
Information Processing Letters 82 (2002) 313–320

Randomized local elections
Yves Métivier ∗, Nasser Saheb, Akka Zemmari

LaBRI, Université Bordeaux I – ENSEIRB, 351 Cours de la Libération, 33405 Talence Cedex, France

Received 21 June 2001; received in revised form 11 September 2001
Communicated by L. Boasson

Abstract

We propose and analyze two randomized local election algorithms in an asynchronous anonymous graph. 2001 Elsevier
Science B.V. All rights reserved.

Keywords: Analysis of algorithm; Graph; Performance analysis; Local election; Randomized algorithm

1. Introduction

The problem of election is linked to distributed
computations in a network. It aims to choose a unique
vertex, called leader, which subsequently is used to
make decisions or to centralize some information
(see [8]). In this paper we introduce and study ran-
domized local elections. For a fixed given positive in-
teger k, a k-local election problem requires that, start-
ing from a configuration where each process is in the
same state, the network reaches a configuration C such
that for this configuration there exists a nonempty set
of vertices, denoted E , verifying:
– each vertex v of E is in a special state called leader
and

– for each vertex v ∈ E and for each vertexw (w #= v)

such that d(v,w) ! k then w is in the state lost (i.e.,
w /∈ E).

* Corresponding author.
E-mail addresses: metivier@labri.u-bordeaux.fr (Y. Métivier),

saheb@labri.u-bordeaux.fr (N. Saheb),
zemmari@labri.u-bordeaux.fr (A. Zemmari).

As for the election problem, we assume that each
process has the same local algorithm. This problem is
considered under the following assumptions:
– the network is anonymous: unique identities are not
available to distinguish the processes,

– the system is asynchronous: processes have no
access to a common clock,

– processes communicate by asynchronous message
passing: a process sends a message to another
by depositing the message in the corresponding
channel and there is no fixed upper bound on how
long it takes for the message to be delivered,

– each process knows from which channel it receives
a message.
The study of the local election problem is motivated

by the implementation of local computations [2].
We consider a network of processors with arbitrary
topology. It is represented as a connected, undirected
graph where vertices denote processors and edges
direct communication links. A distributed algorithm is
encoded by means of local relabeling: labels attached
to vertices and edges are modified locally, that is on
a bounded subgraph of the given graph according to
certain rules depending on the subgraph only. The

0020-0190/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(01)00289-7

314 Y. Métivier et al. / Information Processing Letters 82 (2002) 313–320

relabeling is performed until no more transformation
is possible. The corresponding configuration is said to
be in normal form. We consider more particularly two
kinds of local computations:

LC1: in a computation step, the label attached to the
centre of a ball of radius 1 is modified according to
some rules depending on the labels in the ball, labels
of the other vertices in the ball are not modified.

LC2: in a computation step, labels attached to the
vertices in a ball of radius 1 may be modified
according to some rules depending on the labels in
the ball.

The implementation of LC1 (respectively LC2) may
be done by using 1-local election (respectively 2-local
election). Once a vertex v is locally elected a local
computation can be done on the ball centered on v.
From the work of Angluin [1], we deduce that,

under the above assumptions, there is no deterministic
algorithm to solve the k-local election problem for k "
1. Thus we have no choice but to consider randomized
algorithms. From [1] we deduce also that there is
no Las Vegas algorithm to solve the k-local election
problem for k " 3.
Here we propose and analyze two Las Vegas algo-

rithms to realize a k-local election for k = 1,2. Al-
though they are totally distributed their analysis is
based on the consideration of rounds: in order to mea-
sure the performance of the algorithm in terms of the
number of local elections taking place, we assume that
at some instant each node sends and then receivesmes-
sages. Thus this parameter of interest, which is the
(random) number of local elections, is the maximal
number authorized by the algorithm. Except for the
case of simple graphs, modeling the network, a sim-
ple characterization of the distribution of this num-
ber does not seem possible. Simple expressions for
the probability of being elected for vertices are avail-
able. Let v be a vertex such that a local computation
may be done on B(v, k); then the probability of be-
ing elected for v corresponds to the probability that a
local computation is done in B(v, k). We use the ex-
pected number of elected vertices in a round to define
the efficiency of the algorithms. This parameter can
roughly be interpreted as the expected number of local
computations taking place simultaneously and, thus,

