b, a〉. Consider the first
sequence 〈b, c, a, d〉. Since initially there are 4 leaves with weight 1 each one, the b-removal has prob-
ability 1

4 . In the reduced forest the probability of the c-removal is 1
3 . Now, in the remaining forest

there are 3 leaves; x and d have weight 1 and a has weight 3. Hence the probability of the a-removal

Fig. 2. An example of a weighted forest.
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is 3
5 . There remains finally x and d of weight 1 each one and the probability that x survives to d be-

comes 1
2 . The probability of the sequence 〈b, c, a, d〉 is therefore 1

4
1
3

3
5

1
2 = 1

40 . The other probabilities
are computed similarly, yielding the value 1

5 for x to beat other vertices.

As we shall see further this new death process, related to the uniform election model, has the
advantage of admitting an inductive reasoning. One can write a system of differential equations for
the process as we did in Proposition 4 for the general model on trees. We do not go, however, in
this direction. Instead, we find the distribution of the waiting time for a forest to disappear. Then
we prove that the probability that a given forest survives another one depends on nothing but
the sizes of each forest. We derive finally the uniformity property of the model introduced in this
section.

Given a forest F , let W(F) denote the time it takes to disappear, which is a positive real-valued
r.v. Given two forests F1 and F2, F1 survives (or beats) F2 if W(F1) > W(F2).

The following proposition may seem surprising, it asserts that the distribution of W(F) depends
only on the size of F.

Proposition 7. Let F be a forest of size n then the distribution function GF (t) of the r.v. W(F) is given
by

GF (t) = Pr(W(F) " t) = (1 − e−t)n, ∀t ! 0.

Proof. By induction on n. If F is a vertex, then the proposition holds (the lifetime for a single vertex
is an exponentially distributed r.v. with parameter 1). Suppose that the proposition holds for forests
of size less than n and let us prove it for a forest F of size n (n ! 2).

(i) Suppose that F consists of forests F1, F2, . . . , Fk with k ! 2. Let n = n1 + n2 + · · · + nk , where
ni is the size of Fi, 1 " i " k . In this case W(Fi), 1 " i " k , are mutually independent r.v. and
hence by the induction hypothesis

Pr(W(F ) " t) =
k
∏

i=1
Pr(W(Fi) " t)

=
k
∏

i=1
(1 − e−t)ni

= (1 − e−t)n.

(ii)Otherwise, consider that F has size n and consists of a unique root r and arborescences
A1,A2, . . . , Ak . Now, let F ′ be the forest consisting of A1,A2, . . . ,Ak . F ′ has size n− 1 and,
by the induction hypothesis, (1 − e−t)n−1 is the distribution function of W(F ′). But W(F ) is the
sum of two independent r.v. W(F ′) and the lifetime of r. The last one is an exponential r.v. of
parameter n (weight of r). Thus W(F ) has the distribution function (see [4], p. 142, Theorem 2)
given by

GF (t) =
∫ t

0
GF ′(t − x) d(1 − e−nx).
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Hence

GF (t) =
∫ t

0 n[1 − e−(t−x)]n−1e−nx dx

=
∫ t

0 n[e−x − e−t]n−1e−x dx

= [−(e−x − e−t)n]x=tx=0

= (1 − e−t)n.

The proposition follows. #
As an easy consequence of the proposition, we get the following results on the probability of

survival.

Corollary 8.

(i) Let F1 and F2 be two forests of sizes n1 and n2, respectively. Then the probability that F1 beats F2
is n1
n1+n2

. In particular, the probability that an isolated vertex x beats a forest of size n is 1
n+1 .

(ii) Given a forest F of arborescences A1,A2, . . . ,Ak. Then, for any root ri of Ai, the probability of
being elected is proportional to the inverse of the size of Ai (1 " i " k).

Proof. We show only (i); (ii) is proved similarly. The probability that F1 beats F2 is Pr(W(F1) ! W(F2)).
On the other hand, W(F1) and W(F2) are independent r.v. with the distribution functions GF1(t1) and
GF2(t2) given in Proposition 4. A simple computation yields

Pr(W(F1) ! W(F2)) = n1

∫ ∞

0
(1 − e−t1)n1+n2−1e−t1 dt1 = n1

n1 + n2
. #

Remark 9. Returning to the case of undirected trees, we have to point out that the equivalent of the
previous propositions does not hold for trees. Indeed, given a tree T of size n and an isolated vertex
x not belonging to T , if one considers the election process, as introduced in Section 2 (each leaf has
a lifetime which is an exponentially distributed r.v. with the parameter !(v) = w(v)), the probability
of being elected for the isolated x is not 1

n+1 . In fact it is conjectured to be 2(n−1)
n2 . It should be noted

that in this case, it is supposed that, since at each step the weight of a leaf may change (once it
becomes isolated), the extra lifetime is generated according to the last weight.

