
Analysis of Fully Distributed Splitting and Naming

Probabilistic Procedures and Applications

Y. Métivier, J.M. Robson, and A. Zemmari

Université de Bordeaux, Bordeaux INP

LaBRI, UMR CNRS 5800

351 cours de la Libération, 33405 Talence, France

{metivier, robson, zemmari}@labri.fr

Abstract

This paper proposes and analyses two fully distributed probabilistic splitting
and naming procedures which assign a label to each vertex of a given anonymous
graph G without any initial knowledge. We prove, in particular, that with
probability 1 − o(n−1) (resp. with probability 1 − o(n−c) for any c ≥ 1) there
is a unique vertex with the maximal label in the graph G having n vertices. In
the first case, the size of labels is O(log n) with probability 1 − o(n−1) and the
expected value of the size of labels is also O(log n). In the second case, the size
of labels is O

(

(logn)(log∗ n)2
)

with probability 1 − o(n−c) for any c ≥ 1; their
expected size is O ((log n)(log∗ n)).

We analyse a basic simple maximum broadcasting algorithm and prove that
if vertices of a graph G use the same probabilistic distribution to choose a label
then, for broadcasting the maximal label over the labelled graph, each vertex
sends O(log n) messages with probability 1− o(n−1).

From these probabilistic procedures we deduce Monte Carlo algorithms for
electing or computing a spanning tree in anonymous graphs without any initial
knowledge and for counting vertices of an anonymous ring; these algorithms
are correct with probability 1 − o(n−1) or with probability 1 − o(n−c) for any
c ≥ 1. The size of messages has the same value as the size of labels. The
number of messages is O(m log n) for electing and computing a spanning tree; it
is O(n logn) for counting the vertices of a ring. These algorithms can be easily
extended to also ensure for each vertex v an error probability bounded by ǫv;
the error probability ǫv is decided by v in a totally decentralised way.

We illustrate the power of the splitting procedure by giving a probabilistic
election algorithm for rings having n vertices with identities which is correct and
always terminates; its message complexity is equal to O(n log n) with probability
1− o(n−1).

Keywords: Monte Carlo algorithm, spanning tree computation, counting,
election algorithm, probabilistic analysis, splitting and naming.

Preprint submitted to Elsevier February 2, 2015

1. Introduction

1.1. The problem

We consider anonymous, and, more generally, partially anonymous networks:
unique identities are not available to distinguish the processes (or we cannot
guarantee that they are distinct). We do not assume any global knowledge of
the network, not even its size or an upper bound on its size. The processes have
no knowledge on position or distance.

In this context, solutions for classical distributed problems, such as the con-
struction of spanning trees, counting or election, must use probabilistic algo-
rithms. This paper presents and studies splitting and naming procedures which
provide solutions to these problems.

The question of anonymity is often considered when processes must not
divulge their identities during execution, due to privacy concerns or security
policy issues [GR05]. In addition, each process may be built in large scale
quantities from which it is quite infeasible to ensure uniqueness. Therefore,
each process must execute the same finite algorithm in the same way, regardless
of its identity, as explained in [AAER07].

1.2. The Model

Our model is the usual asynchronous message passing model [AW04, Tel00].
A network is represented by a simple connected graph G = (V (G), E(G)) =
(V,E) where vertices correspond to processes and edges to direct communication
links.

Each process can distinguish different incident edges, i.e., for each u ∈ V
there exists a bijection between the neighbours of u in G and [1, degG(u)] (where
degG(u) is the number of neighbours of u in G). The numbers associated by
each vertex to its neighbours are called port-numbers.

Each process v in the network represents an entity that is capable of per-
forming computation steps, sending messages via some ports and receiving any
message via some port that was sent by the corresponding neighbour. We con-
sider asynchronous systems, i.e., each computation may take an unpredictable
(but finite) amount of time. Note that we consider only reliable systems: no
fault can occur on processes or communication links.

In this model, a distributed algorithm is given by a local algorithm that all
processes should execute; thus all processes having the same degree have the
same algorithm. A local algorithm consists of a sequence of computation steps
interspersed with instructions to send and to receive messages.

As Tel [Tel00] (p. 71), we define the time complexity by supposing that
internal events need zero time units and that the transmission time (i.e., the
time between sending and receiving a message) is at most one time unit. This
corresponds to the number of rounds needed by a synchronous execution of the
algorithm.

