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Abstract

The compactness of a routing table is a complexity measure of the memory space needed to store
the routing table on a network whose nodes have been labelled by a consecutive range of integers. It is
defined as the smallest integer k such that, in every node u, every set of labels of destinations having
the same output in the table of u can be represented as the union of k intervals of consecutive labels.
While many works studied the compactness of deterministic routing tables, few of them tackled the
adaptive case when the output of the table, for each entry, must contain a fixed number α of routing
directions. We prove that every n-node network supports shortest path routing tables of compactness
at most n/α for an adaptiveness parameter α, whereas we show a lower bound of n/αO(1).
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Generalities

Given a parallel or distributed system, the interconnection network ensures the commu-
nication between the processors, the terminal nodes. Each intermediate node has a router, a
dedicated co-processor which forwards the messages between processors through the links
of the underlying topology. The routers run a distributed algorithm which specifies the
way to go from a node of the network to another. This algorithm is described by a routing
function.
Once a router receives a message, it looks at its header and checks the destination of the

message, and finds the output port that will be used to forward the message towards to next
intermediate node up to its destination. The output port is a number local to each router
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and associated to each link between routers. A standard way to implement such algorithms
is to use a routing table. To find the output port, the router consults a table which is kept
in its local memory. For each destination, this table returns the output port number through
which the message can be forwarded.
A simple method to organize this table is to associate to each destination the output

port number which can serve it. This method is simple, but it is very memory expensive. It
requires O(n logd) bits to maintain the routing table in each node of degree d , where n is
the number of nodes of the underlying graph representing the network.
For a large or growing network, this method is not feasible. It is interesting to look for

another method in order to reduce the size of the data structure stored by the routers, and
used for the routing task. In the field of compact routing, several methods and strategies
were introduced to reduce the router memory size, as separator-based routing schemes [13,
14], hierarchical routing schemes [2,25], prefix routing [3], Boolean routing [9], and inter-
val routing [27,30]. We focus our work on the latter technique that offers a more compact
data structure for routing tables.

1.2. The interval routing schemes

The interval routing was introduced by Santoro and Khatib in [27], and extended in [30]
by van Leeuwen and Tan. It has been intensively studied in recent years, and an overview
can be found in [16]. This method consists of finding a global labelling of the nodes
with integers taken from {1,2, . . . , n}, and, given a routing table, to group in the small-
est set of intervals the destination labels using the same output port in each node. An
interval means a set of consecutive integers, the labels 1 and n being considered as con-
secutive. If there exists a routing table such that each set of destination labels using a
same output port can be grouped with at most k intervals, we deal with a k-interval
routing scheme for this network, k-IRS for short. A k-IRS can be implemented with
O(kd logn) bits per node by storing the interval boundaries of the destinations. Actually,
this naive coding can be slightly compressed into O(kd log (n/k)) bits [16]. In a sense,
interval routing is a compact implementation of routing tables. One can hope to store
only O(k) integers per node for bounded degree networks using k-IRS, whereas standard
routing tables require O(n) integers. The parameter k is called compactness of a routing
table.
Many works try to determine routing tables with minimum compactness under several

assumptions on the quality of the routing measured in term of length of the routes: shortest
path routing [12,17,18,20], stretched routing [4,11,24], routing with bounded dilation [6,
15,22,24,28], etc. (cf. [16]). Nevertheless, these works have studied only the deterministic
case: for each source-destination pair, the routing table encodes only one routing path. So,
the routing path is completely determined by giving the intervals. On the contrary, adaptive
routing allows to diversify the routing paths. A destination can belongs to more than one
set of intervals. For interval routing schemes, this extension has been partially suggested
in [29].



C. Gavoille, A. Zemmari / Journal of Discrete Algorithms 1 (2003) 237–254 239

1.3. Adaptive routing tables

More precisely, let us define an α-adaptive routing table as a routing table in which
every destination can be founded in each router for exactly α different output ports, for
some integer α ! 1. Similarly, an α-adaptive k-interval labelling scheme, or k-ILSα for
short, is an α-adaptive routing table for which the set of destination labels using the same
output port can be grouped into at most k intervals. An ILSα is termed valid if for every
source-destination pair u,v, with1 u "= v, there exists in u (and all the other intermediate
nodes) at least one output port among the α possible ones that induces a route to v. A valid
ILSα is called an α-adaptive interval routing scheme, IRSα for short. Therefore, a k-IRSα
is simply an α-adaptive routing table of compactness k.
The definition captures adaptiveness of a routing, since at each step the router can se-

lect the next edge of the route among2 α. This potentiality provides many routing paths,
but not necessarily entirely disjoint paths that would require some strong assumptions on
the edge-connectivity of the network. In this model some routes may loop. The router has
the guarantee that at least one route connects to the destination. The other paths are called
deflecting paths. They can be used depending on the load of the network, or on every other
parameters, in order to improved the traffic. The case α = 1 corresponds to the determinis-
tic one (no deflecting paths).
Of course, in practice, for a complete implementation of a routing protocol, a selection

