
On the Time and the Bit Complexity of Distributed

Randomised Anonymous Ring Colouring

Y. Métivier, J. M. Robson, N. Saheb-Djahromi and A. Zemmari

Université de Bordeaux, LaBRI, UMR CNRS 5800

351 cours de la Libération, 33405 Talence, France

{metivier, robson, saheb, zemmari}@labri.fr

Abstract

We present and analyse a very simple randomised distributed vertex colouring
algorithm for ring graphs. Its time complexity is log2 n + o(log n) on average
and 2log2 n + o(log n) with probability 1− o(n−1). Each message containing 1
bit we deduce the same values for its bit complexity. Then we compose this
algorithm with another and we obtain a 3-colouring algorithm for ring graphs.
Thanks to an overlapping, we obtain once more the same values for the time
complexities on average and with probability 1− o(n−1). The same results hold
for the bit complexity. These results are obtained using the Mellin transform.

We establish lower bounds (on average and with probability 1− o(n−1)) for
the distributed randomised anonymous ring colouring problem. We prove that
our algorithms match these lower bounds modulo a negligible additive function
(negligible with respect to log2 n).

We assume that the ring is anonymous: unique identities are not available to
distinguish the processes; we only assume that each vertex distinguishes between
its neighbours. Furthermore we do not assume that the size (or an upper bound
on the size) of the ring is known.

Keywords: Bit Complexity, Colouring, Mellin Transform, Probabilistic
Analysis, Randomised Distributed Graph Algorithm, Ring, Time Complexity.

1. Introduction

1.1. The Problem

Let G = (V, E) be a simple undirected graph. A vertex colouring of G assigns
colours to each vertex in such a way that neighbours have different colours. If
we need at most 3 colours then we say a 3-colouring.

In this paper we discuss how efficient (time, bits and number of colours)
vertex colouring may be accomplished by exchange of bits between neighbouring
vertices in a ring graph. Even if ring graphs are simple, they are used as a case
study in many problems, as explained by Attiya and Welch in [AW04], page 31:

Preprint submitted to Elsevier March 25, 2012

“rings are a convenient structure for message-passing systems and correspond
to physical communication systems, for example, token rings.”

The distributed complexity of vertex colouring is of fundamental interest for
the study and analysis of distributed computing. Usually, the topology of a dis-
tributed system is modelled by a graph and paradigms of distributed systems are
encoded by classical problems in graph theory; among these classical problems
one may cite the problems of vertex colouring, computing a maximal indepen-
dent set, finding a vertex cover or finding a maximal matching. Each solution
to one of these problems is a building block for many distributed algorithms:
symmetry breaking, topology control, routing, resource allocation.

1.2. The Model

The Network. We consider the standard message passing model for distributed
computing. The communication model consists of a point-to-point communica-
tion network described by a simple undirected ring graph G = (V, E) where the
vertices V represent network processors and the edges represent bidirectional
communication channels. Processes communicate by message passing: a pro-
cess sends a message to another by depositing the message in the corresponding
channel. We assume the system synchronous and synchronous wake up of pro-
cessors: processors have access to a global clock and all processors start the
algorithm at the same time.

In this model, a distributed algorithm is given by a local algorithm that
all processes should execute; thus processes having the same degree have the
same algorithm. A local algorithm consists of a sequence of computation steps
interspersed with instructions to send and to receive messages.

A probabilistic algorithm is an algorithm which makes some random choices
based on some given probability distributions.

A distributed probabilistic algorithm is a collection of local probabilistic
algorithms; furthermore the network is anonymous; thus if two processes have
the same degree their local probabilistic algorithms are identical and have the
same probability distribution.

A Las Vegas algorithm is a probabilistic algorithm such that when it termi-
nates its result is correct, nevertheless its runtime is unknown (not determinis-
tically bounded): it terminates with probability 1.

Time Complexity. A round (cycle) of each processor is composed of the fol-
lowing three steps: 1. Send messages to (some of) the neighbours, 2. Receive
messages from (some of) the neighbours, 3. Perform some local computation.
As usual (see for example Peleg [Pel00]) the time complexity is the maximum
possible number of rounds needed until every node has completed its computa-
tion.

Bit Complexity. A bit round is a round such that each processor can send/receive
at most 1 bit to/from each neighbour. As in [KOSS06], the bit complexity of an
algorithm A is the number of bit rounds to complete algorithm A. One round
of the algorithm contains 1 or more bit round.

2

It is considered as a finer measure of communication complexity and it
has been studied for breaking and achieving symmetry or for colouring in
[BMW94, KOSS06, DMR08]. Dinitz et al. explain in [DMR08] that it may
be viewed as a natural extension of communication complexity (introduced by
Yao [Yao79]) to the analysis of tasks in a distributed setting. An introduction
to this area can be found in Kushilevitz and Nisan [KN99].

Remark 1. In this paper we assume that at each round each vertex which
communicates with a neighbour through a port sends either the bit 1 or the bit
0. In this way processors do not need to access to a global clock: our algorithm
works under the hypothesis of a synchronisation by rounds. In our work, if a
vertex v sends neither the bit 0 nor the bit 1 to a neighbour w in a round, it
means that v has no information to transmit to w, v ignores w or w does not
participate to this round.