A probabilistic algorithm is an algorithm which makes some random choices
based on some given probability distributions; non-probabilistic algorithms are
called deterministic.

2

A distributed probabilistic algorithm is a collection of local probabilistic al-
gorithms. Since our networks are anonymous, if two processes have the same
degree their local probabilistic algorithms are identical and have the same prob-
ability distribution.

A Las Vegas algorithm is a probabilistic algorithm which terminates with a
positive probability (in general 1) and always produces a correct result.

A Monte Carlo algorithm is a probabilistic algorithm which always termi-
nates; nevertheless the result may be incorrect with a certain probability.

Let A be a distributed algorithm. Let G be a network. A configuration is
defined by the states of all processes and the states of all communication links.
A terminal configuration is a configuration in which no further steps of A are
applicable (see [Tel00], Chapter 8).

Distributed algorithms presented in this paper are message terminating: al-
gorithms reach a terminal configuration and processes are not aware that the
computation has terminated. We speak of process termination if, when algo-
rithms reach a terminal configuration, processes are in a terminal state (a state
in which there is no event of the process applicable).

Some results on graphs having n vertices are expressed with high probabil-
ity, meaning with probability 1 − o(n−1) (w.h.p. for short) or with very high
probability, meaning with probability 1 − o(n−c) for any c ≥ 1 (w.v.h.p. for
short).

We recall that log∗ n = min{i| log(i) n ≤ 2}, where log(1) n = log n and

log(i+1) n = log(log(i) n).
Unless otherwise noted, all logarithms through the paper are to base 2. As

usual, the natural logarithm is denoted ln

1.3. Our Contribution

Let G = (V,E) be an anonymous connected graph having n vertices. We
assume no knowledge on G.

In the first part of this paper, we propose and analyse the following procedure
by which each vertex builds its label. Each vertex v ofG draws a bit bv uniformly
at random. Let tv be the number of random draws of bv on the vertex v until
bv = 1; it is called the lifetime of the vertex v. Each vertex v uses its lifetime
to draw at random a number idv in the set {0, ..., 2tv+3 log(tv) − 1}; finally, v is
labelled with the couple (tv, idv).

Let T be the maximal value in the set {tv|v ∈ V (G)}. We prove that w.h.p.:

logn− log (2 lnn) < T < 2 logn+ log∗ n.

We prove that, w.h.p., there exists exactly one vertex v such that tv = T
and idv > idw for any vertex w different from v such that tw = T . The size
of labels is O(log n) w.h.p. and the expected value of the size of labels is also
O(log n).

We also prove that w.v.h.p.: 1
2 logn < T < (log∗ n) logn. If each vertex v

draws idv uniformly at random in the set: {0, ..., 2tv log∗ tv − 1} then, w.v.h.p.,
there exists exactly one vertex v such that tv = T and idv > idw for any

3

vertex w different from v such that tw = T . In this case the size of labels is
O((log n)(log∗ n)2) w.v.h.p.; their expected size is O((log n)(log∗ n)).

We analyse a very simple maximum broadcasting algorithm and prove that
if vertices of a graph G use the same distribution to choose their label then,
for broadcasting the maximal label over G, each vertex sends O(log n) messages
w.h.p.

In the second part of this paper, we apply these procedures to classical
problems, in anonymous graphs without any knowledge, such as spanning tree
construction, counting the number of vertices of a ring or electing. In this way,
we obtain:

• Monte Carlo spanning tree algorithms correct w.h.p. (resp. w.v.h.p.),

• Monte Carlo counting ring size algorithms correct w.h.p. (resp. w.v.h.p.),

• Monte Carlo election algorithms correct w.h.p. (resp. w.v.h.p.).

The size of messages used by these algorithms is the same as the size of labels
generated by splitting and naming procedures. We prove also that the message
complexities (the number of messages through the graph) is O(m log n) for the
spanning tree computation and election; it is O(n logn) for counting the vertices
of a ring.

We illustrate the power of the splitting procedure by giving a probabilistic
election algorithm for ring graphs with identities which is correct and always
terminates; its message complexity is equal to O(n logn) w.h.p. (where n is the
number of vertices).