function must choose one output port among the valid set. The adaptiveness of a rout-
ing table of compactness k implies to store in the router a total of O(kd log(n/k)) + |S|
bits of routing information, where |S| represents the number of bits needed to code the
selection function S encoding the policy of the router. For instance, a kind of routing
policy may consist to choose at random a permutation of the possible paths returned by
the router if several3 messages come in the router at a same time (this occurs, for in-
stance, when the messages cannot be stored locally due to physical constraints of the
router). In this case |S| is just the size of a pseudo-random generator. A selection func-
tion may also provide some priority ordering between the routing paths. In this case it
requires to store extra bits, and |S| might be large. In particular S must differentiate
routing paths from deflecting paths. In all the cases, our approach consists in splitting
the memory requirements of the router in two parts: one required by the routing tables
(the term O(kd log(n/k))), and the other part required by the selection function (the
term |S|).
In this paper, we are not interested in the coding of the selecting function S, but

rather in the parameter k, the compactness. This latter parameter depends on the graph
topology only, whereas the coding of the selection function may depend on the strat-
egy to optimize the traffic: the links can be chosen at random, or selected according to

1 In the framework of compact routing a common assumption is that the destination of a message is never
its source. The case u = v can be solved by the local processor (assumed having a relatively high computational
level) without any communication with its router. This allows to establish more flexible and deeper results in
particular for space memory lower bounds.
2 As we will see the degree of the node has to be at least α.
3 No more than α.



240 C. Gavoille, A. Zemmari / Journal of Discrete Algorithms 1 (2003) 237–254

some load history tables of the links, or predicted from some other arbitrary policies
(deadlock-free, . . . ). We observe that a space complexity measure that would combine
both terms suffers of the general Ω(n logd) bit/node lower bound (and an Ω(n) inter-
vals for the compactness) that applies to shortest path deterministic routing tables [18,
19]. Indeed, as we will see more precisely in Section 4.3, an adaptive routing table and
a selection function encode together at least a deterministic routing table. However, such
a combination does not allow to measure precisely the contribution of each part (for in-
stance, the Ω(n)-lower bound on the compactness [18] does not apply for shortest path
α-adaptive routing tables, cf. Section 4). So, our approach allows to measure the balance
between the information needed for the adaptive routing table and the selection func-
tion.

1.4. Related works

Previous works on compact and adaptive routing schemes can be founded in [1,2,9,21]
for general schemes, and in [10,11,23,26] for interval routing schemes and its general-
izations. However, most of theses works try to give a compact representation of all the
shortest paths. Although these schemes extend the deterministic case, they suffer by the
fact that many general lower bounds for deterministic routing established in [12,18–21] ap-
ply as well for the adaptive case. Indeed, these lower bounds are based on the uniqueness
of the shortest paths between specific subset of nodes in some worst-case graphs. Thus, on
these graphs all-shortest-path routing would consist to route along one shortest path as in
deterministic routing. In essence, all-shortest-path compact routing schemes are not more
compact than deterministic shortest path routing schemes. For instance, the asymptotic
n/4-lower bound on the compactness for deterministic shortest path IRS applies also for
all-shortest-path IRS [18].

1.5. Our results

Aswe will see in the following, the situation is better thanks to the definition we propose
for α-adaptive routing tables (IRSα), specially whenever α > 1 and becomes larger. All
previously cited lower bounds does not apply in that case, and moreover we show that n/α

intervals per arc suffice for shortest path IRSα that is already better than the deterministic
case whenever α ! 4.
This paper is organized as follows. Section 2 defines more precisely the model of α-

adaptive routing tables. In Section 3 we show that every routing tables can be transformed
on an α-adaptive routing table with the same set of routes and the same compactness. In
particular we show that n/α intervals per arc suffice, even if shortest paths are required.
In Section 4 we specifically study more deeply shortest path routing tables, and we show
an existential n/αO(1)-lower bound for the compactness, that is asymptotically optimal for
constant α. We conclude in Section 5 by some possible extensions and perspectives of this
work.
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2. Preliminaries

In this paper, the network is modeled by a connected graph G = (V,E), whose set of
nodes V represents the routers, and whose set of arcs E the communication links between
the routers. We assume that the links are bi-directional, i.e., if (u, v) ∈ E then (v,u) ∈ E;
G is a symmetric digraph.4 For every u ∈ V , we denote by deg(u) the number of neighbors
of u corresponding to the common value of in- and out-degree of u. Finally, δ(G) denotes
the minimum degree of G, that is δ(G) =min{deg(u) | u ∈ V }.

2.1. Definitions

Formally, an interval labelling scheme on an n-node G is a pair (L,I ) of functions
where L :V → {1, . . . , n} is a one-to-one labelling of the nodes, and I :E→ 2L(V ) is a
labelling of the arcs such that, for every arc (u, v) ∈ E, L(w) ∈ I(u, v) if and only if the
route from u to w uses the arc (u, v).
Moreover, given an integer α ! 1, the pair (L,I) is an α-adaptive interval labelling

scheme, ILSα for short, if for all u,w ∈ V , w "= u, the set

{

(u, v) ∈E | L(w) ∈ I(u, v)
}

is of cardinality α. A valid ILSα is called an IRSα (α-adaptive interval routing scheme or
α-adaptive routing table), if it fulfills the connectivity condition: for all u,w ∈ V , w "= u,
there exists a sequence ρ(u,w) = (v1, . . . , vt ) of nodes such that v1 = u and vt = w, and
for every i ∈ {1, . . . , t − 1}, L(w) ∈ I(vi , vi+1). The sequence ρ(u,w) is called a routing
path or route from u to w, and may not form a simple path in G.
A shortest path IRSα is an IRSα for which, for any pair u,w, there exists a routing

path ρ(u,w) that is a shortest path in G. This definition easily extends to weighted graphs
considering paths of minimum cost. We insist on the fact that between u and w there is at
least one routing path ρ(u,w) that is a shortest path, although many routing paths might
be represented by the labelling. As said before in Section 1.4, the main interest of this
condition is to avoid the n/4-lower bound of [18] on the compactness.

