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In [Y. Métivier, N. Saheb, A. Zemmari, Analysis of a randomized rendezvous algorithm,
Inform. and Comput. 184 (2003) 109–128], the authors introduce and analyze a randomized
procedure to implement handshakes in graphs. In this paper, we investigate the same
problem in random graphs. We prove results on the probability of success and we study
the distribution of the random variable which counts the number of handshakes in the
graph.
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1. Introduction

Given a network of processors, a handshake algorithm
enables the establishment of safe communications be-
tween two nodes, which guarantees that both the two
nodes are being communicating with one other in ex-
clusive mode. Distributed solutions of this problem are
known in networks having a fixed topology [7,8,6,5,2].
What happens if we consider a network of processors with
a random topology: links between processors exist with
a given probability? In this paper, we consider networks
with n ! 2 nodes and for any pair of vertices, the proba-
bility that there is a communication link between this two
vertices is equal to p (0 " p " 1).

In [8], the authors proposed and studied the following
randomized procedure (Algorithm 1) to implement hand-
shakes in graphs. Let G = (V , E) be an undirected graph
which represents a distributed network with |V | = n ! 2
processors.

The authors thoroughly study this procedure including
the probability of having at least a handshake in the graph
(this is called the probability of success), the expected
number of handshakes and the probability distribution in
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some particular classes of graphs like chains, cycles and
complete graphs.

In [5] and [6], the authors prove a conjecture from [8]:
the probability of success in any graph with n ! 2 vertices
is lower bounded by the probability of success in the com-
plete graph of size n. They also show that evaluating the
probability of success in a given graph is a #P-complete
problem.

1.1. Basic notations

We use the standard terminology of graph theory [1].
A simple graph G = (V , E) is defined as a finite set of ver-
tices together with a set E of edges which is a set of pairs
of different vertices, E ⊆ {{u, v} | u, v ∈ V , u #= v}. The car-
dinality of V is called the size of the graph. In the sequel,
n will denote the size of the graph. For any v ∈ V , N(v)
denotes the set of neighbors of v , and d(v) = |N(v)| the
degree of v .

A random graph is a graph obtained by starting with
a set of n vertices and adding edges between them at
random. Different random graph models produce different
probability distributions on graphs.

The most commonly studied model, called Gn,p , in-
cludes each possible edge independently with probabil-
ity p (and so, the edge is not included with probability
q = 1 − p). A closely related model, Gn,M assigns equal
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1: Each vertex v repeats forever:
2: the vertex v selects one of its neighbors c(v) chosen at random;
3: the vertex v sends 1 to c(v);
4: the vertex v sends 0 to its neighbors different from c(v);
5: the vertex v receives messages from all its neighbors.;

Algorithm 1. A randomized algorithm to obtain handshakes.

probability to all graphs with exactly M edges. In this pa-
per, we consider the first model, with p > 0. It is straight-
forward that we have some edges.

1.2. Basics

In this section, we recall some fundamental definitions
and results from [8,5] and [6] to make the present paper
self-contained enough. The reader is referred to [8] and [6]
for more details.

Let G = (V , E) be a graph of size |V | = n ! 2, and
let e = {u, v} ∈ E . If we denote by p(e) the probability
of handshake over e then p(e) = 1/d(u)d(v) where d(u)
denotes the degree of the vertex u. An execution of the
randomized procedure in Algorithm 1 is called a call and
is a function c : V → V which maps each vertex v ∈ V to
one of its neighbors.

Definition 1. (See [8].) A call c is a success if there is at
least one handshake in the graph, otherwise, it is a failure.
For any graph G , s(G) denotes the probability of success
and f (G) the probability of failure.

In [8], the authors proved that for any n ! 2, if Kn is
the complete graph on n vertices then s(Kn) → 1 − e−1/2

as n → ∞ and asked whether it is true that s(G) ! s(Kn)
for all n-vertices graph G with at least an edge. In [5,6],
Dietzfelbinger and Tamaki proved this conjecture:

Theorem 2. (See [5,6].) If G is a graph with n ! 2 nonisolated
vertices, than s(G) ! s(Kn) where Kn denotes the complete
graph with n vertices.