In some models, if a vertex does not send a bit to a neighbour then it is
considered as information. If we allow the case where no bit is sent, so that there
must be synchronisation by a global clock, we obtain communications with an
alphabet of three letters, which can be simulated easily by communications with
an alphabet of two letters. This simulation does not change the bit complexity
modulo a multiplicative constant.

Remark 2. Dinitz et al. [DMR08] define the bit complexity as the number of
transmitted bits required to solve a task. The definition we adopt in this paper
gives a bit complexity which is an upper bound of the bit complexity induced
by the definition given in [DMR08].

Network and Process Knowledge. The network is an anonymous ring: unique
identities are not available to distinguish the processes. We do not assume any
knowledge of the size of the graph or of an upper bound on the size of the
graph, any position or distance information. Each processor knows from which
channel it receives a message. An important fact due to the initial symmetry is:
there is no deterministic distributed algorithm for arbitrary anonymous graphs
for vertex colouring assuming all vertices wake up simultaneously, see [Pel00].

1.3. Our Contribution

Métivier et al. [MRSDZ10] present and analyse a randomised distributed
vertex colouring algorithm, denoted Algorithm B. This algorithm runs in O(log n)
rounds on average and with high probability1 (w.h.p. for short). Algorithm B,
called the 3-colouring algorithm in this paper, is composed of a colouring algo-
rithm and a decreasing colours algorithm.

In this paper, we do a more precise study for the time (bit) complexity of the
colouring algorithm and of the 3-colouring algorithm in the case of ring graphs.
In particular for the multiplicative constant hidden in O(log n).

1With high probability means with probability 1 − o(n−1).

3

In the colouring algorithm, each vertex computes a proper colour (a colour
different from its neighbours). As soon as a vertex has a proper colour it starts
the decreasing colours algorithm: an algorithm which reduces the number of
colours used in all the graph to achieve 3 colours.

Using the Mellin transform, we prove that the colouring algorithm computes
a proper colouring for any ring graph of size n in log2 n + o(log n) rounds on
average and in at most 2 log2 n + o(log n) rounds w.h.p. (which matches the
lower bound by Kothapalli et al). We prove also that the decreasing colours
algorithm acts in at most 2 log2 n rounds w.h.p. to achieve a 3−colouring for
such a graph.

Then we show how the two algorithms can be overlapped to obtain the
optimal solution of the problem: given a ring graph G of size n, the 3-colouring
algorithm computes a 3−colouring in log2 n + o (log n) rounds on average and
2 log2 n + o (log n) w.h.p.

The algorithms use messages of size of one bit. That is, the same values hold
for their bit complexity.

In [KOSS06], Kothapalli et al. prove that Ω (log n) rounds are necessary to
colour a ring of size n. In Section 6, we obtain exact values for the constant
hidden in the Ω(). Note that their bound is on a proper colouring of the ring with
no restriction on the number of colours. Finally, we deduce that our algorithms
match our new lower bounds modulo a negligible additive function (negligible
with respect to log2 n).

1.4. Related Work: Comparisons and Comments

Vertex Colouring. Vertex colouring is a fundamental problem in distributed
systems. It is mainly studied under two assumptions:

1. vertices have unique identifiers, and more generally, they have an initial
colouring,

2. every vertex has the same initial state and initially only knows its own
edges.

Vertex colouring is a classical technique to break symmetry. If vertices have
unique identifiers (or if there is an initial colouring) then the initial local symme-
try is naturally broken; otherwise, as usual, it is broken by using randomisation.

Vertices Have an Initial Colouring. In this case, as we said before, the local sym-
metry is broken and, generally, vertex colouring algorithms try to decrease the
number of colours (for example, to ∆ + 1 or to O(∆) where ∆ is the maximum
vertex degree in the graph). Classical examples are given in [Pel00] (Chapter 7).
The model assumes that each node has a unique O(log n) bits identifier. More
recently, Kuhn and Wattenhofer [KW06] have presented efficient time complex-
ity algorithms to obtain O(∆) colours in the case where every vertex can only
send its own current colour to all its neighbours. Cole and Vishkin [CV86] show
that there is a distributed algorithm which colours a cycle on n vertices with
3 colours and runs in O(log∗ n). Lower bounds for colouring particular families
of graphs are given in [Lin92]. That paper presents also an algorithm which

4

colours a graph of size n with O(∆2) colours and runs in O(log∗ n).

Vertices Have the Same Initial State and no Knowledge. In this case we have
no choice: we use randomised algorithms. In [Joh99], Johansson analyses a
simple randomised distributed vertex colouring algorithm. Each vertex u keeps
a palette of colours initialised to {0, ..., d} if the degree of u is d. The algorithm
then proceeds in rounds. In a round each uncoloured vertex u randomly chooses
a colour c from its palette. It sends c to its neighbours and receives a colour
from each neighbour. If the colour c chosen by u is different from colours chosen
by its neighbours then c becomes the final colour of u, u informs its neighbours
and becomes passive. At the beginning of the next round each active vertex
removes from its palette final colours of its neighbours.

Johansson proves that this algorithm runs in O(log n) rounds with high
probability on graphs of size n.