Remark. A consequence of the previous definition is that only the graphs of minimum
degree at least α support an ILSα , and thus an IRSα . A variant of the previous definition to
overcome this problem would consist to impose that

∣

∣

{

(u, v) ∈E | L(w) ∈ I(u, v)
}∣

∣ =min
{

α,deg(u)
}

.

Although all the results we propose in this paper hold for both definitions, for simplicity,
only the former definition is considered in the sequel.

4 However, many of the results presented in this paper are still valid for nonsymmetric and strongly connected
digraphs.



242 C. Gavoille, A. Zemmari / Journal of Discrete Algorithms 1 (2003) 237–254

2.2. Compactness

The compactness of an ILSα (L,I) is the smallest integer k such that every set
I(u, v) can be represented as the union of at most k intervals of consecutive integers of
{1,2, . . . , n} (1 and n being considered as consecutive). Such ILSα and IRSα are denoted
respectively by k-ILSα and k-IRSα .

Remark. For α = 1, all the definitions match with the standard ILS/IRS introduced by [27,
30]. For simplicity, we denote in the sequel IRS for IRS1. The labellings we consider in this
paper are supposed to be strict, i.e., we impose that L(u) /∈ I(u, v), for every (u, v) ∈E.

3. A general labelling scheme

We show in this section that every graph G supports a 1-IRSα for every α " δ(G), the
routing paths being not necessary shortest paths. This result can be seen as a generalization
of the labelling scheme of [27] (showing that every graph has a 1-IRS), and will be a tool
for the remaining of the paper. We denote by [1, n] the set {1,2, . . . , n}.

Theorem 3.1. Let (L,IA) be any k-IRSα on an n-node graph G = (V,E) with δ(G) !
α+ 1, and let Y ⊆E such that every x ∈ V has at most one neighbor y so that (x, y) ∈ Y .
Then, (L,IA) can be transformed in polynomial time into a k-IRSα+1 onG, (L,IB), such
that all the routes represented by (L,IA) are preserved in (L,IB), and such that for every
(x, y) ∈ Y , IB(x, y) = [1, n] \ {L(x)}.

Proof. For every z ∈ [1, n], let us denote succ(z) (respectively pred(z)) the successor (re-
spectively predecessor) of z in [1, n] modulo n. Formally, succ(z) = (z mod n) + 1, and
pred(z) = (z + n− 2 mod n) + 1. Let us define the following procedure of inputs (L,IA)
and Y , and of output (L,IB) satisfying the statement of Theorem 3.1.
For every node x do (possibly in parallel):

(1) For every (x, y) ∈E, set IB(x, y)← IA(x, y).
(2) Set R← [1, n] \ {L(x)}.
(3) Let (x, y) be the unique arc of Y (if y does not exist go to 4), set IB(x, y)← R, and

update R← IA(x, y).
(4) While R "= ∅ do:

(a) Find y and z such that (x, y) ∈E, z ∈R \ IB(x, y), and either pred(z) ∈ IB(x, y)

or succ(z) ∈ IB(x, y).
(b) Find y ′ such that (x, y ′) ∈ E, and z ∈ IB(x, y ′). Let [a, b] an interval such that

z ∈ [a, b]⊆ IA(x, y ′).
(c) Update R←R \ ([a, b] \ IB(x, y)).
(d) Update IB(x, y)← IB(x, y)∪ [a, b].

Intuitively, the procedure consists on finding a label z ∈ R such that its predecessor (or
successor) is a boundary of some intervals of IB(x, y). Then we append [a, b], an interval
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containing z, to IB(x, y) solving the problem for z (at least). The procedure iterates on the
updated version of R.
Let us consider any node x . Let us show that for every i , at the beginning of the ith run

of Instruction 4 (at the test R "= ∅), the set R fulfills the following property Pi : R contains
at most n− i labels, and if z ∈ R then z appears in α sets IB , and otherwise z = L(x) or
z appears in α + 1 sets IB . In other words, at each loop, R denotes the set of labels that
remains to treat.
By induction on i: the first time in Instruction 4, if no arc (x, y) ∈ Y exists,R is the set of

all the labels (except for L(x)), and IB is initialized to IA. Hence, if there is no arc (x, y) ∈
Y , P1 is true. Otherwise, after Instruction 3, all labels remaining in R appear exactly in α
sets IB (the others appear already in α + 1 sets by setting IB(x, y) = [1, n] \ {L(x)}).
Hence in any cases P1 is true.
Now, assume the property holds up to the ith loop. To show that Pi+1 is true, let us

first show that Instruction 4(a) is doable, that is the pair (y, z) can be founded: first, if
i = 1, then it suffices to choose any y such that (x, y) /∈ Y and IA(x, y) "= R (it must exist
otherwise every label "= L(x) would appear in at least δ(G) ! α + 1 sets IA). Then, we
can choose any z /∈ IA(x, y) (thus z ∈ R) so that pred(z) ∈ IA(x, y) or succ(z) ∈ IA(x, y).
For i > 1, a pair (y, z) exists otherwise, z and pred(z) (or succ(z)) would appear in the

