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Abstract

We present and analyse Las Vegas distributed algorithms which compute a MIS
or a maximal matching for anonymous rings. Their bit complexity and time
complexity are O(

√
logn) with high probability. These algorithms are optimal

modulo a multiplicative constant. Beyond the complexity results, the interest
of this work stands in the description and the analysis of these algorithms which
may be easily generalised. Furthermore, these results show a separation between
the complexity of the MIS problem (and of the maximal matching problem)
on the one hand and the colouring problem on the other. Colouring can be
computed only in Ω(logn) rounds on rings with high probability, while MIS is
shown to have a faster algorithm. This is in contrast to other models, in which
MIS is at least as hard as colouring.

1. Introduction

1.1. The Problem

Let G = (V,E) be a simple connected undirected graph. An independent set
is a subset I of V such that no two members of I are adjacent. An independent
set I is said to be maximal (MIS for short) if any vertex of G is in I or adjacent
to a vertex of I. A matching is a subset M of E such that no two edges of M
have a common vertex. A matching M is said to be maximal if any edge of G
is in M or has an extremity linked to an edge in M .

In this paper we discuss how greedy selection for the computation of a max-
imal independent set or of a maximal matching in a ring of processors can be
accomplished by exchange of messages between adjacent processors.

Usually, the topology of a distributed system is modelled by a graph and
paradigms of distributed systems are encoded by classical problems in graph
theory; among these classical problems one may cite the problems of vertex
colouring, computing a maximal independent set, finding a vertex cover, find-
ing a maximal matching or finding a graph decomposition. Each solution to one
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of these problems is a building block for many distributed algorithms: symmetry
breaking, topology control, routing, resource allocation, network synchronisa-
tion.

Even if ring graphs are simple, they are used as a case study in many
problems, as explained by Attiya and Welch in [AW04], page 31: “rings are
a convenient structure for message-passing systems and correspond to physical
communication systems, for example, token rings.”

1.2. The Model

A general presentation may be found in [Tel00] (Chapter 9) or in [Lyn96]
(Chapter 8).
The Network. We consider the standard message passing model for distributed
computing. The communication model consists of a point-to-point communi-
cation network described by a simple unoriented ring graph G = (V,E) where
the vertices V represent network processors and the edges represent bidirec-
tional communication channels. Processors communicate by message passing:
a processor sends a message to another by depositing the message in the corre-
sponding channel. The channels are FIFO, i.e., for each channel, the messages
are delivered in the order they have been sent. Note that we consider only
reliable systems: no fault can occur on processors or communication links.

We assume that the system is synchronous with simultaneous wakeup of
processors: processors have access to a global clock and all processors start the
algorithm at the same time.

Time Complexity. A round (cycle) of each processor is composed of the fol-
lowing three steps: 1. Send messages to (some of) the neighbours, 2. Receive
messages from (some of) the neighbours, 3. Perform some local computation.
As usual (see for example Peleg [Pel00]) the time complexity is the maximum
possible number of rounds needed until every node has completed its computa-
tion.

Bit Complexity. A bit round is a round such that each processor can send/receive
at most 1 bit to/from each neighbour. As in [KOSS06], the bit complexity of an
algorithm A is the number of bit rounds to complete algorithm A. One round
of the algorithm contains 1 or more bit rounds.

Network and Processor Knowledge. The network is anonymous: unique iden-
tities are not available to distinguish the processors. We do not assume any
knowledge on the size of the ring or on an upper bound on the size of the ring,
any position or distance information. Each processor knows from which channel
it receives a message. An important fact due to the initial symmetry is: there
is no deterministic distributed algorithm for anonymous ring graphs for solving
the MIS problem or the maximal matching problem assuming all vertices wake
up simultaneously, see [Pel00].

2



Las Vegas Distributed Algorithms. A probabilistic algorithm is an algorithm
which makes some random choices based on some given probability distributions.

A distributed probabilistic algorithm is a collection of local probabilistic
algorithms. Since our networks is an anonymous ring, two processes have the
same degree thus their local probabilistic algorithms are identical and have the
same probability distribution.

A Las Vegas algorithm is a probabilistic algorithm which terminates with a
positive probability (in general 1) and always produces a correct result.