We are ready to prove the main result of this section.

Theorem 10. Let T be a given tree of size n and let v a given vertex of T. If qT (v) denotes the probability
of being elected for v in T according to the uniform model, then qT (v) = 1

n .

Proof. If n = 1 or n = 2 the theorem is obviously true. Otherwise suppose a1, . . . , ak be adjacent
vertices to v. Let A1, . . . ,Ak be disjoint arborescences rooted at a1, . . . , ak of sizes n1, . . . , nk , respec-
tively. Then the vertex v is beaten in T if and only if one of the roots ai in Ai beats vi in the residual
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arborescence rooted at v to the vertices which are not in Ai—call this arborescence Bi—(for some
i ∈ {1, . . . , k}). But these events are pairwise disjoint for different i’s. Hence

1 − qT (v) =
k
∑

i=1

q(ai; {Ai,Bi}).

According to Corollary 1, q(ai; {Ai,Bi}) is equal to ni
n and, therefore, 1 − qT (v) = n−1

n , since
∑k
i=1 ni = n− 1. The theorem follows. #

4. Election duration in the uniform model

A parameter of interest which comes immediately after the probability distribution over verti-
ces is the election duration. It may be considered as a measure of the time complexity. This is the
absorption time for the continuous-time Markovian process considered in Section 2. Theoretically,
Proposition 3 determines the probability of being in the state T ′ (recall T ′ is a factor tree of the
initial tree T ) at time t. However, the differential equation systems yielding these probabilities are
quite difficult to solve. The study seems interesting since it must be common to large classes of
pure death processes. No substantial result in this direction is known to the authors. We consider
here two very special instances of the problem for which an elementary computation provides the
probability of being in the state T ′.

Results presented in this section are simple. Indeed, the motivation is the presentation of the
following conjecture. Although, nothing is known at present about the election duration and its
expectation in general trees, the results on the mathematical expectation of the duration in chains
and stars suggest that:

Conjecture 11. The average duration in the uniform model is likely to be logarithmic in the size of the
tree.

4.1. Election duration in a chain graph

We reconsider the uniform model introduced in the previous section. As a simple example we
suppose that the tree T in which the election process takes place is a chain of length n. For the
positive integer 1 " m " n, let Pm(t) denote the probability that at time t the residual chain has the
size m. It should be noted that this identification of states differs from the one used in the context
of Proposition 3, where the state of the process at time t was initially defined as the residual factor
tree. By contrast, herein and in the following subsections, the state of the process at time t is defined
as the size of the residual subgraph (chain, star, etc.) We have :

Theorem 12. Under the above assumptions, we have

(i) Pn−k(t) = (k + 1)e−(k+2)t(et − 1)k , if 0 " k " n− 2 and

(ii) dP1(t)
dt = (n− 1)e−nt(et − 1)n−2 = n(n− 1)e−2t(1 − e−t)n−2.
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Proof. Since we identify the state of the Markov process with the size of the residual chain, any chain
of size n− k , 1 " k " n− 1, is the result of a chain of size n− k + 1 and produces in turn a chain
of size n− k − 1. The same fact holds for a chain of size n and a chain of size 1 with the exception
that for the first one no preceding chain exists and that for the second one no following one exists.
Using the same technique as in Proposition 1, we get

(a) dPn(t)
dt = −2Pn(t), since !n = 2.

(b) dPn−k (t)
dt = −(k + 2)Pn−k(t)+ (k + 1)Pn−(k−1)(t), for 1 " k " n− 2, and

(c) dP1(t)
dt = nP2(t), for k = n− 1, !1 = n.

with the initial condition Pn(0) = 1. The first equation subject to the initial condition yields Pn(t) =
e−2t , which asserts that (i) holds for k = 0. Let (i) be true for k = l and prove it for k = l+ 1 whenever
l+ 1 " n− 2. Thus, according to (b), we have

dPn−(l+1)(t)

dt
= −(l+ 3)Pn−(l+1)(t)+ (l+ 2)(l+ 1)e−(l+2)t(et − 1)l.

The last linear equation is easily solved, yielding

Pn−(l+1)(t) = (l+ 2)e−(l+3)t(et − 1)l+1.

This establishes (i). Now setting P2(t) = (n− 1)e−nt(et − 1)n−2 in (c), we derive (ii). #
Let Dn denote the election duration in a chain of size n. It is a positive real-valued r.v. which is

determined by (c) in the previous theorem. Indeed, we have :

Corollary 13. The election duration Dn has the density function

f(t) =
{

n(n− 1)e−2t(1 − e−t)n−2 if t > 0
0 otherwise.