can be considered as the degree of parallelism autho-
rized by the algorithms. In both algorithms, we pro-
vide a lower bound for the expected number of locally
elected vertices. The efficiency of each randomized al-
gorithm is introduced in terms of this parameter. We
get finally lower bounds for the efficiency of our ran-
domized election algorithms applied to trees.
Many problems have no solution in distributed com-

puting [5]. The introduction of randomization makes
possible tasks that admit no deterministic solutions
or simplifies algorithms. General considerations about
randomized distributed algorithmsmay be found in [8]
and some techniques used in the design and analysis of
randomized algorithms are presented in [4,6].
The paper is organized as follows. In Section 2

we give definitions, notation and general remarks.
We present also two randomized algorithms to solve
1-local and 2-local elections denoted RL1 and RL2.
Section 3 is devoted to the study of the expected
number of local elections realized by RL1 and RL2.
In Section 3 we study their efficiencies; lower bounds
are obtained over trees.

2. Definitions, notation and general remarks

We use a standard terminology of discrete and
combinatorial mathematics [7]. A simple graph G =
(V,E) is defined as a finite set V of vertices together
with a set E of edges which is a set of pairs of different
vertices,

E ⊆
{

{v, v′} | v, v′ ∈ V, v #= v′}.

If e = {v, v′} ∈ E we say that e is incident with v,
and v and v′ are neighbors. Let NG(v) denote the set
of neighbors of v. The degree dG(v) of the vertex v is
the cardinal ofNG(v). For a nonnegative integer r and
a vertex v in G, BG(v, r) denotes the ball of centre v

and radius r . It can be defined by induction over r as
follows. BG(v,0) = {v}, and

BG(v, r + 1) = BG(v, r) ∪
⋃

w∈BG(v,r)

NG(w).

We drop the subscript G from NG,dG,BG when-
ever the graph is understood in the context.

Y. Métivier et al. / Information Processing Letters 82 (2002) 313–320 315

2.1. Randomized 1- and 2-local elections

Randomization algorithms use random functions
or random-number generators. Algorithms which do
not use such function are referred to as deterministic
algorithms. A Las Vegas algorithm is an algorithm that
always produces correct output, whose running time is
a random variable.We introduce in this subsection two
randomized procedures: RL1 and RL2 to solve 1-local
election and 2-local election we will study later. In the
sequel, K will denote a nonempty set equipped with a
total order.

RL1: Randomized 1-local election
Each vertex v repeats forever the following actions.
The vertex v selects an element rand(v) randomly
and uniformly from the set K . The vertex v sends
to its neighbors the value rand(v). The vertex v

is elected in B(v,1) if for each neighbor w of
v: rand(v) > rand(w).

RL2: Randomized 2-local election
Each vertex v repeats forever the following actions.
The vertex v selects an element rand(v) randomly
and uniformly from the set K . The vertex v sends
to its neighbors the value rand(v). When it has
received from each neighbor an element, it sends
to each neighbor w the maximum of the set of
elements it has received from neighbors different
fromw. The vertex v is elected in B(v,2) if rand(v)

is strictly greater than rand(w) for any vertex w in
the ball centred on v of radius 2.

Remark 1. The network is anonymous but each
process knows exactly from which channel it can
receive a message and thus, in some sense, it has a
local knowledge of its neighbors.

Remark 2. The aim of RL1 and RL2 is the imple-
mentation of local computations. Thus RL1 and RL2
contain infinite loops: the global termination depends
on the termination of the algorithm encoded by local
computations.

2.2. Impossibility results

As indicated by Tel [8, pp. 316–317], the impos-
sibility of a deterministic election algorithm in a net-

work of two processes that communicate by asynchro-
nous message passing follows from the observation
that, in a such system, from a symmetric configura-
tion it is always possible to reach a symmetric config-
uration. Thus the algorithm does not terminate. From
this fact we deduce there does not exist deterministic
k-local election for k " 1.
A graph G is a covering of a graph H if there

is a surjective homomorphism γ from G onto H

such that for every vertex v of G the restriction of
γ to NG(v) is a bijection onto NH (γ (v)). In [1,
Theorem 4.5] Angluin proves that if G is a proper
covering of H then there is no election algorithm for
both G and H . This results holds for a deterministic
election algorithm and for a Las Vegas algorithm. If
we consider the case where G is the hexagon and H
the triangle we deduce that there is no k-local election
algorithm (deterministic or Las Vegas) for k " 3.
In algorithms RL1 and RL2, a vertex v detects

if another vertex w (w #= v) has selected the same
element in B(v,1) or in B(v,2) (rand(w) = rand(v)):
this is termed a coincidence. The problem of detecting
coincidence is weaker than the local election problem.
We prove in the next proposition it is not possible to
detect coincidence in B(v, k) for k > 2.
First we recall our model. In each step, a vertex,

depending on its current state, either changes its
state, sends a message to a neighbor, or receives a
message from a neighbor. It is assumed that graphs
are asynchronous and anonymous. Each process has
the same local algorithm. Inspired by proofs of [1], we
can state:

Proposition 1. There is no deterministic or Las Vegas
algorithm to detect if there is a coincidence in a ball
of radius k for k > 2.