same number of sets IB . By Property Pi , z ∈ R implies pred(z) or succ(z) ∈R (otherwise
they would not appear in the same number of sets IB ). This implies that R = [1, n] \
{L(x)}, which is not possible since |R| " n − i < n − 1 (i > 1). So, Instruction 4(a) is
doable. Instruction 4(b) is doable since z ∈ R and by Property Pi z appears in α ! 1 sets
IB . Instructions 4(c) and 4(d) are doable as well. We remark, that in Instruction 4(c),
|R| decreases by at least one element: [a, b] contains at least z. We check that all labels
removed from R appears in exactly α+ 1 sets IB . Therefore, Pi+1 holds.
So, at the end of the last loop %, R is empty and by Property P%, all the labels appear in

α + 1 sets IB . Taking a union in Instruction 4(d), we guarantee that IA(x, y)⊆ IB(x, y),
and thus it preserves the routes. It follows that (L,IB) is a valid ILSα+1. Moreover, in In-
struction 4(d), because pred(z) and z are consecutive modulo n, and because z ∈ IA(x, y)

and pred(z) ∈ IA(x, y), we have that the minimum number of intervals to represent
IB(x, y) never increase and thus is at most the one of IA(x, y). So, (L,IB) has com-
pactness at most k, and by Instruction 3, all the arcs of Y have the interval [1, n] \ {L(x)}.
This completes the proof. !

Remark.We do not precise the time complexity of the previous algorithm because it may
depend on the data structure used to code the input IRS (the one achieving the lowest time
complexity is not necessary the most compact one). Anyway, using naive interval coding
representation of IRS, this time is less than O(n4), but can easily be reduced to O(|E|kα)

with more efficient data structures.

Using a spanning tree T ofG, a DFS-based 1-IRS1 on T (cf. [27]), and applying induc-
tively on α in Theorem 3.1 we have:
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Corollary 3.2. Every graphG such that δ(G) ! α, supports a 1-IRSα .

Whereas for α = 1 every graph has a k-IRS with k " n/2, for α > 1 we show that
k " n/α. More precisely:

Theorem 3.3. Let (L,I) be any k-IRS1 on an n-node graph G, and let α " δ(G). Then,
G supports a k′-IRSα such that all the routes of (L,I) are preserved, and such that k′ "
min{k, (n− 1)/α}.

Proof. The statement is obvious for α = 1. Assume, α ! 2. We build a set Y composed
of the arcs assigned with the largest number of intervals, for each node. After the first
application of Theorem 3.1, we obtain a k-IRS2 for G, with the same set of routes, and
where the arc with the largest number of intervals (for each node) is now reduced to one.
We can re-apply Theorem 3.1 with a new set Y still composed of the arcs assigned with
the largest number of intervals, which is hence at most the second largest one in (L,I).
Finally, after a total of α− 1 applications of Theorem 3.1 (this is feasible since α " δ(G)),
we obtain a k′-IRSα with the same set of routes where the maximum number of intervals
assigned on an arc, k′, is bounded by k and also by the αth largest number of intervals
assigned on an arc in (L,I).
Let x be any node of G. Let d = deg(x), and let k1, . . . , kd be the number of intervals

of the sets I(x, y) (the k-IRS1 defined on G) for all neighbors y of x . Moreover assume
k1 ! · · · ! kd . We have

∑α
i=1 ki " ∑d

i=1 ki " n − 1 (α " d and the label of x is not
assigned). Thus kα " (n− 1)/α. As said before, k′ "min{k, kα} completing the proof.

Remark. Theorem 3.1 can be slightly improved to

k′ "min
{

k,
(

n− 1− δ(G)
)

/α+ 1
}

if all the incident arcs of each node are labelled with non-empty labels (in this case we have
∑α

i=1 ki " n− 1 − (δ(G)− α)). This assumption occurs, for instance, for shortest paths
routing tables.

4. Shortest path labelling

In this section we are interested in IRSα for which there exists at least one shortest path
(represented by the labelling schemes) for all pairs of nodes. Thanks to Theorem 3.1, many
graphs can be identified to support shortest path k-IRSα . For instance, grid, hypercube,
complete graph, cycle, trees, outerplanar graphs, interval graphs, etc., have shortest path 1-
IRS, and thus also shortest path 1-IRSα . Families of graphs having shortest path O(1)-IRS
include torus, k-trees with constant k, planar graphs with a constant number of faces, etc.
(see [16] for a complete state of the art).
For every graph G, we define

IRSα(G) =min{k | G has a shortest path k-IRSα}.
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Note that the computation of IRS(G) (for α = 1) already involves several difficult op-
timizations. The decision problems “is IRS(G) = 1?” and “is IRS(G) = 2?” are NP-
complete [5,7]. Hereafter, the value IRSα(G) is termed compactnessα of G.

4.1. Comparison between compactness1 and compactnessα

By Theorem 3.1, we have IRSα+1(G) " IRSα(G) " · · · " IRS(G). It is not a difficult
exercise to check that there are graphs that support shortest path 1-IRS2, whereas they do
not support shortest path 1-IRS1 (for instance, consider the Petersen graph [17], or the
wheel-graph [8]). The next result shows that the difference between the compactness of 1-
and α-adaptive routing of a graph can be exponentially large.