1.3. Our Contribution

We present and analyse Las Vegas distributed algorithms which compute a
MIS or a maximal matching for anonymous rings. Their bit complexity and
time complexity are O(

√
logn) with high probability1 (w.h.p. for short). From

[FMRZ], we deduce that these algorithms are optimal (modulo a multiplicative
constant).

Beyond the complexity results, the interest of this work stands in the de-
scriptions and the analyses of these algorithms which follow the same scheme
and thus which may be easily generalised: this is illustrated in Conclusion with
the 2-MIS problem.

Furthermore, these results show a separation between the complexities of the
MIS problem and of the maximal matching problem on the one hand and the
colouring problem on the other. Colouring can be computed only in Ω(logn)
rounds on rings with high probability (see [KOSS06]), while MIS is shown to
have a faster algorithm. This is in contrast to other models, in which MIS is at
least as hard as colouring.

Khothapalli et al. [KOSS06] prove that a Las Vegas algorithm can achieve
a colouring of a cycle (in which all edges have the same orientation) with a
O(

√
logn) bit complexity with high probability and they prove that this result

is tight by showing that the bit complexity of colouring an oriented cycle is
Ω(

√
logn) with high probability. This leads to the question whether the bit

complexity of the MIS or of the maximal matching is lower in an oriented ring
than the bit complexity of the MIS or of the maximal matching in a non oriented
ring. As it is easy to deduce from a MIS (or from a maximal matching) a 3-
colouring in an oriented ring, we deduce from the result of [KOSS06] that the
answer is no.

1.4. Related Works: Comparison and Comments

1.4.1. Bit Complexity and Single Bit Messages.

Classically, there are two models for the size of the messages: the LOCAL
model and the CONGEST model (see [Pel00] p. 27). The first allows message of
unlimited size while the second allows messages with a size bounded by O(log n)
(n is the size of the network). In both models vertices have unique identifiers.

1With high probability means with probability 1− o(n−1).
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The model of this paper is anonymous (no uniqueness of identifiers for the
nodes) and nodes have no global knowledge on the network such as its size.
Thus, in this context, when a processor builds a message its size cannot depend
on the size of the network and it is natural to consider single bit messages or
more generally messages with bounded sizes.

In addition, bit complexity is considered as a finer measure of communication
complexity and it has been studied for breaking symmetry or for colouring in
[BMW94, BNNN90] or in [KOSS06, DMR08]. Dinitz et al. explain in [DMR08]
that it may be viewed as a natural extension of communication complexity
(introduced by Yao [Yao79]) to the analysis of tasks in a distributed setting.
An introduction to this area can be found in Kushilevitz and Nisan [KN99].

1.4.2. MIS, Maximal Matching, Colouring for General Graphs

General considerations and many examples of Las Vegas distributed algo-
rithms related to MIS, maximal matching or colouring can be found in [Pel00].

The computation of a MIS has been the object of extensive research on
parallel and distributed complexity [ABI86, Lub86, AGLP89, Lin92]; Karp and
Widgerson [KW84] have proved that the MIS problem is in NC. Some links
with distributed graph colouring and some recent results on this problem can
be found in [KW06]. The complexity of some special classes of graphs such as
growth-bounded graphs is studied in [KMNW05]. Results have been obtained
also for radio networks [MW05]. A major contribution is due to Luby [Lub86].
He gives a Las Vegas distributed algorithm. The main idea is to obtain for each
vertex a local total order or a local election which breaks the local symmetry
and then each vertex can decide locally whether it joins the MIS or not. Its
time complexity is O(log n) and its bit complexity is O(log2 n). Recently, a Las
Vegas distributed algorithm has been presented in [MRSDZ11] which improved
the bit complexity: its bit complexity is optimal and equal to O(log n) with
high probability.

General considerations on the complexity of the maximal matching problem
and a O(log4 n) deterministic algorithm are presented in [HKP01] (in this paper
the model allows an orientation of edges). Concerning the maximal matching
problem in anonymous non oriented graphs, Israeli and Itai presented in [II86]
a Las Vegas distributed algorithm for general graphs whose bit and time com-
plexity is O(log n) with high probability, from [FMRZ] we deduce that it is
optimal.