It is linked to a beta distribution: the r.v. Xn = e−Dn has the density %n−1,2 (see [4], II.4). Its mathe-
matical expectation is Hn − 1 = ∑n

i=2
1
i , where Hn is the nth harmonic number.

Proof. We have clearly Pr
(

Dn " t
)

= P1(t) for t ! 0. Thus, Dn has a distribution function which is
the solution of (ii) in the previous theorem. It has, therefore, the density function f(t). To compute
the density of Xn, we use the change of variable x = e−t , getting

g(x) = f(t(x))| dt
dx

| = n(n− 1)(1 − x)n−2x,

with x ∈ (0, 1). This is the beta density

%n−1,2(x) = "(n+ 1)
"(n− 1)"(2)

(1 − x)n−2x, x ∈ (0, 1).

A standard but long computation yields the mathematical expectation of Dn, which is −
∫ 1

0 ln(x)
%n−1,2(x) dx. A simple method to calculate it is to sum the mathematical expectations of the time
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for transitions from a chain of size i to a chain of size i − 1, for i = n, n− 1, . . . , 2. Since the rate of
the transition i → i − 1 is n− i + 2, the expected time of this transition is 1

n−i+2 . The sum of these
fractions is Hn − 1. #

4.2. Election duration in a star graph

As the second instance of the study, let us consider the election duration of the uniform model
in a star graph G of size n. The star graphs and the chain graphs constitute two extreme instances
of trees. This is why these very particular cases seem interesting.

Using the same notation as in the case of chains, we have

Theorem 14. For a given integer k , 1 " k " n, the probability Pk(t) of being in the state k (i.e., a star
of size k) is

Pk(t) =
(

n− 1
k − 1

)

(1 − e−t)n−ke−(k−1)t .

Proof. A computation similar to the one in the case of chains yields

• dPn(t)
dt = −(n− 1)Pn(t),

• for 2 " k " n, dPk(t)
dt = −(k − 1)Pk(t)+ kPk+1(t), and

• dP1(t)
dt = 2P2(t)

with the initial condition Pn(0) = 1. Now a straightforward computation, using a decreasing induc-
tion over k proves the theorem. #

The theorem characterizes in particular the uniform election durationDn in a star graph of size n:

Corollary 15. The r.v. Dn has a distribution admitting the following density function

f(t) =
{

(n− 1)(1 − e−t)n−2e−t for t ! 0
0 otherwise.

Its mathematical expectation is Hn − 1 = ∑n
i=2

1
i .

Proof. Clearly Dn has the distribution function Pn(t), given by the above theorem. Hence it admits
the given density function. The same technique used for the chain graphs can be applied to obtain
the mathematical expectation Hn − 1. #
Remark 16. It is also possible to use a more direct method to prove the last theorem and its corollary.
Indeed, the probability of having a star of size k at time t is the probability that exactly n− k leaves
of the initial n-star have vanished at time t. Since they behave independently, the probability of this
event is

(

n− 1
n− k

)

(1 − e−t)n−ke−(k−1)t ,

which is the same as the expression of Pk(t) given by the theorem.
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Remark 17. We saw in the case of death process on forests (with an upward elimination) the ab-
sorption time W is the maximum of n independent identical exponentially distributed r.v. It should
be noted that W includes the waiting time for the last vertex (or elected one) to vanish.
Although D and W are not identical, the studied cases yield distribution functions for D which are
‘similar’ to that of W . There may be a simple common feature for the distribution of the election
duration in general.

5. Further investigations

So far, we have proposed a typical instance of a general model of “guided elections” in a tree for
which we have proposed a mathematical framework. In such a setting, many interesting questions
arise about the power and limitation of the general model. Can any probability distribution over
the set of vertices of a tree be generated by an instance of the model, by using only one passage
for computing ! as soon as neighboring leaves vanish? The answer seems to be negative, since
no system is available that uses a locally computable one-passage ! leading to the p-distribution
(the probability distribution assigning the same probability to all leaf-removal-sequences, see [7])
is available. If such is the case, investigating the characterizations of the probability which can be
generated seems desirable.

A study based on simulations suggests that if the expected lifetime of a vertex is chosen to be its
weight (instead of the inverted weight in the uniform model), then the election process favors the
median vertices (i.e., the medians have the greatest probability of being elected). The same technique
suggests that the choice of a greater distance from the removed leaves plus one for the expected
lifetime of a given vertex favors centers. However, up until now, there is no available analytical
confirmation provided which favors such directions of research.
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