1.3. Our contribution

In this paper, we study the randomized procedure in
Algorithm 1 in random graphs. Clearly, if a vertex v has
no neighbor then v cannot apply the algorithm, hence, we
consider here that v performs Algorithm 1 if and only if
its degree is at least 1.

The main results concern the probability of success
in Gn,p and the probability distribution. We prove that
with high probability (w.h.p.)1 the random variable that
counts the number of handshakes in Gn,p is asymptotically
distributed as a Poisson random variable with parameter
λ = 1/2p.

1.4. Outline

In Section 2, we obtain some preliminary results includ-
ing the probability of having a handshake over an existing

1 With high probability means with probability 1 − O (1/n).

edge and the probability for a vertex to be involved in a
handshake. In Section 3, we study the probability of suc-
cess, that is, the probability of at least one handshake in
the graph. Section 4 is devoted to the study of the prob-
ability distribution, we end the paper by a conclusion and
some open problems.

2. Analysis of the algorithm

2.1. The probability of a handshake

Let Gn,p = (V , E) a random graph and let u and v be
two different vertices. If there is no edge between u and v ,
i.e., {u, v} /∈ E then there is no handshake between u
and v . Hence, we assume that e = {u, v} ∈ E and we study
the probability of having a handshake on e conditioned on
the event e ∈ E . Let H(e) denote the event “there is a hand-
shake on e”. Then, we have the following formula

Pr
(
H(e) | e ∈ E

)

=
n−1∑

k1=1

n−1∑

k2=1

Pr
(
H(e) | e ∈ E ∧ d(u) = k1 ∧ d(v) = k2

)

×Pr
(
d(u) = k1 ∧ d(v) = k2 | e ∈ E

)
.

On the other hand, we have

Pr
(
H(e) | e ∈ E ∧ d(u) = k1 ∧ d(v) = k2

)
= 1

k1k2

and

Pr
(
d(u) = k1 ∧ d(v) = k2 | e ∈ E

)

= Pr
(
d(u) = k1 | e ∈ E

)
Pr

(
d(v) = k2 | e ∈ E

)
. (1)

A probabilistic reasoning yields:

Pr
(
d(u) = k | e ∈ E

)
=

(
n − 2
k − 1

)
pk−1qn−k−1. (2)

Then, from (1), we obtain:

Pr
(
d(u) = k1 ∧ d(v) = k2 | e ∈ E

)

=
(

n − 2
k1 − 1

)(
n − 2
k2 − 1

)
pk1+k2−2q2n−k1−k2−2. (3)

Therefore

Pr
(
H(e) | e ∈ E

)
=

(
n−1∑

k=1

1
k

(
n − 2
k − 1

)
pk−1qn−k−1

)2

. (4)

A straightforward computation involving formal power se-
ries yields the following lemma.
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Lemma 3. Let Gn,p = (V , E) be a random graph, and let u
and v be two vertices. Then,

Pr
(
H(e)

)
= (1 − qn−1)2

(n − 1)2 p
. (5)

Then, we obtain:

Corollary 4. Let Gn,p be a random graph, and let v be a vertex.
If we denote by HS(v) the event “v is involved in a handshake”,
then

Pr
(
HS(v)

)
= (1 − qn−1)2

(n − 1)p
.

Proof. Let v ∈ V be a nonisolated vertex and let u ∈ N(v)
such that c(v) = u. There is a handshake between v and u
iff c(u) = v . Then,

Pr
(
HS(v) | v is not isolated

)

=
n−1∑

k=1

Pr
(
c(u) = v | (u, v) ∈ E ∧ d(u) = k

)

× Pr
(
d(u) = k | (u, v) ∈ E

)

=
n−1∑

k=1

1
k

(
n − 2
k − 1

)
pk−1qn−k−1 = 1 − qn−1

(n − 1)p
.

Then, since Pr(v in not isolated) = 1 − qn−1, we obtain

Pr
(
HS(v)

)
= (1 − qn−1)2

(n − 1)p
.