Vertex colouring is mainly studied under two assumptions: - vertices have
unique identifiers, and more generally, they have an initial colouring, - every
vertex has the same initial state and initially only knows its own edges. If
vertices have an initial colour, Kuhn and Wattenhofer [KW06] have obtained
efficient time complexity algorithms to obtain O(∆) colours in the case where
every vertex can only send its own current colour to all its neighbours. In
[Joh99], Johansson analyses a simple randomised distributed vertex colouring
algorithm for anonymous graphs. He proves that this algorithm runs in O(log n)
rounds with high probability on graphs of size n. The size of each message
is logn, thus the bit complexity per channel of this algorithm is O(log2 n).
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[MRSDZ10] presents an optimal bit and time complexity Las Vegas distributed
algorithm for colouring any anonymous graph in O(log n) bit rounds with high
probability.

1.4.3. MIS, Maximal Matching, Colouring for Rings

Kothapalli et al. consider the family of anonymous rings and show in
[KOSS06] that if only one bit can be sent along each edge in a round, then
every Las Vegas distributed vertex colouring algorithm (in which every node
has the same initial state and initially only knows its own edges) needs Ω(logn)
rounds with high probability to colour the ring of size n with any finite number
of colours. Kothapalli et al. consider also the family of oriented rings and they
prove that the bit complexity in this family is Ω(

√
logn) with high probability.

The table of Figure 1 summarises known results for the bit complexity and
time complexity of the maximal independent set, the maximal matching and the
colouring. We can note that corresponding algorithms need no initial knowledge
on the graph such as the size, position or identities of vertices. Furthermore
these bounds are tight.

MIS Maximal
Matching

Colouring

General graphs Θ(logn) Θ(logn) Θ(logn)
Rings Θ(

√
log n) Θ(

√
logn) Θ(logn)

Cycles Θ(
√
log n) Θ(

√
logn) Θ(

√
logn)

Figure 1: Bit complexity and time complexity for general graphs, for rings and for cycles in
which all edges have the same orientation.

2. An Algorithm for the MIS Problem in Rings

2.1. Overview of the Algorithm

The outcome of the algorithm is defined on each vertex v by a special variable
η(v) which represents the state of v. A vertex v joining the MIS sets η(v) to 1
and a vertex v not joining the MIS sets η(v) to 0. Once it takes the state 1 or
the state 0, a vertex is said to be in a final state and becomes inactive. Initially,
v is in an undetermined state: η(v) =?. A vertex can take an intermediate state
setting η(v) to X0 or X1, thus η(v) ∈ {?, X0, X1, 0, 1}.

The algorithm consists of phases, each phase composed of 3 stages: Draw-
ing (D), Expansion (E) and Filling (F ). A phase is defined as the sequential
execution of D, E and F , denoted DEF . The algorithm is therefore a sequence
of phases DEF denoted (DEF )∗.

The algorithm is presented as a timed rewriting system through rewriting
rules. For a phase DEF , rewriting rules which correspond to D, E and F are
authorised if the time is correct modulo 3. This system can easily be converted
into a message passing algorithm in which each processor records its own state
and a counter modulo 3. Furthermore after each stage D, E, and F each active
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processor needs 6 rounds of collecting information so that it knows the random
choices or the new states in its neighborhood to distance 6. Below is the overview
of each stage:

• Drawing: Every vertex with state ? and belonging to a connected subgraph
of the ring of size 7 whose vertices have the state ? chooses uniformly at
random one vertex among: its two neighbours and itself. We represent
the fact “vertex v chooses vertex w” by an arrow from v to w. Then the
state of each vertex may change according to the rule in Figure 2. This
rule describes what happens if the pattern described in the top line in
Figure 3 occurs. If this is not the case, vertices remain in the same state
and are ready to take part in the next round. It may be noted that when
a vertex needs to decide if it is in the configuration of Figure 2, it needs to
examine 7 potential 7-tuples, at most one of which could be in this pattern.

?v0 ?v1 ?v2 ?v3 ?v4 ?v5 ?v6

X0 X1 0 1 0 X1 X0

Figure 2: The Drawing rule: this rule indicates that if a vertex v0, in the state ?, chooses a
neighbour, denoted v1, which has chosen itself and which has a neighbour v2 etc... then the
state of v0 becomes X0, the state of v1 becomes X1, the state of v2 becomes 0 etc...