Theorem 4.1. For every integer δ ! 0, there exists a graph G on 2δ+3 nodes such that
IRS1(G) ! 2δ and IRS2(G) " 2δ+ 4.

Proof. We use the construction given in [17] that shows that IRS1(G) ! n/8 for some
n-node graphs with n a power of two. Here we recall their construction.
For a p× q Boolean matrixM = (Mi,j ), let GM = (VM,EM) be the graph such that:

(1) VM = {v1, . . . , vp}∪ {a1, . . . , aq}∪ {b1, . . . , bq};
(2) {x, y} ∈ EM if and only if (x = aj and y = bj ), (x = bj and y = vi and Mi,j = 1), or

(x = aj and y = vi andMi,j = 0).

We have n = |VM | = p + 2q . Roughly speaking, GM is a two-level graph. The first level
consists of edges of type {aj , bj }, and the second one consists of vis (a stable) which are
connected to aj or bj depending on whetherMi,j = 0 or 1. See Fig. 1 for an example.
For every Boolean matrix M , we denote by M the matrix M with every bit comple-

mented. Moreover, if M = (XY ), where X and Y are two matrices of same dimensions,
we set χ(M) = (YX), which is the matrix obtained from M by exchanging the columns
of X with those of Y . We consider a specific matrix Mδ , δ ! 0, defined by induction. The

M =







0 0 0
0 1 1
1 0 1
1 1 0







Fig. 1. A graph GM .



246 C. Gavoille, A. Zemmari / Journal of Discrete Algorithms 1 (2003) 237–254

construction ofMδ is summarized by Eq. (4.1).

(4.1)

M0 =







0 0
0 1
1 1
1 0






, χ(M0) =







0 0
1 0
1 1
0 1






, Mδ+1 =

(

Mδ Mδ

χ(Mδ) χ(Mδ)

)

.

It is shown in [17] that IRS(GMδ ) ! 2δ (roughly speaking, whatever the labelling of
the vis, the set I(aj , bj ) must contain only a particular subset of the vis which is made to
be hard to represent with intervals). In this case p = 2δ+2 and q = 2δ+1. Thus n = 2δ+3,
proving the first part of Theorem 4.1.
Let us show that IRS2(GMδ ) " 2δ + 4 for every δ ! 0. For this purpose, it suf-

fices to define a shortest path IRS2 on GMδ , (L,I), such that for all the arcs (u, v) /∈
{(aj , bj ), (bj , aj )}, |I(u, v)| " 2δ+ 4, thus composed of at most 2δ+ 4 intervals. Indeed,
by Theorem 3.1, such a labelling can be transformed into an IRS2 with the same set of
routes such that the edges {aj , bj } consist of one interval. Therefore it would prove that
IRS2(GMδ ) " 2δ+ 4.
In this proof, we do not optimize the node-labelling, leaving a small space to improve the

bound on IRS2(GMδ ). Let us choose an arbitrary labelling L. Since we do not care about
the number of intervals on the edges {aj , bj }, let us define BMδ be the graphGMδ where the
all the edges {aj , bj } have been removed. First, remark that BMδ is a 2δ+1-regular bipartite
graph. Clearly, BM is isomorphic to every graph BM ′ , where M ′ is obtained by comple-
menting some columns of M (this morphism exchanges the roles playing by some aj s
and bj s), or by permuting some columns (this morphism permutes some edges {aj , bj }).
So, for the sake of simplicity, let us set Bδ to be the common graph isomorphic to BMδ ,
Bχ(Mδ), etc. Let V1(Bδ) to be the set of the first partition of nodes of Bδ , the aj s and bj s,
and V2(Bδ) as the nodes vis of Bδ .
Let us define by induction on δ, (L,I) on Bδ . Bδ+1 consists of two copies of Bδ , B1

and B2, with some extra edges connecting V1(B1) to V2(B2), and some edges connecting
V1(B2) to V2(B1). Let ψ be the morphism between V (B1) and V (B2), and let φi be the
morphism between Vi(B1) and Vi(B2) for i = 1,2. For δ = 0, we check that one can find I
such that |I(u, v)| " 4 for all arcs (u, v) of B0. Let k =max |I(u, v)|, over all arcs (u, v)

of Bδ . Since we do not care about L, we consider I(u, v) as a subset of nodes rather than
a subset of labels.
We first look at any node v ∈ V2(B1). By induction, assume that |I(v, a)| " k for all

(v, a) ∈ E(B1). We remark that if (v, a) ∈ E(B1), then (v,φ1(a)) ∈ E(Bδ+1) \ E(B1).
Setting I(v,φ1(a)) = ψ(I(v, a)) for all (v, a) ∈ E(B1), we are able to route from v ∈
V2(B1) to all the nodes of V (Bδ+1)\{φ2(v)}. We add φ2(v) to any arc incident of v leading
to φ2(v) by a shortest path. One can check that the routes are still the shortest, and since
the edges (v, a) and (v,φ1(a)) are distinct, |I(v, a)| " k + 1 for all (v, a) ∈E(Bδ+1).
Then, let us look at any node a ∈ V1(B1). With a similar argument, we can set