1.5. Summary

First, we present in Section 2 the Mellin transform and technical results
which we use for the analysis of the colouring algorithm and the 3-colouring
algorithm. Section 3 describes and analyses the colouring algorithm. Section
4 gives and analyses the 3-colouring algorithm. Section 5 studies more pre-
cisely the complexity of the 3-colouring algorithm thanks to the overlapping
of the colouring algorithm and of the decreasing colours algorithm. Section 6
gives lower bounds for the randomised ring colouring problem matched by our
algorithm. Section 7 is the conclusion.

2. Mellin Transform

This section presents the definition of the Mellin transform and some of
its properties. The reader is refered to [FRS85] for more details. Then we
give an application used for the analysis of the colouring algorithm and of the
3-colouring algorithm.

2.1. Definition and Properties

The Mellin transform of a real valued function F (x) defined over [0, +∞] is
the complex function F ∗(s) of the complex variable s given by:

F ∗(s) =

∫ ∞

0

F (x)xs−1dx. (1)

In general, the integral exists only for complex values of s = Re(s)+ i Im(s)
such that α < Re(s) < β, where α and β depend on the function F (x). This
introduces what is called the fundamental strip of the Mellin transform and is
denoted < α, β >. In some cases, this strip may extend to a half-plane (α = −∞
or β = +∞) or to the whole complex plane (α = −∞ and β = +∞).

One can obtain F from F ∗ using the following theorem:

5

Theorem 1. (Inversion Theorem) For any real c inside the fundamental strip,
one has:

F (x) =
1

2iπ

∫ c+i∞

c−i∞

F ∗(s)x−sds. (2)

2.2. Application

In this section, we present an application of the Mellin transform to obtain
the singular expansion of some functions. The main lemma proved here will be
used in the following sections.

Lemma 2. Let F and G be the functions defined for any real number x by

F (x) =
∑

k≥0

(

1− e−x/2k
)

, and G(x) =
∑

k≥0

(2k + 1)
(

1− e−x/2k
)

.

Then, as x tends to ∞, we have the following singular expansion of F and G:

F (x) = log2 x +
1

2
+

γ

log 2
+ Q (log2 x) + O

(

x−2
)

, (3)

where Q (u) = − 1
log 2

∑

k∈Z\{0} Γ
(

2ikπ
log 2

)

e−2ikπu and

G(x) = (log2 x)2 +

(

1 +
2γ

log 2

)

log2 x

+
1

3
+

γ

log 2
+

π2

6(log 2)2
+

(

γ

log 2

)2

+ ∆(log2 x) + O

(

1

x2

)

, (4)

where ∆(u) = − 2
(log 2)2

∑

k∈Z\{0} Γ (χk) e−2ikπu and γ denotes the Euler-Mascheroni
constant.

Proof. We first give the complete proof of (3), then, we give a sketch of the
proof of (4).

The Mellin transform of F (x) is:

F ∗(s) =
∫∞

0
xs−1F (x)dx

=
∑

k≥0

∫∞

0
xs−1

(

1− e−x/2k

)

dx

= −Γ(s)
∑

k≥0

2ks

= − Γ(s)
1−2s ,

with fundamental strip < −1, 0 >, where:

Γ (s) =
e−γs

s

∞
∏

l=1

1

1 + s
l

es/l.

6

Function F ∗(s) has a double pole at s = 0, and imaginary poles at s =
χk = 2ikπ

log 2 for any k ∈ Z \ {0}. It admits a meromorphic continuation to

< −1, +2 > and is analytic on Re(s) = 2. Thus, the singular expansion of
F ∗(s) in < − 1

2 , +2 > is:

F ∗(s) =

[

1

log 2

1

s2
− γ + 1

2 log 2

s log 2

]

+

1

log 2

∑

k∈Z\{0}

Γ (χk)

s− χk

 . (5)

We can also verify that, for any s such that −1/2 ≤ Re(s) ≤ 2:

F ∗(s) = O
(

| s |−1
)

as | s |→ ∞. (6)

Now, consider the integral:

I(T) =
1

2iπ

∫

C(T)

F ∗(s)x−sds,

where C(T) denotes the rectangular contour defined by the segments

[−1/2 − iT,−1/2 + iT], [−1/2 + iT, +2 + iT],

[+2 + iT, +2 − iT], [+2 − iT,−1/2 − iT]. (7)

By Cauchy’s theorem, I(T) is equal to the sum of residues.
On the other hand, for any k > 0,:

Res

(

x−s

(s− ζ)k
, ζ

)

=
(−1)k−1

(k − 1)!
x−ζ (log x)k−1 .

Thus:

Res

(

x−s

s2
, 0

)

= − logx and Res

(

x−s

s
, 0

)

= 1, (8)

and, for any k ∈ Z \ {0}:

Res

(

x−s

s− χk
, χk

)

= e−χk log x. (9)

Thus:

I(T) = − log x

log 2
− γ + 1/2 log 2

log 2
+

1

log 2

∑

k∈Z\{0}

Γ (χk) e−χk log x. (10)

Now, we can write I(T):

I(T) = I1(T) + I2(T) + I3(T) + I4(T), (11)

7

with:

I1(T) = 1
2iπ

∫ −1/2+iT

−1/2−iT F ∗(s)x−sds, I2(T) = 1
2iπ

∫ 2+iT

−1/2+iT F ∗(s)x−sds,

I3(T) = 1
2iπ

∫ 2−iT

2+iT F ∗(s)x−sds, I4(T) = 1
2iπ

∫ −1/2iT

2−iT F ∗(s)x−sds.