To finish, we explain how to obtain Monte Carlo algorithms which solve
the problems discussed above w.h.p. (or w.v.h.p.) and which ensure for each
vertex v an error probability bounded by ǫv where ǫv is determined by v in a
fully decentralised way. To be more precise, these algorithms ensure an error
probability bounded by ǫ where ǫ is the smallest value among the set of error
probabilities determined independently by each vertex.

1.4. Related Work: Comparisons and Comments

Chapter 9 of [Tel00] and [Lav95] give a survey of what can be done and
of impossibility results in anonymous networks. In particular, no deterministic
algorithm can elect (see Angluin [Ang80], Attiya et al. [ASW88] and Yamashita
and Kameda [YK88]); furthermore, with no knowledge on the network, there
exists no Las Vegas election algorithm [IR90]. In fact, [IR90] proves that, in
this context, the best we can achieve for electing, counting or spanning tree
computing are message terminating Monte Carlo algorithms; there are no such
algorithms which are process terminating.

Message terminating Monte Carlo election algorithms for anonymous graphs
without knowledge are presented in [IR90, AM94, SS94].

The idea that each vertex draws at random a bit until it gets 1 (or 0) is used
in two different contexts in [Pro93, FMS96, KMW11] and in [AM94].

4

In [Pro93, FMS96, KMW11], typically, as explained in [FMS96], processors
have identification numbers and know the number of processors. A group of n
processors play a game to identify a winner by tossing fair coins; the winner
is the elected vertex. All processors that throw heads are eliminated; those
that throw tails remain candidate and flip their coins again. The process is
repeated among candidate winners until a single winner is identified. If at any
stage all remaining candidate winners throw heads then all remaining players
participate again as candidate winners in the next round of coin tossing. The
main parameters studied are the number of rounds till termination and the total
number of coin flips. Finally, the more general idea for breaking symmetry using
a ”logarithmic” trick appears also in radio network protocols as for example for
the wakeup problem in [JS02] or for the MIS problem in [MW05] They each
use probabilities of broadcasting that vary with time so that, in a “reasonable”
time, they reach values which are “good” for the actual n.

In the case where no knowledge on the network is available, Monte Carlo
election algorithms presented in [AM94, SS94] are correct with probability 1−ǫ,
where ǫ is fixed and known to all vertices. In [AM94] executing the algorithm,
presented in Section 2 (Networks with unknown size), each vertex tosses a fair
coin until it gets a head for the first time. The number of these tosses is used
only to have a small number of vertices which compete for the election. To
obtain its number, each vertex v selects at random an element idv of [1, ..., d]
where d = 36 log 4r, r = 1/ǫ and ǫ is fixed, given a priori (see [AM94], p. 315
Fig. 2.). Let M = max{idv|v ∈ V }, then there is a unique vertex u such that
tu is maximal and idu = M with probability greater than or equal to 1− ǫ. The
expected size of each message is O(log logn+ log ǫ−1). (The idea of eliminating
some vertices before the election appears also in [RFJ+07]; the goal is to reduce
the number of messages for the election.)

The algorithm presented in [SS94], maintains a rooted spanning forest of
G. Each vertex belongs to a tree (initially it is alone). In the course of the
algorithm trees expand by merging with adjacent trees. The level of a tree
T , denoted Level(T), is the integer part of the (base two) logarithm of the
estimated number of nodes of T. The label of T (and thus of its root) is redrawn
from the domain d2level(T), where d = ⌈2/ǫ⌉ and ǫ is fixed ([SS94] p. 90). Upon
termination, the forest consists of one tree with probability 1 − ǫ; the root of
this tree is taken to be the elected vertex. The size of messages is O(log(n/ǫ)).

A message terminating Monte Carlo counting algorithm for rings is presented
in [IR90]. Each vertex generates messages formed by: an estimation (initially
2) of the size of the ring and a random bit. Next the vertex sends the message
along the ring. If a vertex receives a message which indicates that the estimation
is not correct then it increments its estimation and generates another message.
Finally, for each ǫ, [IR90] provides a counting algorithm correct with probability
1− ǫ.

Tables 1 and 2 summarise the comparison of these various algorithms and
those that are presented in this paper.