Proof. By contradiction, we assume there exists an
algorithm. We consider an hexagon G and a triangle
H with couples of labels on vertices as indicated in
Fig. 1: a, b, c are 3 different labels of a set different
from K and i, j, h are 3 different elements of K . We
consider the morphism ϕ from G onto H which maps
vertices in G of label x, y into the vertex of label x, y

in H .
We assume that each vertex having the label x, y

selects the element y of K . Thus in G each element
of K appears twice (there are coincidences) and in H

316 Y. Métivier et al. / Information Processing Letters 82 (2002) 313–320

Fig. 1. The graph G is a covering of the graph H .

each element appears once (there is no coincidence).
We define a sequence of steps in G, denoted by
(Gi)i!0, and in H by (Hi)i!0, with the property that
the states of the vertices labeled x, y in Gi are the
same as the state of the vertex of label x, y in Hi , let
R be this property.
We define inductively (Gi)i!0 and (Hi)i!0. Graphs

are anonymous and thus initially all vertices in G and
in H are in the same state q0. Let G0 and H0 be the
graphsG andH with this initial state. Clearly,G0 and
H0 verify R. Let Gi and Hi be the graphs G and H

with states verifyingR. Let P be a step in Hi .
– If P is a communication over the edge e, then this
communication is possible over the two edges of
ϕ−1(e). Perform both communications in Gi , and
then obtain Hi+1 and Gi+1 which verifyR.

– If during P the vertex x, y in Hi changes its state
(the new state of x, y is q), then the two vertices
in ϕ−1(x, y) change their states; the new state of
vertices in ϕ−1(x, y) is q . Thus we have proved that
Hi+1 and Gi+1 verifyR.

Now, if a vertex v of H has a state which indicates
that there is no coincidence then vertices of ϕ−1(v)

will be labeled by a state which indicates that there is
no coincidence. Hence we get a contradiction and the
proposition is proved. !

3. Probabilistic analysis of RL1 and RL2

We first introduce and study the probability distrib-
ution for vertices to be locally elected in a round for
each one of the algorithms. We then investigate a uni-
form lower bound for the expected number of locally
elected vertices for each of them.

Procedures RL1 and RL2 are used for the imple-
mentation of local computations. The first important
property we require is: if a local computation may be
done, does a local computation will be done some-
where. Thus we study the probability for vertices to
be locally elected in a round and the expected number
of rounds for a given vertex to be elected.
From now on, we assume that K = [0,1].

3.1. Probability for a vertex to be locally elected

In order to compute the probability for a vertex
to be locally elected according to RL1 or RL2, we
recall shortly their probabilistic nature. Each vertex
v ∈ V selects at random uniformly and independently
an element rand(v) from K . Then, according to RL1
(respectively RL2), the vertex v will be locally elected
if for all w ∈ B(v,1) \ {v} (respectively w ∈ B(v,2) \
{v}), we have rand(w) < rand(v).
All vertices choose at random uniformly and inde-

pendently a real from the interval [0,1], under this as-
sumption we have the following facts.

Fact 1. The probability for a vertex v to be locally
elected in an RL1 round is given by

p1(v) = 1
d(v) + 1 .

Recall that d(v) + 1 is the cardinal of B(v,1).

For a given vertex v we denote byN2(v) the number
of vertices of distance less than or equal to 2 from v

(v included). N2(v) is therefore the cardinality of the
ball B(v,2) of centre v and radius 2.

Fact 2. The probability for v to be locally elected in
an RL2 round is

p2(v) = 1
N2(v)

.

From these two facts we derive:

Fact 3. Let v be a vertex of G. The expected time
(number of rounds) between two successive elections
of v, in RL1 (respectively RL2), is given by d(v) + 1
(respectively N2(v)).