Now let T tend to +∞. By (6), the integrals I2(T) and I4(T) are O
(

T−1
)

and thus tend to 0 as T tends to ∞. The integral I1(T) along the vertical line
Re(s) = c = −1/2 that lies inside the fundamental strip tends to the inverse
Mellin integral which converges given the growth of F ∗(s) and equals F (x) by
the (Inversion Theorem) Theorem 1. Finally, by (6), and as x→∞, the integral
along the vertical line Re(s) = 2 verifies:

1

2π

∫ 2+i∞

2−i∞

| F ∗(s) || x−s || ds | = O (1)

∫ ∞

0

x−t

t + 1
dt

= O
(

x−2
)

∫ ∞

0

dt

(t + 1)
2

= O
(

x−2
)

.

Thus, in the limit, I(∞) equals F (x) plus a term that is O
(

x−2
)

plus the
sum of the residues. This yields:

F (x) = log2 x +
1

2
+

γ

log 2
+ Q (log2 x) + O

(

x−2
)

, (12)

where:

Q (u) = − 1

log 2

∑

k∈Z\{0}

Γ

(

2ikπ

log 2

)

e−2ikπu.

This establishes the expansion given in (3).
To prove (4), we first give the Mellin transform of G:

G∗(s) =
∫∞

0
xs−1G(x)dx

=
∑

k≥0

(2k + 1)
∫∞

0
xs−1

(

1− e−x/2k

)

dx

= −Γ(s)
∑

k≥0

(2k + 1)2ks

= −Γ(s) 2s+1
(1−2s)2 ,

with fundamental strip 〈−1, 0〉.
The function G∗(s) admits a pole of order 3 on s = 0 and imaginary poles

of order 2 on s = χk = 2ikπ
log 2 for any k ∈ Z \ {0}. It admits a meromorphic

continuation to < −1, +2 > and is analytic on Re(s) = 2. That is, we have:

G∗(s) = −

2

(log 2)2
1

s3
+

„

1

log 2
+

2γ

(log 2)2

«

1

s2

−

„

1

3
+

γ

log 2
+

π2

6(log 2)2
+

γ2

(log 2)2

«

1

s

+
2

(log 2)2

X

k∈Z\{0}

Γ (χk)

(s − χk)2
. (13)

8

To obtain the singular expansion of G(x) from G∗(s), we use the same rea-
soning as before. Indeed, for any s such that −1/2 ≤ Re(s) ≤ +2, we have
G∗(s) =| s |−1 as s→∞. Then, we consider the integral:

J(T) =
1

2iπ

∫

C(T)

x−sG∗(s)ds,

where C(T) is the contour defined in (7). We can also see that:

Res

(

x−s

s3
, 0

)

=
1

2
(log x)2 , (14)

and, for any k ∈ Z \ {0}:

Res

(

x−s

(s− χk)
2 , χk

)

= −e−χk log x log x. (15)

Accordingly, by a similar decomposition of J(T) as in (11), and using (8), (14),
(15), we derive:

G(x) = (log
2
x)2 +

„

1 +
2γ

log 2

«

log
2
x

+
1

3
+

γ

log 2
+

π2

6(log 2)2
+

„

γ

log 2

«2

+ ∆

„

log x

log 2

«

+ O

„

1

x2

«

, (16)

where ∆ (u) = − 2
(log 2)2

∑

k∈Z\{0} Γ (χk) e−2ikπu.

This ends the proof. �

Remark 3. A part of the proof of Lemma 2 can be obtained by a direct appli-
cation of the theorem Reverse mapping from [FS96]. Indeed, using this theorem,
one obtains (12) directly from (5), and (16) directly from (13).

3. The Colouring Algorithm

The colouring algorithm is given as Algorithm 1. At each round of the
colouring algorithm, some vertices are permanently coloured, and stop executing
the algorithm, some edges are removed from the graph (this means that they
become passive, i.e., they do not participate in the sequel of the algorithm) and
the other vertices continue the execution of the algorithm in the residual graph.
Let G = (V, E) be the initial graph, we denote by (Gi)i≥0 the sequence of graphs
induced by active vertices, where G0 = G and Gi is the residual graph obtained
after the ith round.

Formally, each vertex v maintains a list activev of active vertices, i.e., neigh-
bours which are not yet coloured and with which the symmetry is not yet broken;
initially activev is equal to N(v) (the neighbours of v). We denote by colourv

the colour of the vertex v which is the word formed by bits generated by the ver-
tex v (we denote by ⊕ the concatenation operation on words); initially colourv

9

is the empty word. The vertex v generates a random bit bv; it concatenates bv

to colourv, i.e., the new colour of v is colourv ⊕ bv; it sends bv to all its active
neighbours, receives the bits sent by these vertices and then updates its list.
This action is repeated until the symmetry is broken with its two neighbours
and hence the vertex has obtained its final colour.

Algorithm 1 The Colouring Algorithm
1: var:

2: colourv : word Init empty-word;
3: activev: ⊆ N(v) Init N(v);
4: bv: ∈ {0, 1};
5: while activev 6= ∅ do

6: bv ← flip(0, 1) ;
7: colourv ← colourv ⊕ bv;
8: for all u ∈ activev do

9: send bv to u;
10: receive bu from u;
11: if bv 6= bu then

12: activev ← activev \ {u}
13: end if

14: end for

15: end while

Remark 4. The colour of a node v is the concatenation of all the bits generated
from the start of execution of the algorithm to the time where v has no active
neighbours.