5

Correct
with
proba-
bility

Message Complexity Message size (number of
bits)

Time

Afek-
Matias

1− ǫ Expected-value:
O(m(log n)ǫ−1 log ǫ−1)
and
O(m(log n)αǫ−1 log ǫ−1)
with probability
1− n−α ∀α

Expected-value:
O(log ǫ−1 + log(logn)),
and O(log ǫ−1 +
log(logn) + logα) with
probability 1− n−α ∀α

O(D)

Schieber-
Snir

1− ǫ O(m log n) O(log n) O(n)

Elect-
w.h.p.
Sec-
tion
7

w.h.p. O(m log n) w.h.p. O(log n) w.h.p., it is also
the expected value

O(D)

Elect-
w.v.h.p.
Sec-
tion
7

w.v.h.p. O(m log n) w.h.p. O
(

(logn)(log∗ n)2
)

w.v.h.p. and the
expected value is
O ((logn)(log∗ n))

O(D)

Table 1: Comparison of various Monte Carlo election algorithms for anonymous graphs with-
out any initial knowledge (ǫ is a given constant known by each vertex, n is the number of
vertices, m is the number of edges, D is the diameter of the graph).

Correct
with
proba-
bility

Message Com-
plexity

Message size (number of
bits)

Time

Itai-Rodeh 1− ǫ O(n3) O(log n) O(n)
Counting-
ring-whp
Section 6

w.h.p. O(n log n) w.h.p. O(log n) w.h.p., it is also
the expected value

O(n)

Counting-
ring-wvhp
Section 6

w.v.h.p. O(n log n) w.h.p. O
(

(log n)(log∗ n)2
)

w.v.h.p. and the
expected value is
O ((log n)(log∗ n))

O(n)

Table 2: Probabilistic computation of the ring size (ǫ is a given constant known by each vertex
and n is the number of vertices).

6

1.5. Summary

This paper is organised as follows. Sections 2 and 3 present and analyse
two fully distributed splitting and naming probabilistic procedures which gen-
erate labels on vertices of graphs. Section 4 analyses a classical broadcasting
algorithm. Sections 5, 6 and 7 present applications to spanning tree construc-
tion, counting and electing for anonymous graphs without any knowledge; more
precisely they present Monte Carlo algorithms which solve these problems and
which are correct w.h.p. or w.v.h.p. Section 8 applies the splitting procedure to
obtain an efficient deterministic election algorithm for named rings. Section 9
explains how to modify previous procedures to ensure to each vertex v an upper
bound of the error probability.

2. Analysis of a Splitting and Naming Probabilistic Procedure

This section presents and analyses a fully distributed probabilistic procedure,
denoted Splitting-Naming-whp (see Algorithm 1), which assigns to each vertex
v of a graph G a label (tv, idv) defined as follows.

A vertex v draws uniformly at random (u.a.r. for short) a bit bv until bv = 1.
We denote by tv the number of bits generated by the vertex v; it is called the
lifetime of v.

The number idv is obtained by generating a number choosen u.a.r. in the
set {0, ..., 2tv+3 log(tv) − 1}.

Algorithm 1: Procedure Splitting-Naming-whp(v).

1: tv := 0
2: repeat
3: draw uniformly at random a bit b(v);
4: tv := tv + 1
5: until b(v) = 1
6: choose uniformly at random a number idv in the set {0, · · · , 2tv+3 log(tv)−1};

We define the order, denoted <, on couples by: (tv, idv) < (t′v, id
′
v) if:

• either tv < t′v

• or tv = t′v and idv < id′v.

From now on, labels are couples that are ordered by <.
The sequel of this section analyses Procedure Splitting-Naming-whp(v), and

more precisely:

1. the lifetime of each vertex,
2. the number of vertices that share the maximal lifetime,
3. the number of vertices that share the maximal lifetime and the same max-

imal number,
4. the size of the labels.

7

2.1. Analysis of the Maximal Number of Bits Drawn by each Vertex

We first analyse the value of tv for any vertex v and the maximal value of
tv among vertices of the graph.