Y. Métivier et al. / Information Processing Letters 82 (2002) 313–320 317

Consider now the following classes of graphs.

Example 1. If G is a cycle graph of size n, then for
any vertex v, we have

p1(v) = 1
3 and p2(v) = 1

5 .

The expected number of rounds for v to be elected is
3 in RL1 and 5 in RL2.

Example 2. If G is a complete graph of size n, then
for any vertex v, we have

p1(v) = p2(v) = 1
n
.

The expected number of rounds for v to be elected is
n in both RL1 and RL2.

Remark 3. Procedures RL1 and RL2 can be modified
to stop as soon as a vertex is locally elected (by
sending a stop signal), let RL′

1 and RL
′
2 be the new

procedures obtained in this way. From Fact 2 and
from the detection of coincidence, we deduce that RL′

1
and RL′

2 are Las Vegas algorithms solving the 1-local
election problem and the 2-local election problem.

Remark 4. If we assume that each vertex v ∈ V

selects at random uniformly and independently an
integer rand(v) from {1, . . . ,N}. Let X ⊆ V be a set
of vertices containing a given vertex v. Let |X| = h.
Then under the above assumptions on rand,

Pr
(

rand(v) > rand(w), ∀w ∈ X \ {v}
)

= 1
N

N
∑

i=2

(

i − 1
N

)h−1
. (1)

We obtain the expressions for RL1 or RL2 by
considering balls of radius 1 or 2.
In order to simplify this expression involved in the

probability for a vertex to be elected we have assumed
that the integer N , which is the range of selection for
vertices, is large, so that probability of coincidence
of rand in B(v,1) or in B(v,2) becomes small.
This assumption is equivalent to the one supposing
that all vertices choose at random uniformly and
independently a real from the interval [0,1].

3.2. Expected number of vertices locally elected

A parameter of interest is the expected number
of vertices locally elected. In both algorithms this
expected number is the average number of actions
taking place simultaneously in a round.
Let M1(G) (respectively M2(G)) denote the ex-

pected number of vertices locally elected by RL1
(respectively RL2) in the graph G. Then, summing
pi(v), i = 1,2, over all v ∈ V , in the previous facts,
we get:

Fact 4. We have

M1(G) =
∑

v∈V

1
d(v) + 1 ,

and

M2(G) =
∑

v∈V

1
N2(v)

.

Let us consider again the simple class of cycle
graphs and that of complete graphs.

Example 3. If G is a cycle graph of size n " 3, then
we have

M1(G) = n

3
and M2(G) = n

5
.

Example 4. If G is a complete graph then we have

M1(G) = M2(G) = 1.

For a given positive integer k, we define the k-
density of a graph G = (V,E) by

Dk(G) =
∑

v∈V d(v)k

|V | .

It should be noted that this definition is slightly
different from the usual one, see for instance [7]. In
particular, for k = 1, we have

D1(G) =
∑

v∈V d(v)

|V | = 2
|E|
|V | .

This shows that the 1-density of a graph is twice the
ratio between the number of edges and that of vertices.
We end the section by some results leading to uni-

form lower bounds on the mathematical expectation
of the number of vertices locally elected in a round of
each algorithm.

318 Y. Métivier et al. / Information Processing Letters 82 (2002) 313–320

Lemma 1. Let G = (V,E) be a connected graph. We
have
–

∑

v∈V N2(v) ! ∑

v∈V d(v)2 + |V |.
– Moreover if G is a tree then the above inequality
becomes an equality.

Proof. Let G = (V,E) be a graph. We start by
proving the second assertion of the lemma. So, let G
be a tree. The proof is by induction on the size n of
the tree G. For n = 2, a simple verification yields the
result. Suppose the assertion is true for any tree of size
n " 2. Let T = (V,E) be a tree of size n + 1 and u
a leaf of T and T ′ = (V ′,E′) the tree obtained from
T by deleting u and the unique incident edge. Let δ

denote the degree of the father of u in T ′. By denoting
the number of vertices of distance less than or equal to
2 from v by N ′

2(v) in T ′, we have
∑

v∈V

N2(v) =
∑

v∈V ′
N ′
2(v) + 2δ + 3

=
∑

v∈V ′
d(v)2 − 2(δ + 1) + n + 2δ + 3

=
∑

v∈V

d(v)2 + n + 1.