We have the following theorem:

Theorem 3. Let G = (V, E) be a ring of size n ≥ 3. Let T1 denote the number
of rounds necessary to colour all vertices by the colouring algorithm.

• The expected value of T1 is asymptotically equal to log2 n − 1
2 + γ

log 2 +

Q (log2 n) + O
(

n−2
)

, where Q (u) = − 1
log 2

∑

k∈Z\{0} Γ
(

2ikπ
log 2

)

e−2ikπu is

a Fourier series with period 1 and with an amplitude which does not exceed
10−6,

• it is less than 2 log2 n w.h.p.

Proof. If n is odd, then we need at least tow rounds to achieve the graph
colouring. Hence, Pr (T1 > 1) = 1. Otherwise, if n is even, it is easy to see that
Pr (T1 > 1) = 1− 1

2n−1 .

10

More generally, using the Sieve principle [Ros00], for any k ≥ 2 :

Pr (T1 > k) =

n−1
∑

i=1

(−1)i+1

(

n

i

)(

1

2i

)k

+ (−1)n+1

(

1

2n−1

)k

= 1−
(

1− 1

2k

)n

+ (−1)n+1

(

(

1

2n−1

)k

−
(

1

2n

)k
)

. (17)

Hence, with k = 2 log2 n, we get:

Pr (T1 > k) ∼ 1− e−1/n → 0 as n→∞.

This proves the second claim of the theorem.

On the other hand, since E (T1) =
∑

k≥1 Pr (T1 > k), we have:

E (T1) = Pr (T1 > 1) +
∑

k≥2

[

1−
(

1− 1
2k

)n
+ (−1)n+1

(

(

1
2n−1

)k −
(

1
2n

)k
)]

.

Without loss of generality, we consider the case of odd n since even n simply
increases the value by 1.

E (T1) = 1 +
∑

k≥2

[

1−
(

1− 1
2k

)n]
+ 1

2n − 1
2n−1 + 1

1− 1

2n−1

− 1
1− 1

2

n

=
∑

k≥0

[

1−
(

1− 1
2k

)n]− 1 + 1
1− 1

2n−1

− 1
1− 1

2

n .

On the other hand, we have the exponential approximation (1 − a)n ∼ e−an,
then, with:

F (x) =
∑

k≥0

(

1− e−x/2k
)

,

one finds elementarily E (T1) ∼ F (n)− 1. Then, the first claim is proved using
Lemma 2. �

We can also derive the distribution of the r.v. T1:

Lemma 4. Let G = (V, E) be a ring graph of size n ≥ 3 and let T1 be the r.v.
defined above. Then:

• Pr (T1 = 0) = 0.

• If n is odd, then: Pr (T1 = 1) = 0, and Pr (T1 = 2) = 3n−3
4n .

• If n is even, then: Pr (T1 = 1) = 1
2n−1 , and Pr (T1 = 2) = 3n+3

4n − 1
2n−1 .

and, for any k > 2 :

Pr (T1 = k) =

(

1− 1

2k

)n

−
(

1− 1

2k−1

)n

+ (−1)n+1

(

(

1

2n−1

)k−1

−
(

1

2n

)k−1

−
(

1

2n−1

)k

+

(

1

2n

)k
)

.

11

Proof. For any k ≥ 1, we have Pr (T1 = k) = Pr (T1 > k − 1) − Pr (T1 > k).
Then it suffices to apply (17) to obtain the lemma. �

We have also the following lemma:

Proposition 1. The ratio between T1 and log2 n tends to 1 in probability as
n→∞.

Proof. We start by calculating the second moment of the r.v. T1 :

E
(

T 2
1

)

=
∑

k≥0 k2
Pr (T1 = k)

=
∑

k≥1 k2
[(

1− 1
2k

)n −
(

1− 1
2k−1

)n]

=
∑

k≥0(2k + 1)
(

1−
(

1− 1
2k

)n)
.

Using the same exponential approximation as before, we have E
(

T 2
1

)

∼ G(n)
where:

G(x) =
∑

k≥0

(2k + 1)
(

1− e−x/2k
)

.

By Lemma 2, we finally obtain the value of the second moment:

E
(

T 2
1

)

= (log2 n)2 +
(

1 + 2γ
log 2

)

log2 n

+ 1
3 + γ

log 2 + π2

6(log 2)2 +
(

γ
log 2

)2

+ ∆
(

log n
log 2

)

+ O
(

1
n2

)

.

Since Var (T1) = E
(

T 2
1

)

− (E (T1))
2
, we obtain:

Var (T1) =
(

1
log 2 − 1

)

log2 n + 1
12 + π2

6(log 2)2

−P (log2 n) + O
(

1
n2

)

,

where P (u) = Q(u)2 +
(

2u + 2γ
log 2 − 2

log 2

)

Q(u).