Remark 1. Vertices with state 0 or 1 in Figure 2 are in a final state. At
the end of this stage, vertices v2, v3 and v4 in Figure 2 are in a final state
with probability at least (1/3)7.

Remark 2. If we consider the drawing rule described in Figure 2, it is
clear that a vertex cannot be in “two different rules” on the same round
(there is no possible ambiguity for modification of states).

A final area is a set of contiguous final-state vertices with the property
that the subset formed from its vertices having state 1 is a maximal inde-
pendent set, more precisely, the area is described by the following rational
expression: 01((0 + 00)1)∗0. An important invariant, denoted I, of the
algorithm is the following: as soon as the drawing phase D leads to a
final area, at the start of each stage, the ring is divided into final areas
bounded on both sides by vertices in intermediate states separated by “?”
as shown in Figure 3. A set of contiguous vertices in final states with
vertices labelled X1 and X0 on both sides is called an extended final area.
The invariant I holds until every vertex has a state in {0, 1}, and in this
case, the algorithm is ended.
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?? X0 X1 0 1 0 X1 X0 ? ?

? ? X0 X1 0 1 . . . 1 0 X1 X0 ? ?

Figure 3: Forms of the configurations occurring in the ring.

• Expansion: Every final area has two sides and attempts to expand by two
vertices on each side. The expansion occurs on a side if there are at least
four undetermined vertices adjacent to this side according to the rule in
Figure 4.

The expansion in a direction affects four vertices: two vertices obtain a
final state (changing Xi into i), the states of two other vertices become
intermediate. The two last vertices with ? state may not change and stay
? or change into Xi because of an expansion occurring on the other side.

If there are 5 or 6 undetermined vertices between two extremes each of
the extremes will try to apply expansion.

0 1 0 X1 X0 ? ? ? ?

0 1 0 1 0 X1 X0 − −
Figure 4: The Expansion rule.

• Filling: When extended final areas are separated by at most six vertices,
the gap between them is filled as in Figure 5. Thus the filling stage gives
a final state to all vertices in such gaps.

Remark 3. Rules F4, F5 and F6 are not necessary. If they are omitted the
corresponding areas will be filled at the next phase.

Remark 4. The invariant I concerning the configuration of the ring described
in Figure 3, is preserved by each phase.

Remark 5. Once a final area is formed, the number of vertices in final state is
increased, at each phase, by at least 4. If the expansion stage occurs then this
fact is trivial. Otherwise, that means that the filling stage occurs and in this
case also the fact is trivial.

Remark 6. The algorithm is available only for graphs with at least 7 vertices.
For fewer than 7 vertices one can apply an alternative O(1) algorithm.
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F6

F5

F4

F3

F2

F1

F0

. . . 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 . . .

. . . 0 1 0 X1 X0 ? ? ? ? ? ? X0 X1 0 1 0 . . .

. . . 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 . . .

. . . 0 1 0 X1 X0 ? ? ? ? ? X0 X1 0 1 0 . . .

. . . 0 1 0 1 0 1 0 0 1 0 1 0 1 0 . . .

. . . 0 1 0 X1 X0 ? ? ? ? X0 X1 0 1 0 . . .

. . . 0 1 0 0 1 0 1 0 1 0 0 1 0 . . .

. . . 0 1 0 X1 X0 ? ? ? X0 X1 0 1 0 . . .

. . . 0 1 0 0 1 0 0 1 0 0 1 0 . . .

. . . 0 1 0 X1 X0 ? ? X0 X1 0 1 0 . . .

. . . 0 1 0 1 0 1 0 1 0 1 0 . . .

. . . 0 1 0 X1 X0 ? X0 X1 0 1 0 . . .

. . . 0 1 0 1 0 0 1 0 1 0 . . .

. . . 0 1 0 X1 X0 X0 X1 0 1 0 . . .

Figure 5: Filling rules. The rule F0 indicates that in contiguous extended final areas the
states of vertices labelled X0 (resp. X1) become 0 (resp. 1). The rule F1 indicates that
if there is exactly one vertex between two extended final areas then the state of this vertex
becomes 1 and states of vertices labelled X0 (resp. X1) become 0 (resp. 1). The actions of
the other rules are of the same kind.