I(a,φ2(v)) = ψ(I(a, v)) for all (v, a) ∈ E(B1). We are able to route from a ∈ V1(B1)
to V (Bδ+1) \ {φ1(v),φ1(a)}, where a is the unique node of V1(B1) such that {a,a} is an
edge of E(GMδ ). We add φ1(a) and φ1(a) to any arc incident of a allowing shortest route
from a. So, |I(a, v)| " k + 2 for all (a, v) ∈E(Bδ+1).
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The routing from any v ∈ V2(B2) and any from V1(B2) is defined similarly since the
graph Bδ+1 is the same if B1 and B2 are exchanged. In total, for every arc (u, v) ∈
E(Bδ+1), we have |I(u, v)| " k + 2, that is at most 2δ+ 4 for Bδ .
We complete the proof by Theorem 3.1 applied on the edges {aj , bj }. !

4.2. An upper bound for compactnessα

In this section we show that compactnessα of a general n-node graph is not bounded
for α > 1. Note that for α = 1, a tight lower bound exists. It has been shown in [18] that
for every graphG, IRS(G) " n/4+ o(n), whereas there exists a worst-case graphG0 with
IRS(G0) ! n/4− o(n). We first present a general upper bound:

Theorem 4.2. For every n-node graphG and every α " δ(G),

IRSα(G) " 1
α

(

n− 1− δ(G)
)

+ 1.

Proof. It suffices to consider any shortest path k-IRS1 for G (for instance, choosing k "
n/4+ o(n)), and to apply Theorem 3.3 remarking that all the arcs have non-empty labels.

4.3. A lower bound for compactnessα

We will show that there exists some worst-case graphs with compactnessα at least
n/αO(1). Therefore this shows an asymptotic optimal lower bound for the compactness
of shortest path IRSα with constant α. It is quite complicated to build “by hand” small
counter-example G with, for instance, IRS2(G) > 1. Indeed, we need to argue for such
G, that whatever is the node-labelling, whatever are the shortest paths, and mainly, what-
ever are the deflecting paths, one cannot code the routing table with one interval. The first
counter-example with IRS2(G) > 1 that we are able to build (we will not draw it here) has
roughly 105 nodes. That is why we present in this paper an existential lower bound only,
holding also for unbounded α. We will mainly use the fact that any shortest path α-adaptive
routing table combined with a suitable selection function S implements a standard routing
table (α = 1). So, up to an additive term of |S| one can lower bound the compactness of
the α-adaptive routing table thanks to the Ω(n logd) bit/node lower bound of [19].
For this purpose, let us present the graph Hp,δ introduced by [19], and defined induc-

tively on p for all integers p ! 1 and δ ! 2. Let T i
h,δ be a complete δ-ary tree of height

h whose all its leaves are labelled i . For h = 0, we set T i
0,δ as a tree composed of a sin-

gle node labelled i . For every m ! 2, we define Tp,δ,m as the tree composed of m trees
T 1p−1,δ, T

2
p−1,δ, . . . , T

m
p−1,δ , all connected by their root to a single node of degree m. This

node is labelled p + 1 and forms the root of Tp,δ,m. Note that for m = δ, a Tp,δ,δ tree is
isomorphic to a complete δ-ary tree of height p, and thus has δp leaves.

Hp,δ has two distinguished subsets of nodes:Ap = {1, . . . , p} and Bp = {1, . . . , δ}p the
set of all the words of length p on the alphabet {1, . . . , δ}.H1,δ is isomorphic toK1,δ , where
A1 = {1} is reduced to the unique node of degree δ in K1,δ , and where B1 = {1, . . . , δ} is
the set of nodes of degree 1. The Hp+1,δ graph is composed of a copy of Hp,δ, a copy of
Tp,δ,δ , and of the set of nodes Bp+1, connected as follows:
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(1) Every node u ∈ Bp is connected to the nodes u i ∈ Bp+1, for every i ∈ {1, . . . , δ};
(2) Every leaf of Tp,δ,δ labelled i is connected to exactly δ nodes u i ∈ Bp+1 such that

no two leaves are connected to the same node of Bp+1 (leaving some freedom in the
connections).

The set Ap+1 is composed of the set Ap of Hp,δ , and of the root of Tp,δ,δ . See Fig. 2.
For every integer m such that 2" m " δ, let us define the Hp,δ,m graph composed of

a Hp,δ graph, a Tp,δ,m tree, and a set of mδp nodes, Bm
p = {1, . . . , δ}p × {1, . . . ,m}. The

connections between Bp , Bm
p , and the leaves of Tp,δ,m are similar to the connections in

a Hp+1,δ graph excepted that m may be smaller than δ (every u ∈ Bp is connected to
u i ∈ Bm

p for every i ∈ {1, . . . ,m}). The Hp,δ,m graph is an induced subgraph of Hp+1,δ .
Let us denote by Am

p the set of modes composed of Ap and of the root of the Tp,δ,m tree.

Fig. 2. The recursive construction of the Hp+1,δ graph, and H3,2.
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Fig. 3. A graph Gπ ∈H1,3,2, and its modification H0: the dashed sets induced a clique in H0 and are missing
from Gπ .

Lemma 4.3. For all integers p ! 1, and δ,m ! 2, Hp,δ,m has at most 2(m + 2)δp nodes,
and deg(x) = 2 if x ∈ Bm

p , deg(x) = m if x is the root of Tp,δ,m, and deg(x) ! δ otherwise.