Now, define the r.v. Rn = T1

log
2

n , then:

E (Rn) = 1 +

(

1

2
+

γ

log 2

)

/ log2 n +
1

log2 n

(

Q (log2 n)−O

(

1

n2

))

,

and

Var (Rn) = Var (T1) /(log2 n)2

=
(

1
log 2 − 1

)

/ log2 n +
(

1
12 + π2

6(log 2)2

)

/(log2 n)2

− 1
(log n)2 P (log2 n) + O

(

1
n2

)

.

Using the Tchebychev inequality, we have:

∀ε > 0, Pr (| Rn − 1 |≥ ε) ≤ Var (Rn)

ε2
→ 0 as n→∞,

which ends the proof. �

Remark 5. Vertices exchange messages containing 1 bit. Thus the results in
Theorem 3, Lemma 4 and Proposition 1 are valid for the bit complexity of the
algorithm.

12

4. The 3-Colouring Algorithm

The 3-colouring algorithm is composed of the colouring algorithm and a
decreasing colours algorithm which we describe now.

4.1. The Decreasing Colours Algorithm

The algorithm is given as Algorithm 2. When a vertex u ends the colour-
ing algorithm, it obtains a proper colour. Then u calculates a binary frac-
tion x(u) using the word colouru as follows: if colouru = b1b2b3 · · · , then
x(u) = 0.b1b2b3 · · · . For any neighbour v, if x(u) < x(v), then the edge {u, v}
is oriented from u to v; otherwise, it is oriented from v to u. Let:

INu = {v ∈ N(u) |(u,v) is oriented from v to u}
and

OUTu = {v ∈ N(u) |(u,v) is oriented from u to v}.
If INu is empty, u chooses its colour, namely the smallest numbered colour

not already chosen by a neighbour, and sends its colour to every neighbour in
OUTu. While INu is not empty, if u receives a colour c from a neighbour v,
then it removes v from INu and removes c from its possible colours.

Remark 6. Note that the messages sent and received (using instructions send
and receive) do not contain any information on the vertices’ identities but only
one bit 0 or 1.

4.2. The 3-Colouring Algorithm

Now, we can give a precise description of the 3-colouring algorithm. It is
given as Algorithm 3, and it consists of the composition of Algorithm 1 and of
Algorithm 2. In this section, we study the time complexity of the 3−colouring of
the ring graph. Métivier et al. [MRSDZ10] show that for graphs with bounded
degrees, the time complexity of the colouring is O (log n) on average and w.h.p.
By using Mellin transform, we get a more precise result on ring graphs. We
prove the following theorem:

Theorem 5. The 3-colouring algorithm computes a 3−colouring for any ring
graph of size n in 3 logn rounds on average and w.h.p..

To prove this theorem, we need to study the time complexity of the decreasing
colours algorithm. We have:

Lemma 6. The time complexity of the decreasing colours algorithm is less than
e + 2 log2 n with high probability.

Proof. Let t ≥ 1. A vertex v is coloured within t steps after the end of the
colouring algorithm, unless there is a path of length t + 1 starting at v with
monotonically decreasing x values.

There are 2 paths of length t + 1 starting at v and each one has probability
1/(t + 1)! of having monotonically decreasing x values. Thus, if we denote by

13

Algorithm 2 The Decreasing Colours Algorithm.
1: var:

2: FCu : Integer Init c(u); (* The final colour of u *)
3: INu: ⊆ N(u) Init ∅;
4: OUTu: ⊆ N(u) Init ∅;
5: Coloursu: set of colours Init {0, 1, 2};
6: for each v ∈ N(u)
7: if(x(u) < x(v)) then //This can be decided as soon as u and v generate two

different bits

8: OUTu = OUTu ∪ {v}
9: else

10: INu = INu ∪ {v}
11: end if

12: end for;
13: while ∃v ∈ IN(u) do

14: receive < c, w > from a neighbour w;
15: INu = INu \ {w};
16: Coloursu = Coloursu \ {c}
17: end while

18: FCu = min{c ∈ Coloursu};
19: for each v ∈ OUTu

20: send < FCu, v >
21: end for

Algorithm 3 The 3-colouring Algorithm

1: Do Algorithm 1;
2: Do Algorithm 2.

14

p≥t(v) the probability that v is not coloured within t steps after the end of the
colouring algorithm, then:

p≥t(v) ≤ 2

t!
.

Using the Stirling formulae, we have:

p≥t(v) ≤
(e

t

)t

.

Hence, if t > e + 2 log2 n, we get:

p≥t(v) ≤
(

1− 2 logn

e + 2 log2 n

)e+2 log
2

n

≤ e−2 log
2

n =
1

n2.88...
.

Summing over all the vertices, this gives that the probability of existence of any
such path is o(n−1) and the average length of the longest decreasing path is
at most t + 2. We conclude that the algorithm terminates in time e + 2 log2 n
w.h.p. �

Remark 7. The result on the complexity of the decreasing colours algorithm is
obtained by the fact that we first apply the colouring algorithm and by the fact
that the colours obtained after the colouring algorithm are interpreted as random
real values. The analysis of the decreasing colours algorithm is based on the
uniformity of colours assigned to vertices and cannot be applied in general cases
(for example, for the algorithm of [Joh99]). Note as usual that the messages
contain only one bit and so, the results hold for the bit complexity.