Any vertex has probability 1/2 to draw the bit 1. Then tv, for any vertex v,
is a geometric random variable (r.v. for short) with parameter 1/2. The max-
imal lifetime is simply maxv∈V tv, the maximum of n independent identically
distributed (i.i.d. for short) geometric r.v. and hence:

Proposition 1. Let G = (V,E) be a graph having n > 0 vertices. We consider
a run of Procedure Splitting-Naming-w.h.p. on vertices of G. Let T denote the
maximal value of the set {tv|v ∈ V }; T satisfies the following inequalities:

1. T < 2 logn+ log∗ n w.h.p.
2. T > logn− log (2 lnn) w.h.p.

Proof. Initially the number of vertices is equal to n. Therefore after t random
bit flips the expected number of vertices still alive is n

2t . In particular after
2 logn + log∗ n random bit flips it is 1

n2log∗ n so that the probability that any

vertex remains is less than 1
n2log∗ n . This proves the first claim.

On the other hand, for any t > 0, we have the following equality:

Pr (T > t) = Pr (∃v ∈ V s.t. tv > t)

= 1−

(

1−
1

2t

)n

. (1)

We also have the exponential approximation (1 − a)n ∼ e−an as n → ∞, thus,

Pr (T > t) ∼ 1− e−
n

2t , as n → ∞. (2)

Taking t = logn− log (2 lnn) in (2), we obtain:

Pr (T > t) ≥ 1− o

(

1

n

)

, (3)

this proves the second claim which ends the proof. �

Remark 1. Note that, in Proposition 1, the term log∗ n can be replaced by
any slowly-growing non bounded function g(n).

From Proposition 1, we can deduce the following:

Corollary 1. The expected value of T is equal to Θ(logn).

Proof. At the end of each round, half of the vertices still active become inac-
tive. Thus E (T), the expected value of T , is O(log n).

On the other hand, using the Markov inequality, we have:

E (T) ≥ (logn− log (2 lnn))× Pr (T > logn− log (2 lnn)) . (4)

Then, using the second claim of Proposition 1, this proves that E (T) =
Ω (logn). Which ends the proof. �

8

2.2. Analysis of the Number of Vertices that Share the Same Maximum Life-
Time

For any t ≥ 0, we denote by Xt the number of vertices still alive at time t.
For any i > 0, we have:

Pr (Xt+1 = 0 | Xt = i) =
1

2i
. (5)

This yields the following claim:

Claim 1.

Pr (Xt+1 = 0 | Xt ≥ 2 logn) ≤
1

n2
. (6)

Then, we obtain the following proposition:

Proposition 2. The number of vertices which have the same maximum lifetime
is, with high probability, at most 2 logn.

Proof. We consider the probability Ct that at time t, there are still more than
2 logn vertices alive and that they all vanish at the next round. The sum of all
Ct is the probability that there are more than 2 logn vertices sharing the same
maximum lifetime. We have:

Ct = Pr (the number of alive vertices at time t > 2 logn)

×Pr (all alive vertices finish | there are > 2 logn)

≤ Pr (all alive vertices finish | there are > 2 logn) .

Then, using (6), we obtain:

Ct ≤ 2−2 logn = n−2. (7)

On the other hand, we have:

Pr (XT ≥ 2 logn) ≤ Pr (T > 2 logn) +
∑

t≤2 logn

Ct = o

(

1

n

)

. (8)

Which ends the proof. �

2.3. Analysis of the Number of Vertices that Have the same Maximum LifeTime
and the same Maximum Number

At the end of the initialisation phase, each vertex v obtains an integer tv.
Then it chooses u.a.r. a number

idv ∈
{

0, · · · , 2tv+3 log(tv) − 1
}

.

We have the following proposition :

9

Proposition 3. With high probability, there exists a unique vertex v with label
(tv, idv) such that for any w ∈ V \ {v}: (tv, idv) > (tw, idw).

Proof. Let S = {v1, · · · , vk} be the set of vertices that share the maximum
lifetime. By Claim 2 of Proposition 1, w.h.p., any vertex v in S is such that
tv > logn− log(2 logn). Thus, each vertex v in S will choose u.a.r. a number
idv from a set which contains w.h.p. the set:

{

0, · · · ,
n

2 lnn
×
(

log
(n

2 lnn

))3

− 1

}

.