If the connected graph G is not a tree, we use
induction on the cardinality m of the set of edges
E. Since the claim holds for a spanning tree in G,
to this end, it suffices to show that if we add a non-
existing edge {u,w} to the graph G = (V,E), then
its total contribution to the sum S1 = ∑

v∈V N2(v)

is not greater than its contribution to the sum S2 =
∑

v∈V d(v)2. For S1 we have clearly S1 ! 2d(u) +
2d(w) + 2. For S2 we can write S2 = 2d(u) + 1 +
2d(w) + 1. This ends the proof of the lemma. !

Back to the expectations M1(G) and M2(G), de-
fined above, Lemma 1 can be used to show the follow-
ing theorem.

Theorem 1. Let G = (V,E) be a connected graph of
size n " 2 with m = |E| edges. Then we have

M1(G) " n

D1(G) + 1 = n2

2m + n
,

and

M2(G) " n

D2(G) + 1 .

Proof. For the given graph G, a simple computation
yields
∑

v∈V

[

d(v) + 1
]

= nD1(G) + n.

Hence
1
n

∑

v∈V

[

d(v) + 1] =D1(G) + 1.

On the other hand, we have

1
n

∑

v∈V

[

d(v) + 1
]

"
(

∏

v∈V

[

d(v) + 1
]

)1/n

,

and therefore
(

∏

v∈V

1
d(v) + 1

)1/n

" 1
D1(G) + 1 .

But we have
(

∏

v∈V

1
(d(v) + 1)

)1/n

! 1
n

∑

v∈V

1
(d(v) + 1) ,

and hence

M1(G) = 1
n

∑

v∈V

1
(d(v) + 1) " 1

D1(G) + 1 .

This ends the proof of the first assertion of the
theorem.
To prove the second assertion, by Lemma 1, and the

definition of D2(G), we have
1
n

∑

v∈V

N2(v) ! D2(G) + 1.

Since 1n
∑

v∈V N2(v) " (
∏

v∈V N2(v))1/n, we have

D2(G) + 1"
(

∏

v∈V

N2(v)

)1/n

,

and therefore
(

∏

v∈V

1
N2(v)

)1/n

" 1
D2(G) + 1 .

Using again the fact that

1
n

∑

v∈V

1
N2(v)

"
(

∏

v∈V

1
N2(v)

)1/n

,

the second assertion follows. !

Y. Métivier et al. / Information Processing Letters 82 (2002) 313–320 319

In the case of graphs with degrees bounded by the
integer Θ the lower bounds for M1(G) and M2(G)

have very simple expressions. Indeed, we have:

Corollary 1. Let G be a graph whose vertices are of
degrees less than or equal to Θ . Then

M1(G) " n

Θ + 1
and

M2(G) " n

Θ2 + 2Θ + 1 .

Also in the case of trees, the first assertion of the
theorem reduces to a simple expression for the lower
bound.

Corollary 2. Let T be a tree of size n " 2. Then

M1(T) " n2

3n − 2 >
n

3
.

4. Performance analysis

Throughout this section G = (V,E) is a connected
graph. We denote by α(G) the maximal cardinality
of a set of independent vertices contained in G,
see [7]. The computation of this number for general
graphs is NP-hard. In the same way, let β(G) denote
the maximal cardinality of a set of vertices of G
of pairwise distance at least 3. This is the maximal
number of pairwise disjoint balls of radius 1. These
numbers are intimately linked to the contexts of RL1
and RL2. Let us call these types of local elections RL1-
and RL2-type elections, respectively. We assume that
in an RL1-type election no two vertices of distance less
than 2 can be elected simultaneously and that in RL2-
type election two elected vertices in a round must be
of distance greater than or equal to 3.
Following definitions for approximation algorithms

[3]: given any randomized algorithm A for an RL1-
type election, its efficiency ∆A(G) over a graph G is
the ratio

∆A(G) = M1A(G)

α(G)
,

where M1A(G) is the expected number of vertices
locally elected by a round of A. In a similar way, the

efficiency of a randomized algorithm B for an RL2-
type election overG is given by

ΛB(G) = M2B(G)

β(G)
,

whereM2B(G) is the expected number of vertices lo-
cally elected by a round of B. Clearly the efficiencies
are upper-bonded by 1. Their values are the ratio be-
tween the average simultaneity realized by the consid-
ered algorithms and the simultaneity by an idealistic
algorithm (which generally cannot be designed in a
distributed way).
We conclude the section by finding a lower bound

on the efficiency of the RL1 and RL2 algorithms over
the sparsely linked graphs of trees. The study seems
extensible to more general classes of graphs.