2.2. Analysis of the Algorithm

We have the following lemma :

Lemma 1. Let v be a vertex that enters the MIS or its complement at time
t0 > 0. Then, for any t ≥ 0, after t phases, all the vertices at distance at most
2t ≥ 0 from v are in the MIS or in its complement.

Proof. The proof is direct from Remark 5, since any determined area is in-
cremented by at least four vertices at the end of each phase whenever enough
vertices are free. �

Theorem 2. Algorithm RingMIS computes a MIS in a ring of size n in O
(√

logn
)

rounds w.h.p.

Proof. For any u ∈ V , and any t > 1, let P (u, t) denote the path of length
2t+1 centered on u and for any i ∈ {1, · · · , t}, let E(u, i) (resp. E(u, i)) denote
the event “a vertex in the path P (u, 2(t− i+1)) enters the set in phase i” (resp.
“no vertex in the path P (u, 2(t− i+ 1)) enters the set in phase i”).

Let v be a vertex which is not yet in the MIS nor in its complement. By
Lemma 1, v will enter the set or its complement within t phases unless none of
the events E(v, i), for any i ∈ {1, · · · , t} happen.

On the other hand, any vertex u in P (v, 2t) distant 6 or more from all
determined areas will enter the set in a phase if it is at the center of the pattern
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in Figure 2, and so with probability at least ρ =
(

1
3

)7
independently of what

happens outside these seven vertices.
Thus:

Pr
(

E(v, i)
)

≤ (1− ρ)
4(t−i+1)

7 .

Note that this is an upper-bound, and any more accurate (and tedious)
computation will just affect the constants in the following formulas.

Now, if we denote p>t(v) the probability that v does not enter the set, or its
complement, within t phases, then we have :

p>t(v) ≤
t
∏

i=1

Pr
(

E(v, i)
)

(1)

≤
t
∏

i=1

(1− ρ)
4(t−i+1)

7

= (1− ρ)
2
7 (t

2+t)
< (1− ρ)

2
7 t

2

.

Let t = 124
√
logn, then :

p>124
√
log n(v) ≤ (1− ρ)

2
7124

2 logn

∼ e−
2
7124

2ρ log n as n → ∞
= o

(

1

n2

)

as n → ∞( since
2

377
1242 > 2). (2)

Adding over all vertices we see that the probability that some vertex remains
undetermined after 124

√
logn phases is o

(

n−1
)

. �

It follows that:

Corollary 1. Algorithm RingMIS computes a MIS in a ring of size n in O
(√

logn
)

rounds on average.

Proof. If some vertex remains undetermined after 124
√
logn phases, either

all vertices are undetermined and the time to end the algorithm is exactly the
initial time (on average) or some vertices are determined and all vertices will be
determined in, at most, n/4 more phases. However, the last case happens with
probability o( 1

n
). It follows that the average time is also O

(√
logn

)

. �

3. An Algorithm for the Maximal Matching Problem

3.1. Overview of the Algorithm

As for the MIS, the algorithm is a sequence of the form (DEF )∗: Drawing,
Expansion, Filling.
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The outcome is still defined on each vertex v by the variable η(v). A vertex
v joining the maximal matching sets η(v) to 1. A vertex v not joining the
maximal matching sets η(v) to 0. Once it takes the state 1 or the state 0, a
vertex is in a final state and becomes inactive. Initially, v is in an undetermined
state: η(v) =?. A vertex can take an intermediate state setting η(v) to X , thus
η(v) ∈ {?, X, 0, 1}.

Each extremity of an edge entering in the maximal matching knows the one
it is linked with thanks to a port number. The representation of an edge entering
in the maximal matching is as follows: 1 ∗ 1.

In the case of the maximal matching problem, a final area is defined as a
set of contiguous final-state vertices with the property that the subset formed
from its edges labelled with ∗ is a maximal matching, more precisely, the area
is described by the following expression: (1 ∗ 1)+ ((1 ∗ 1)+ (0− 1 ∗ 1))∗. Here
the invariant I of the algorithm is based on the configuration as given in Figure
6.