5. Time Bounds for the 3-Colouring Algorithm

Although the colouring algorithm takes log2 n on average and up to 2 log2 n
and the decreasing colours algorithm takes up to 2 log2 n and it cannot start lo-
cally until the colouring algorithm is complete, the decreasing colours algorithm
may start in some vertices before the colouring algorithm is complete globally
so that the two algorithms can overlap giving a total time less than the obvious
upper bounds of approximately 3 log2 n on average and 4 log2 n w.h.p.

We have the following theorem :

Theorem 7. The total time for the 3-colouring algorithm is log2 n + o(log n)
on average and 2 log2 n + o(log n) w.h.p.

Proof. We need to be more precise about the messages sent after the end of
the colouring algorithm. At the end of the colouring algorithm on an edge (u, v),
the two vertices know which will be the first to be ready to start the decreasing
colours algorithm; suppose that it is u. The vertex u will now send 0 to v at each
step until it is ready to start the decreasing colours algorithm at which point it
will send a 1-bit to signal that it is starting the decreasing colours algorithm.
It will then send its colour c in unary as c 0-bits followed by one 1-bit at which

15

time the algorithm is complete on this edge. We note that v is ready to start
the decreasing colours algorithm as soon as it has received the 1 from u (and in
general its other neighbours with smaller x values) and that, although it does
not, at this moment, know its own colour, after t + 1 further steps, it knows
whether u (and any of the others) has the colour t and so can decide whether
its own colour should be t. Thus, in the case of the ring, a vertex finishes the
decreasing colours algorithm at most four steps after being ready to start it.

If a vertex v has not completed the decreasing colours algorithm at time t,
then there exist a time t′ ≤ t and a chain v0 = v, v1, · · · , vt−t′ such that vt−t′

had not completed the colouring algorithm at time t′, and the x values of the
vertices in the chain are monotonic decreasing.

We consider the probability that these two events occur for a given t and
t′. Given the set S of values x0, x1, · · ·xt−t′ , the probability that they occur in
monotonic decreasing order on the chain is 1/(t − t′ + 1)!. Given this mono-
tonicity, the probability that vt−t′ had not completed the decreasing colours
algorithm at time t′, is the probability of at least one of two independent events:
that the other neighbour of vt−t′ has an x which agrees with xt−t′ on its first t′

bits and that the two smallest elements of the set S agree on their first t′ bits.
The first of these has probability 2−t′ . We now consider the probability that, in
a set of m reals (independently uniform on (0 · · · 1)) the two smallest elements
agree on their first b bits. This is the case exactly if, in putting m objects uni-
formly into 2b boxes, the first occupied box contains at least two elements. It
is easily seen that when the number of boxes is doubled, the expected number
of other elements in the same box as the first element is divided by at least
2; thus after b such doublings, this expected number is at most (m − 1)/2b, so
that the probability that it is positive is also at most (m − 1)/2b. In our case,
this is (t − t′)/2t′ . Adding in the probability for v’s other neighbour, we have
probability at most (t − t′ + 1)/2t′ that v is not ready to start the decreasing
colours algorithm at time t′.

Hence, the probability we are looking for is at most (t−t′+1)/(2t′(t−t′+1)!)
that is 1/(2t′(t− t′)!). The sum of this probability over all t′ is less than e2/2t.
Taking into account the 2n chains of a given length, we see that the expected
number of vertices which have not completed the decreasing colours algorithm
after time t + 8 is less than 2n/2t. We conclude finally that the probability
that there exists some vertex which has not completed the decreasing colours
algorithm after log2 n + 9 + i steps is less than 2−i so that the average is less
than log2 n + 10 and the probability is o(n−1) when t = 2 log2 n + f(n) for any
unbounded increasing function f . �

6. Lower Bounds for the Randomised Ring Colouring Problem

Kothapalli et al [KOSS06] show that any Las Vegas algorithm computing
a proper vertex colouring on rings takes time Ω(log n) with high probability.
Their proof is for algorithms which have three possibilities for the action on an
edge at each step, namely send 0, send 1 and send nothing. We present here
a modified version of their proof for algorithms which do not have the third

16

possibility of send nothing. We obtain exact values for the constant hidden in
the Ω() result and, thereby, show that our algorithm is optimal in two respects.

Theorem 8. • A Las Vegas algorithm A which computes a proper colouring
on rings takes time at least log2 n− o(log n) with high probability.

• No Las Vegas algorithm A which computes a proper colouring on rings
runs in time k log2 n with high probability for any k < 2.

Proof. Consider the cycle of n nodes and let Sl = (ul, · · · , u1, v1, · · · , vl) be
the set of nodes along a path of length 2l of the cycle. Initially, every node in Sl is
in the same state s0, with the only difference that for every i ∈ {1, · · · , l−1}, ui

considers its left connection to go to ui+1 whereas vi considers its left connection
to go to vi+1. (Notice that the cycle is non-oriented, so we can choose any
orientation we want for the individual nodes.) Associated with s0 is a fixed
probability distribution Pǫ = (pǫ

x)x∈{0,1} for sending bit x along the right edge,
where ǫ represents the empty history. Since Pǫ has only two probability values,
u1 and v1 send the same bit with probability at least 1/2. Let E1 be the
event that this happens. Then u1 and v1 receive the same bit from their right
neighbour. Let Py = (py

x))x∈{0,1} be the probability distribution for sending bit
x along the right edge in the second round given that bit y was received along
the right edge in the first round. If E1 occurred, Px0

applies to u1 and v1 for the
same x0. Since Px0

has only two probability values, u1 and v1 send the same
bit with probability at least 1/2. Let E2 be the event that this happens. Then
u1 and v1 again receive the same bit from their right neighbour.