Theorem 2. The efficiency of RL1 over any tree T is
strictly greater than 1

3 .

Proof. By Corollary 2, the numerator of the ratio
defining the efficiency is strictly greater than 1

3n (for a
tree of size n " 2) and clearly the denominator, α, is
less than or equal to n. !

We now state the last theorem providing a slightly
smaller lower bound for the efficiency of the algorithm
RL2 over the family of trees.

Theorem 3. The efficiency of RL2 over any tree T =
(V,E) is strictly greater than 1

4 .

Proof. To prove the theorem we show that M2(T) >
1
4β(T). To prove this we use a technique similar to
that of Theorem 2 of Section 2. We use an induction
on the size of T . The theorem holds obviously for
the star graphs. Let M2(T) > 1

4β(T) hold for trees
T of size less than n and prove it for trees of size
n. Suppose T be a tree of size n which is not a
star. It is easy to consider in the sequel the tree T

rooted with one of its vertices. Consider a vertex a
of degree d " 2 whose neighbors except one, say
b, are leaves. Let d ′ = d(b) " 2. Let S be the tree
obtained from T by removing the vertex a and all
neighboring leaves and incident edges. Since we have
by inductionM2(S) > 1

4β(S) and β(T) ! β(S) + 1, it
suffices to prove that M2(T) − M2(S) " 1

4 . A simple
computation on the effect of adjoining a and its sons

320 Y. Métivier et al. / Information Processing Letters 82 (2002) 313–320

on the sum defining M2, allows to get a lower bound
on theM2(T) − M2(S). Indeed we have

M2(T) − M2(S)

" d − 1
d + 1 + 1

d + d ′ − 1
(d ′ + 1)(d + d ′ + 1)

− d ′ − 1
d ′(d ′ + 1) .

Now taking into account the inequalities d " 2 and
d ′ " 2, if we develop the last expression, a straightfor-
ward formal calculation allows to prove thatM2(T) −
M2(S) − 1

4 > 0. The theorem follows. !

Remark 5. It is possible to tighten the lower bound
of the theorem at the cost of introducing a greater
complexity. This can be done if we impose a sharper
lower bound in estimatingM2(T)−M2(S). Moreover
it seems that the lower bound 1

3 holds also for the
efficiency of RL2 (acting on trees), but the authors do
not know any proof for it.

Remark 6. In the case of general graphs both algo-
rithms may have a low efficiency. Indeed, it is possible
to prove that, for any ε > 0, there is a graph G such
that ∆L1(G) < ε. To prove this consider a graph Gn

with 2n vertices v1, . . . , vn, u1, . . . , un, constructed as
follows. The set {u1, . . . , un} forms a clique inGn, and
there is an edge {ui, vj } for any 1! i ! n and any 1!
j ! n. Thus v1, . . . , vn are independent and α(Gn) =
n. On the other handM1(Gn) = n/2n+n/(n+1). As,
n → ∞, ∆L1(Gn) → 0. A similar reasoning with a

slight modification shows thatΛL2(Gn) → 0 and can-
not be lower-bounded by a positive real uniformly for
all graphs.

Acknowledgements

The authors are grateful to André Raspaud for
stimulating discussions and to the anonymous referees
for constructive comments.

References

[1] D. Angluin, Local and global properties in networks of proces-
sors, in: Proceedings of the 12th Symposium on Theory of Com-
puting, 1980, pp. 82–93.

[2] M. Bauderon, S. Gruner, Y. Métivier, M. Mosbah, A. Sellami,
Visualization of distributed algorithms based on labelled graph
relabelling systems, in: 2nd International Workshop on Graph
Transformation and Visual Modeling Techniques, Electronic
Notes in Theoret. Comput. Sci. 50 (3) (2001).

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to
Algorithms, McGraw-Hill, New York, 1990.

[4] C. Lavault, Évaluation des algorithmes distribués, Hermes,
Paris, 1995.

[5] N. Lynch, A hundred impossibility proofs for distributed com-
puting, in: Proceedings of the 8th Annual ACM Symposium on
Principles of Distributed Computing, 1989, pp. 1–28.

[6] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge
University Press, Cambridge, 1995.

[7] K.H. Rosen, Handbook of Discrete and Combinatorial Mathe-
matics, CRC Press, 2000.

[8] G. Tel, Introduction to Distributed Algorithms, Cambridge
University Press, Cambridge, 2000.