As for the MIS, the maximal matching algorithm is presented as a timed
rewriting system through rewriting rules. This system can be converted into a
message passing algorithm in which each processor records its own state and a
counter modulo 3. Furthermore at each stageD, E, and F each active processor
exchanges bit messages to know the results of the random choices and the states
of vertices at distance 1, at distance 2, until 5, in order to reconstitute the
corresponding subgraph.

Remark 7. An edge is labelled with * to represent the edges which may enter
in the maximal matching. This information is known by each vertex thanks to
port numering.

X X 1 1 X X

X X 1 1 [(1 ∗ 1) + ((1 ∗ 1) + (0− 1 ∗ 1))∗] 1 1 X X

* * *

* * * *

Figure 6: Configurations occurring in the ring.

As previously we describe the various rules of rewriting for each stage:

• Drawing: Every vertex with state ? chooses uniformly at random one
vertex among its two neighbours. We represent the fact ”vertex v chooses
vertex w” by an arrow from v to w. Two vertices which have chosen each
other may change their state ? into 1 or X according to these two rules:

– the state ? is changed into 1 if the edge is surrounded on each side
by an edge whose extremities have chosen each other,

– the state ? is changed into X if the edge is surrounded on one side by
an edge whose extremities have chosen each other and on the other
side by an edge whose extremities have not chosen each other,

– no change.
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Y Y ? ? (? ?)+ ? ? Y Y

Y Y X X (1 1)+ X X Y Y* * *

Figure 7: The Drawing rule representing following cases. The pair (Y · · · Y ) can be one of
these patterns: (−?→?→), (←?←?−), (←?−?→), (X ∗ X), or (?→ X), or (←?−X) etc.

The rule describing the drawing is given as Figure 7.

Remark 8. An edge 1 ∗ 1 is in the maximal matching and remains in it.

• Expansion: The expansion occurs in a direction if there are at least four
undetermined vertices adjacent to the extremity according to the rule in
Figure 8.

1 1 X X ? ? ? ?

1 1 1 1 X X − −* * *

Figure 8: The Expansion rule.

Remark 9. The state of the two last vertices with state ? may remain
the same or may change into X . This is represented in the figure with −.
Indeed, the rule can occur on the other side of the ring, implying a change
of state.

• Filling: When final areas are separated by at most five vertices, the gap
between them is filled as in Figure 9.

Remark 10. The invariant I concerning the configuration of the ring described
in Figure 6, is preserved by each phase. At the end of the algorithm, only vertices
in final state remain.

Remark 11. As in MIS, at each phase, the number of vertices of a final area
is increased by at least 4.

Remark 12. The algorithm is available only for graphs with at least 6 vertices.
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F5

F4

F3

F2

F1

F0

. . . 1 1 1 1 1 1 0 1 1 1 1 1 1 . . .

. . . 1 1 X X ? ? ? ? ? X X 1 1 . . .

* * * * * *

* * * *

. . . 1 1 1 1 1 1 1 1 1 1 1 1 . . .

. . . 1 1 X X ? ? ? ? X X 1 1 . . .

* * * * * *

* * * *

. . . 1 1 0 1 1 0 1 1 0 1 1 . . .

. . . 1 1 X X ? ? ? X X 1 1 . . .

* * * *

* * * *

. . . 1 1 1 1 1 1 1 1 1 1 . . .

. . . 1 1 X X ? ? X X 1 1 . . .

* * * * *

* * * *

. . . 1 1 1 1 0 1 1 1 1 . . .

. . . 1 1 X X ? X X 1 1 . . .

* * * *

* * * *

. . . 1 1 1 1 1 1 1 1 . . .

. . . 1 1 X X X X 1 1 . . .

* * * *

* * * *

Figure 9: Filling rules. F0 describes the behaviour when two final areas are adjacent. F1
describes the behaviour when two final areas are separated by one vertex with state ?. More
generally F i (i ≤ 5) describes the behaviour when two final areas are separated by i vertices.
The undetermined state X and the undetermined state ? are changed into final one (1 or 0)
ensuring a maximal matching.

3.2. Analysis of the Algorithm

We have the following theorem:

Theorem 3. Algorithm RingMM computes a maximal matching in a ring of
size n in O

(√
logn

)

rounds w.h.p. and on average.