Given a permutation π of Bm
p , let us denote by Gπ the graph composed of two copies

of Hp,δ,m whose Bm
p sets are connected by the perfect matching defined by π (see Fig. 3,

for an example). Let Hp,δ,m denote the family composed of all the Gπ graphs, for all
permutations π of Bm

p . For each G ∈Hp,δ,m, we denote by A(G) (respectively B(G)) the
set of nodes composed of both sets Am

p (respectively Bm
p ) of each copy of Hp,δ,m forming

G. The nodes of A(G) are drawn in black on Fig. 3.
In [19], it is shown the following important lemma:

Lemma 4.4 (Gavoille and Perennes [19]). For all integers p, δ,m ! 2, m " δ, and such
that δp→ +∞, there exists a graph G0 ∈Hp,δ,m such that every shortest path routing
table on G0 has a size of M bits5 for a node of A(G0) such that

M ! mδp

2(p + 1) log
(

mδp
)

−O
(

mδp

p

)

.

This result is based on the uniqueness of the shortest paths between the nodes of A(G0)
and the nodes of B(G0). In order to prove our result, one transform G0 into a new graph
H0 such that δ(H0) ! δ, and such that Lemma 4.4 holds for H0 as well. It consists on
connecting all the nodes of Bm

p by a clique in each copy of Hp,δ,m (so making the degree
of the nodes of B(G0) larger than δ in H0). Then, for the root of both Tp,δ,m trees, we add
a clique of δ + 1 nodes and select from them δ −m nodes that we connect to the root (so
making the degree of nodes at least δ, and exactly δ for all the nodes of A(G0) in H0).
See Fig. 3. In H0, the shortest paths between A(G0) and B(G0) are not modified, and has
2(δ+ 1) more nodes than G0.
We are now ready to prove a lower bound on compactnessα of n-node graphs.

5 We assume that all logarithms are in base two.
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Theorem 4.5. There exist a constant c " 31 such that for every n large enough, and for
every integer α " (n/18)1/(2c), there exists a graph H0 with at most n nodes such that

IRSα(H0) >
1

2790
· n

αc
.

Proof. From Theorem 4.1, for every n, there exists a graph G with 2t+3 " n nodes and
such that IRS1(G) ! 2t > n/16 for t = -logn. − 3. Thus the result is true for α = 1.
Assume α ! 2. Let us fix c = 31, and let δ = αc . We consider the graphH0, the modified

graph G0 ∈Hp,δ,m, for some parameters p, δ,m ! 2 such that m " δ and δp→+∞. Let
N denote the number of nodes of H0. We will fix later the values of p, δ,m as a function
of n in order to prove that N " n. Let x ∈A(G0) be a node of H0 for which the size of any
shortest path routing table is of size at leastM (bound given by Lemma 4.4). Note that by
construction of H0, deg(x) = δ.
Consider on H0 any shortest path k-IRSα , (L,I). This α-adaptive IRS is an implemen-

tation in x of a particular shortest path α-adaptive routing table. This implementation can
be done in x with at most /δ log

(N
2k

)

0 bits. Indeed, for the δ output ports of x it suffices to
store at most k intervals of labels. There is at most

(N
2k

)

ways to choose k sub-intervals of
[1,N]. So, a total of /δ log (N

2k
)0 bits for x , remarking that a sequence of p integers taken

from {1, . . . , q} can be coded on / log(qp)0 bits since there are qp such sequences.
Now, it is easy to transform any shortest path α-adaptive routing tables into a shortest

path 1-adaptive routing table, i.e., a standard routing table, adding /N logα0 extra bits per
node: for each destination label we specify the output port leading to a shortest path, and
there are exactly α possible output ports. Thus,H0 has a shortest path routing table in x of
size at most

⌈

δ log
(

N

2k

)⌉

+ /N logα0

using an implementation of the deterministic version of (L,I). From Lemma 4.4, it turns
out for x that:

(4.2)δ log
(

N

2k

)

+ N logα + 2> M.

We have to prove that H0 has at most n nodes and that k ! n/αO(1). Let us fix now
p, δ,m, and let us prove that:

(4.3)N " n < 4
(

m + 3+ o(1)
)

δp.

Let p be the largest integer such that n ! 16δp + 2(δ + 1). Clearly, δp → +∞ as
n→+∞. Letm = -(n− 2(δ+ 1)/(4δp).−2. Let us show that p, δ, andm are all greater
than 2.
First, δ ! 2 because δ = αc , and α, c ! 2. For p, α " (n/18)1/(2c) implies 18(αc)2 " n,

i.e., n ! 18δ2. But 18δ2 ! 16δ2+ 2(δ+ 1) for δ ! 2, hence the equation n ! 16δp + 2(δ+
1) has a solution for p ! 2. Form, since n ! 16δp +2(δ+1), then (n−2(δ+1))/(4δp) !
4, and thus -(n− 2(δ+ 1)/(4δp). − 2! 2, proving m ! 2.
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LetX = 4(m+2)δp +2(δ+1), and let Y = n−2(δ+1). Note thatm+2= -Y/(4δp)..
We have:

X = 4δp
⌊

Y

4δp

⌋

+ 2(δ+ 1)

= Y −
(

Y mod 4δp
)

+ 2(δ+ 1)
= n− (

Y mod 4δp
)

.