The corollary follows. !

2.2. The expected number of handshakes

Let {u, v} ∈ V × V such that u #= v , and let χu,v denote
the random variable defined as follows. χu,v = 1 if there
is a handshake between u and v and χu,v = 0 otherwise.
Then by the linearity of the expectation, if we denote by
Xn,p the number of handshakes in Gn,p then

E(Xn,p) = 1
2

∑

(u,v)∈V ×V s.t. u #=v

E(χu,v)

= 1
2

∑

(u,v)∈V ×V s.t. u #=v

Pr(χu,v = 1),

where E denotes the mathematical expectation.
Hence, from the result of Lemma 3, we obtain:

Lemma 5.

E(Xn,p) = n(n − 1)

2
(1 − qn−1)2

(n − 1)2 p
= n

2(n − 1)p
(1 − qn−1)2.

Remark 6.

(1) If p is a constant, then (1 − qn−1)2 → 1 as n → ∞.
Hence, E(Xn,p) ∼ 1/2p as n → ∞.

(2) If np = λ + o(1) > 0, that is the average degree of any
vertex v is a constant, then qn−1 ∼ e−λ . Hence,

∃α > 0 such that E(Xn,p) ∼ αn.

(3) If n2 p = λ + o(1), then

∃β > 0 such that E(Xn,p) ∼ β.

(4) If nγ p = λ + o(1), with γ > 2 then

E(Xn,p) → 0, as n → ∞.

3. Probability of success

Let Gn,p = (V , E) be a random graph, and let v ∈ V be
any vertex. If v is not an isolated vertex, then all its neigh-
bors have the same chance 1/d(v) to be chosen, where
d(v) is the degree of the vertex v . In this section, we study
the probability of success in Gn,p , i.e., the probability of at
least a handshake in Gn,p .

We start by calculating the probability for Gn,p to con-
tain at least an isolated vertex (a vertex with degree 0).

Lemma 7. Let Gn,p a random graph. If we denote by P(Gn,p)
the probability for Gn,p to contain at least an isolated vertex
then

P(Gn,p) " nqn−1.

Proof. Let v be any vertex in V . The probability for v to be
an isolated vertex is given by Pr(d(v) = 0) = qn−1. Then, if
V = {v1, v2, . . . , vn}, then

P(Gn,p) = Pr

(
n∨

i=1

d(vi) = 0

)

.

On the other hand, for any i ! 1, let {v j1 , v j2 , . . . , v ji } be i
different vertices. We have:

Pr
(
d(v j1 ) = 0 ∧ d(v j2 ) = 0 ∧ · · · ∧ d(v ji ) = 0

)

= Pr
(
d(v j1 ) = 0

)
Pr

(
d(v j2 ) = 0 | d(v j1 ) = 0

)
· · ·

× Pr

(

d(v ji ) = 0
∣∣∣

i−1∧

l=1

d(v jl ) = 0

)

= qn−1qn−2 · · ·qn−i

= qi(i−1)/2+i(n−i).

Then using the Sieve principle [9], we obtain

P(Gn,p) =
n∑

i=1

(−1)i+1
(

n
i

)
qi(i−1)/2+i(n−i).

Hence, if we truncate after the first order term, we obtain
the result claimed in the lemma. !

Then, we can deduce the following corollary:

Corollary 8. Let α ! 2. If p = (α logn)/(n − 1) then w.h.p.
Gn,p contains no isolated vertex.
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Proof. By the result of the previous lemma, we have
P(Gn,p) " nqn−1 = n(1 − p)n−1 " ne−(n−1)p . Then, if p =
(α logn)/(n − 1) then

P(Gn,p) " 1
nα−1 .

Meaning that the probability for Gn,p to contain no iso-
lated vertex is at least 1−o(1/n). The corollary follows. !