Continuing with this argument, it follows that there are events E1, · · · ,
El with Ei having a probability of at least 1/2 for all i (conditional on E1, · · · ,
Ei−1 having occurred) that u1 and v1 have received the same information from
their right neighbours. Algorithm A cannot terminate in this case because in
this case the same probability distribution for choosing a colour applies to u1

and v1, and hence, the probability that u1 and v1 choose the same colour is
non-zero.

The probability that E1, · · · , El occur is at least 2−l. Moreover, notice that
E1, · · · , El only depend on the nodes in Sl because information can only travel
a distance of l edges in l rounds. Hence, we can partition the n-node cycle
into n/(2l) sequences S where each sequence has a probability of at least 2−l of
running into the events E1, · · · , El that is independent of the other sequences.

For the first claim of the theorem, we take l = log2(n/2 log2
2 n), so that

2−l = 2 log2
2 n/n. Thus the probability that all node sequences avoid the

event sequence E1, · · · , El which is necessary for A to terminate is at most
(1 − 2 log2

2 n/n)n/2l ≤ 1/n, which implies that A needs log2 n − O(log2 log n)
bit-rounds, with high probability, to finish.

For the second claim, we take l = 2 log2(n/ log2 n), so that 2−l = (log2 n/n)2.
Taking n large enough for the probability of two sequences running into E1, · · · ,
El to be negligible, we find that the probability that some sequence runs into
these events is at least log2 n/4n. Thus, if algorithm A terminates in time l
with probability 1− o(n−1), it sometimes fails to compute a proper colouring.�

17

From this result and Theorem 7, we deduce :

Theorem 9. The 3-colouring algorithm is achieved in times matching the lower
bounds with no restriction on the number of colours used.

7. Conclusion

This paper analyses the time complexities of a randomised colouring algo-
rithm and a randomised 3-colouring algorithm which uses messages containing
1 bit. We study the complexities on average and w.h.p. of these problems.
Then, we prove that the complexities, on average or w.h.p., of the presented
algorithms match lower bounds. These results have been obtained using the
Mellin transform.

References

[AW04] H. Attiya and J. Welch. Distributed Computing. Wiley, 2004.

[BMW94] H. L. Bodlaender, S. Moran, and M. K. Warmuth. The distributed
bit complexity of the ring: from the anonymous case to the non-
anonymous case. Inf. and comput., 114(2):34–50, 1994.

[CV86] R. Cole and U. Vishkin. Deterministic coin tossing and acceler-
ating cascades: micro and macro techniques for designing parallel
algorithms. In Proceedings of the 18th ACM Symposium on Theory
of computing (STOC), pages 206–219, 1986.

[DMR08] Y. Dinitz, S. Moran, and S. Rajsbaum. Bit complexity of breaking
and achieving symmetry in chains and rings. Journal of the ACM,
55(1), 2008.

[FRS85] Ph. Flajolet, M. Régnier, and R. Sedgewick. Some uses of the
Mellin integral transform in the analysis of algorithms. In A. Apos-
tolico and Z. Galil, editors, Combinatorial Algorithms on Words,
volume 12 of Series F: Computer and Systems Sciences, pages
241–254. NATO Advance Science Institute Series, Springer Ver-
lag, 1985.

[FS96] Ph. Flajolet and R. Sedgewick. The average case analysis of algo-
rithms: Mellin transform asymptotics. Number RR-2956. INRIA,
1996.

[Joh99] Ö. Johansson. Simple distributed (∆ + 1)-coloring of graphs. In-
formation Processing Letters, 70(5):229–232, 1999.

[KN99] E. Kushilevitz and N. Nisan. Communication complexity. Cam-
bridge University Press, 1999.

18

[KOSS06] K. Kothapalli, M. Onus, C. Scheideler, and C. Schindelhauer. Dis-
tributed coloring in O(

√
log n) bit rounds. In 20th International

Parallel and Distributed Processing Symposium (IPDPS 2006),
Proceedings, 25-29 April 2006, Rhodes Island, Greece. IEEE, 2006.

[KW06] F. Kuhn and R. Wattenhofer. On the complexity of distributed
graph coloring. In Proceedings of the 25 Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 7–15. ACM
Press, 2006.

[Lin92] N. Linial. Locality in distributed graph algorithms. SIAM J. Com-
put., 21:193–201, 1992.

[MRSDZ10] Y. Métivier, J. M. Robson, N. Saheb-Djahromi, and A. Zemmari.
About randomised distributed graph colouring and graph partition
algorithms. Inf. Comput., 208(11):1296–1304, 2010.

[Pel00] D. Peleg. Distributed computing - A Locality-sensitive approach.
SIAM Monographs on discrete mathematics and applications,
2000.

[Ros00] Handbook of Discrete and Combinatorial Mathematics. CRC Press,
2000.

[Yao79] A. C. Yao. Some complexity questions related to distributed com-
puting. In Proceedings of the 11th ACM Symposium on Theory of
computing (STOC), pages 209–213. ACM Press, 1979.

19