Therefore,

(4.4)X " n < X + 4δp.

From Lemma 4.3, the number of nodes ofG0 is at most 2 ·2(m+2)δp, and thus the number
of nodes of H0 is N " 4(m + 2)δp + 2(δ + 1), i.e., N " X. By Eq. (4.4) we have proved
that H0 has at most n nodes, and more precisely that:

N " n < 4(m + 2)δp + 4δp + 2(δ+ 1)
< 4

(

m + 3+ o(1)
)

δp

remarking that 2(δ+ 1) = o(δp), and proving therefore Eq. (4.3).
In Eq. (4.2), we bound

(

N

2k

)

"
(

n

2k

)

"
(

en

2k

)2k
" ten/t ,

where t = en/(2k). Eq. (4.2) becomes (using δ = αc , N " n, andM→+∞)

(4.5)δ log
(

ten/t
)

+ n logα ! M

(4.6)1⇒ αcen
log t

t
+ n logα ! M

(4.7)1⇒ n

(

αce log t

t
+ logα

)

! M

(4.8)1⇒ nβ ! M,

where β = (αce log t)/t + logα. From Lemma 4.4 we have a lower bound on M , and
plugging in Eq. (4.8) the upper bound on n of Eq. (4.3), we obtain that:

4
(

m + 3+ o(1)
)

δpβ >
mδp

2(p + 1) log
(

mδp
)

−O
(

mδp

p

)

1⇒ β >
m log(mδp)

8(p + 1)(m + 3+ o(1))
neglecting the second order term O(mδp/p). We remark that p,m ! 2, thus

m log(mδp)

8(p + 1)(m + 3+ o(1)) ! 2 log(2δp)

8(p + 1)(5+ o(1)) >
p logδ

4(p + 1)(5+ o(1))

>
2 logδ

4 · 3(5+ o(1)) >
logδ

30+ o(1).
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Replacing β and δ, we obtain:

(4.9)
αce log t

t
+ logα ! c logα

30+ o(1)

(4.10)1⇒ αc log t

t
! 1

e

(

c

30+ o(1) − 1
)

logα

(4.11)1⇒ αc log t

t
! γ logα,

where γ = (c/(30+ o(1))− 1)/e. Because c = 31, we have γ > 0 (for n large enough),
and since logα ! 1, it follows that:

(4.12)(4.11)1⇒ αc ! γ t

log t

(4.13)1⇒ c logα ! log(γ t)− log log t .

Note that k ! en/(2t). We consider two cases. If t " 235, then k ! en/236. Since 236/e >
2790αc for c = 31 and α ! 2, it follows in this case that:

k >
n

2790αc
.

If t > 235, then we check that (as γ → 0.001226 . . . as n→+∞):

log(γ t)− log log t >
2
3
log t

thus by Eq. (4.13) c logα > 2
3 log t . Bounding log t < (3c logα)/2, Eq. (4.11) becomes:

αc3c logα
2t

! γ logα

1⇒ t " 3c
2γ
αc

1⇒ k ! eγ

3cαc
n =

(

c/(30+ o(1))− 1
3c

· 1
αc

)

n

>
1

90cαc
· n (as n→+∞)

>
1

2790
· n

αc

that completes the proof. !

5. Conclusion

We showed that α-adaptive routing tables on n-node graphs, that are routing tables
mapping each destination on exactly α directions, have compactness at most n/α (i.e.,
require n/α intervals of destination labels per link), computable in polynomial time. We
proved also that, if at least one shortest path must be represented, there are n-node graphs
for which every α-adaptive routing table has compactness larger than n/αO(1).
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In the other side, it is known that if all the shortest paths must be represented, then such
routing tables require compactness n/4 for some worst-case graphs. Therefore, it would
be interesting to study the compactness of β-shortest path α-adaptive routing tables, a
natural extension of shortest path α-adaptive routing tables, that map each destination on
α directions and whose at least β must be on a shortest path. The present paper concerns
β = 1.
We stress also that our n/αO(1)-lower bound is not a serious obstacle for the study of

graphs having small compactness, even for α = 2. Indeed, due to some large constants in
this existential lower bound, the smallest example of graphs we can prove by Theorem 4.5
to have a compactness greater than 1 must have more than 242 nodes. It suggests that the
class of graphs supporting shortest path 2-adaptive routing tables is rather large, and it
would be interesting to develop this study to various class of concrete networks.
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[22] R. Kráľovič, P. Ružička, D. Štefankovič, The complexity of shortest path and dilation bounded interval
routing, Theoret. Comput. Sci. 234 (2000) 85–107.

[23] P. Loh, J. Wenge, Adaptive, fault-tolerant, deadlock-free and livelock-free interval routing in mesh networks,
in: 2nd IEEE International Conference on Algorithms & Architectures for Parallel Processing (ICAPP),
1996, pp. 348–355.

[24] L. Narayanan, J. Opatrny, Compact routing on chordal rings of degree four, in: 4th International Colloquium
on Structural Information & Communication Complexity (SIROCCO), Carleton Scientific, 1997, pp. 125–
137.

[25] D. Peleg, E. Upfal, A trade-off between space and efficiency for routing tables, J. ACM 36 (1989) 510–530.
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