Proof. As for the proof of Theorem 2, the main idea is that if a vertex v enters
its final state at time t0, i.e., η(v) belongs to the set {0, 1}, all the vertices at
distance less than 2t from v enter their final state at time at most t0+ t. On the
other hand, any vertex distant 4 or more from all determined areas will enter
the maximal matching in a phase if its state is 0 or 1 in one of the configurations
described in Figure 7, and so with probability at least ρ = 1

26 independently of
what happens outside this configuration. If we denote by p>t(v) the probability
for a vertex v to obtain its final state, an adaptation of the proof of Theorem 2
yields :

p>24
√
logn(v) = o

(

1

n2

)

as n → ∞. (3)

Hence, the probability that some vertex remains undetermined after 24
√
logn

phases is o
(

n−1
)

.
The second claim is also proved using the same argument as for Corollary

1. �

4. Conclusion

We present and analyse Las Vegas distributed algorithms which compute a
MIS or a maximal matching for anonymous rings. Their bit complexity and time
complexity are O(

√
logn). These algorithms are optimal modulo a multiplicative

constant.
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The description and the analysis of these algorithms can be generalised. We
illustrate this idea through the computation of a 2-MIS.

A 2-independent set is a subset K of V such that the distance between any
two vertices of K is at least 3. A 2-independent set K is said to be maximal
(2-MIS for short) if any vertex of G is in K or at distance 1 or 2 of an element
of K.

As for the RingMIS, the outcome of the algorithm is defined on each vertex
v by a special variable η(v) which represents the state of v. A vertex v joining
the MIS sets η(v) to 1 and a vertex v not joining the MIS sets η(v) to 0. Once it
takes the state 1 or the state 0, a vertex is said to be in a final state and becomes
inactive. Initially, v is in an undetermined state: η(v) =?. A vertex can take
an intermediate state setting η(v) to X0 or X1, thus η(v) ∈ {?, X0, X1, 0, 1}.

The algorithm Ring2MIS consists of phases, each phase is composed of 3
stages: Drawing (D), Expansion (E) and Filling (F ). A phase is defined as
a the sequential execution of D, E and F , denoted DEF . The algorithm is
therefore a sequence of phases DEF denoted (DEF )∗.

The algorithm is presented as a timed rewriting system through rewriting
rules. For a phase DEF , rewriting rules which correspond to D, E and F are
authorised if the time is correct modulo 3. This system can easily be converted
into a message passing algorithm in which each processor records its own state
and a counter modulo 3. Furthermore at each stage D, E, and F each active
processor exchanges bit messages to know the results of the random choices and
the states of vertices at distance 1, at distance 2, until 10, in order to reconstitute
the corresponding subgraph.

Below is the overview of each stage:

• Drawing: Every vertex with state ? and belonging to a connected subgraph
of the ring of size 11 whose vertices have the state ? chooses uniformly at
random one vertex among: its two neighbours and itself. We represent
the fact ”vertex v chooses vertex w” by an arrow from v to w. Then the
state of each vertex changes according to the rule in Figure 10.

? ? ? ? ? ? ? ? ? ? ?

X0 X0 X1 0 0 1 0 0 X1 X0 X0

Figure 10: The Drawing rule.

• Expansion: Every final area attempts to expand by 3 vertices in each
direction. The expansion occurs in a direction if there are at least 6
undetermined vertices adjacent to the extremity according to the following
rule (we only indicate the states of vertices for short):

??????X0X0X100100X1X0X0??????

becomes ???X0X0X100100100100X1X0X0???.
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The expansion in a direction affects 6 vertices: 3 vertices obtained a final
state (changing Xi into i), the states of 3 other vertices become intermedi-
ate. The 3 last vertices with ? state may not change and stay ? or change
into Xi because of an expansion occurring on the other side.