In the rest of this section, we suppose that p =
(α logn)/(n − 1), that is, Gn,p , w.h.p., contains no isolated
vertex. Let (V i)i=1,...,k and (Ei)i=1,...,k such that

• ∀i #= j, V i ∩ V j = ∅ and Ei ∩ E j = ∅,
• V = V 1 ∪ V 2 ∪ · · · ∪ Vk , E = E1 ∪ E2 ∪ · · · ∪ Ek , and
• ∀i, Gi = (V i, Ei) is a connected graph.

It is easy to see that s(Gn,p) = max{s(Gi) | i ∈ {1,2, . . . ,k}}
and by the result in Theorem 2, s(Gi) ! s(K |V i |), for any
i ∈ {1,2, . . . ,k}.

On the other hand, in [5], the author proved also that

s(Kn) ! s(Kn+1), for any n ! 2.

Hence

s(Kn) ! 1 − e−1/2, for any n ! 2.

Then we have:

Lemma 9. If p = (α logn)/n for any α ! 2 then, w.h.p., the
probability of success in Gn,p is lower bounded by a constant:

s(Gn,p) ! 1 − e1/2.

4. The handshake number distribution

In this section, we study the distribution of the num-
ber of handshakes in Gn,p . Let Xn,p denote the r.v. which
counts the number of this handshakes. We show, in par-
ticular that, asymptotically, Xn,p has a Poisson distribution
with parameter λ = 1/2p.

We give the fundamental theorem:

Theorem 10. The probability of having exactly m handshakes
in Gn,p is given by:

Pr(Xn,p = m) ∼
n/2∑

k=m

(−1)k+m
(

k
m

)
n!

k!2k(n − 2k)! pk

×
(

1 − qn−1

(n − 1)p

)2k

.

Proof. Let M denote a matching of size l ! 1. Then if M =
{e1, e2, . . . , el}, we have

Pr(M) = Pr(e1 ∧ e2 ∧ · · · ∧ el)

= Pr(e1)Pr(e2 | e3) · · ·Pr(el | e1 ∧ e2 · · · ∧ el−1),

where, for any i ∈ {1,2, . . . , l}, ei denotes the event: there
is a handshake over ei .

On the other hand, since M is a matching, all edges
in M are not adjacent. Hence, having a handshake over any

edge in M do not affect the probability of having a hand-
shake on the other edges.

Then, we have:

Pr(M) =
l∏

i=1

Pr(ei).

From results of Section 2, we have, for any i,

Pr(ei) =
(

1 − qn−1

(n − 1)p

)2

.

Then, we obtain

Pr(M) =
(

1 − qn−1

(n − 1)p

)2l

.

Now, let Mk denotes the set of all k-matchings, and define
the sequence qk as

qk =
∑

M∈Mk

Pr(M).

Then

qk = |Mk|
(

1 − qn−1

(n − 1)p

)2k

.

On the other hand, for any k ! 1, we can find a k-matching
in Gn,p = (V , E) iff |E| ! k and ∀e1, e2 ∈ E , e1 and e2
are not adjacent. A combinatorial reasoning yields the
probability and the number of such k-matchings which is

n!
k!2k(n−2k)! pk . Hence,

qk = n!
k!2k(n − 2k)! pk

(
1 − qn−1

(n − 1)p

)2k

.

A direct application of the Sieve principle [9] yields to

Pr(Xn,p = m) =
n/2∑

k=m

(−1)k+m
(

k
m

)
n!

k!2k(n − 2k)! pk

×
(

1 − qn−1

(n − 1)p

)2k

. !

Corollary 11. If p is a constant, then for every positive in-
teger m, the probability for Xn,p to be equal to m tends to
1

m! (1/2p)me−1/2p, as n → ∞.

5. Conclusion and perspectives

In this paper, we studied the handshake problem in
random graphs. We proved that if p = (α log n)/n then,
with high probability, the probability of success is lower
bounded by 1 − e−1/2. We also studied the asymptotic dis-
tribution of the number of handshakes and showed that,
if p is a constant then this r.v. is distributed as a Poisson
variable.

In [3,4], the authors studied the broadcast process
in handshake communication based networks. It will be
interesting to investigate the same problem in random
graphs.
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