• Filling: When extended final areas are separated by at most 10 vertices,
the gap between them is filled as (we only give the states of the end and
of the beginning of final areas):

–F0: 100X1X0X0X0X0X1001 becomes 100100001001

–F1: 100X1X0X0?X0X0X1001 becomes 1001001001001

–F2: 100X1X0X0??X0X0X1001 becomes 01001000010010

–F3: 100X1X0X0???X0X0X1001 becomes 100100010001001

–F4: 100X1X0X0????X0X0X1001 becomes 1001001001001001

–F5: 100X1X0X0?????X0X0X1001 becomes 10010000100001001

–F6: 100X1X0X0??????X0X0X1001 becomes 100100100001001001

–F7: 100X1X0X0???????X0X0X1001 becomes 1001001001001001001

–F8: 100X1X0X0????????X0X0X1001 becomes 10010000100100001001

–F9: 100X1X0X0?????????X0X0X1001 becomes 100100100010001001001

–F10: 100X1X0X0??????????X0X0X1001 becomes 1001000010000100001001

Remark 13. As for the MIS, Rules F6, F7, F8, F9 and F10 are not
necessary. If they are omitted the corresponding areas will be filled at the
next phase.

Finally, we can prove:

Theorem 4. Algorithm Ring2MIS computes a 2-MIS in a ring of size n in
O
(√

log n
)

rounds w.h.p. and on average.

Our results raise open questions, here are some (suggested by a referee).

1. Under which conditions is the MIS problem easier than the the coloring
problem?

2. An oriented ring seems to be more constrained than a non-oriented ring
but our results suggest that the orientation of the ring helps the design of
distributed algorithms such as MIS or maximal matching. Is this due to
the fact that the orientation already breaks the symmetry of the ring?

3. If IDs are allowed to the nodes (or knowledge of an upper-bound of the
size of the ring is given) how significantly will such hypotheses help the
design of MIS/maximal matching algorithms?
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[Joh99] Ö. Johansson. Simple distributed (∆ + 1)-coloring of graphs. In-
formation Processing Letters, 70(5):229–232, 1999.

[KMNW05] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer. Fast
deterministic distributed maximal independent set computation on
growth-bounded graphs. In DISC, pages 273–287, 2005.

[KN99] E. Kushilevitz and N. Nisan. Communication complexity. Cam-
bridge University Press, 1999.

[KOSS06] K. Kothapalli, M. Onus, C. Scheideler, and C. Schindelhauer. Dis-
tributed coloring in O(

√
logn) bit rounds. In 20th International

Parallel and Distributed Processing Symposium (IPDPS 2006),
Proceedings, 25-29 April 2006, Rhodes Island, Greece. IEEE, 2006.

15



[KW84] R. M. Karp and A. Widgerson. A fast parallel algorithm for the
maximal independent set problem. In Proceedings of the 16th ACM
Symposium on Theory of computing (STOC), pages 266–272. ACM
Press, 1984.

[KW06] F. Kuhn and R. Wattenhofer. On the complexity of distributed
graph coloring. In Proceedings of the 25 Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 7–15. ACM
Press, 2006.

[Lin92] N. Linial. Locality in distributed graph algorithms. SIAM J. Com-
put., 21:193–201, 1992.

[Lub86] M. Luby. A simple parallel algorithm for the maximal independent
set problem. SIAM J. Comput., 15:1036–1053, 1986.

[Lyn96] N. A. Lynch. Distributed algorithms. Morgan Kaufman, 1996.

[MRSDZ10] Y. Métivier, J. M. Robson, N. Saheb-Djahromi, and A. Zemmari.
About randomised distributed graph colouring and graph partition
algorithms. Inf. Comput., 208(11):1296–1304, 2010.

[MRSDZ11] Y. Métivier, J.-M. Robson, N. Saheb-Djahromi, and A. Zemmari.
An optimal bit complexity randomized distributed mis algorithm.
Distributed Computing, 23(5-6):331–340, 2011.

[MW05] T. Moscibroda and R. Wattenhofer. Maximal independent set in
radio networks. In Proceedings of the 25 Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 148–157.
ACM Press, 2005.

[Pel00] D. Peleg. Distributed computing - A Locality-sensitive approach.
SIAM Monographs on discrete mathematics and applications,
2000.

[Tel00] G. Tel. Introduction to distributed algorithms. Cambridge Univer-
sity Press, 2000.

[Yao79] A. C. Yao. Some complexity questions related to distributed com-
puting. In Proceedings of the 11th ACM Symposium on Theory of
computing (STOC), pages 209–213. ACM Press, 1979.

16