If we denote f(n) = n
2 lnn ×

(

log
(

n
2 lnn

))3
, then, using enumeration argu-

ments, we show that the probability for v to be the unique vertex with the
highest number is given by:

Pr (idv > idw, ∀w ∈ S \ {v}) ≥

f(n)−1
∑

i=1

1

f(n)
×

(

i− 1

f(n)

)k−1

∼
1

k

(

1−
1

f(n)

)k

as n → ∞. (9)

Thus, the probability that a unique vertex in S has the highest number is given
by:

Pr (∃v s.t. idv > idw, ∀w ∈ S \ {v}) ∼

(

1−
1

f(n)

)k

as n → ∞. (10)

Now, by Proposition 2, we have k < 2 logn, w.h.p., thus :

Pr (∃v s.t. idv > idw, ∀w ∈ S \ {v}) ≥

(

1−
1

f(n)

)2 logn

∼ e−2 log n

f(n)

= 1− o

(

1

n

)

,

which ends the proof. �

2.4. Analysis of the Size of the Random Numbers

A vertex v chooses u.a.r. a number idv from the set:

{

0, · · · , 2tv+3 log(tv) − 1
}

.

This implies that this random number has a size of at most 2 logn+O (log logn)
bits w.h.p. Furthermore, from Corollary 1 we deduce directly that the expected
value of the size of idv is O(log n).

10

3. Analysis of a Variant of the Splitting and Naming Probabilistic
Procedure

This section presents and analyses a variant of Procedure Splitting-Naming-
whp, it is denoted Splitting-Naming-wvhp (see Algorithm 2).

Now, the label of the vertex v is the couple (tv, idv) where tv is still the
lifetime of v. The difference is in the drawing of idv: the number idv is obtained
by generating a number choosen u.a.r. in the set {0, ..., 2tv log∗ tv − 1}.

Algorithm 2: Procedure Splitting-Naming-wvhp(v).

1: tv := 0
2: repeat
3: draw uniformly at random a bit b(v);
4: tv := tv + 1
5: until b(v) = 1
6: choose uniformly at random a number idv in the set {0, ..., 2tv log∗ tv − 1};

The remainder of the section is devoted to the analysis of Procedure Splitting-
Naming-wvhp.

3.1. Analysis of the Maximal Number of Bits Drawn by each Vertex

Proposition 4. Let G = (V,E) be a graph with n > 0 vertices. We consider
a run of Procedure Splitting-Naming-wvhp. Let T denote the maximal value of
the set {tv|v ∈ V }; T satisfies the following inequalities:

1. T < (logn) log∗ n. w.v.h.p.
2. T > 1

2 logn w.v.h.p.

Proof. Taking t = 1
2 logn in (2), we obtain:

Pr

(

T >
1

2
logn

)

∼ 1− e−
√
n, as n → ∞

∼ 1− o
(

1
nc

)

for any c ≥ 1. (11)

On the other hand, after (log∗ n) logn rounds, the expected number of ver-
tices still alive is n

nlog∗ n so that the probability that any vertex remains is less

than 1
nlog∗ n−1 which is o(1

nc) for any c ≥ 1.

Remark 2. Note that, in Proposition 4, as in Proposition 1, the term log∗ n
can be replaced by any slowly-growing non bounded function g(n).

11

3.2. Analysis of the Number of Vertices that Have the same Maximum LifeTime
and the same Maximum Number

Proposition 5. With very high probability, there exists a unique vertex v with
the label (tv, idv) such that for any w ∈ V \ {v}: (tv, idv) > (tw, idw).

Proof. Recall that idv is obtained by generating a number chosen u.a.r. in
the set {0, ..., 2tv log∗ tv − 1}.

Recall that S = {v1, · · · , vk} is the set of vertices that share the maximum
lifetime.

Thus, each vertex v in S chooses u.a.r. a number in a set which contains
w.v.h.p. the set:

{

0, · · · , 2(
log n

2)(log∗(log n
2)) − 1

}

.

The probability that at least two vertices, with the same maximal value
tv = T , obtain the same number satisfies:

Pr (∃u, v ∈ S s.t. u 6= v and idu = idv) <
n2

2(
log n

2)(log∗(log n
2))

= o

(

1

nc

)

for any c ≥ 1, as n → ∞.

This ends the proof. �

3.3. Analysis of the Size of the Random Numbers

Proposition 6. The size of numbers idv is w.v.h.p. O
(

(logn)(log∗ n)2
)

. Its
expected value is O ((logn)(log∗ n)).

Proof. The first part is a direct consequence of Proposition 4 and of the choice
of idv in the set:

{

0, · · · , 2T log∗ T − 1
}

.

For the second part, let S(idv) denote the size of idv, and let Smax =
maxv∈V S(idv) = T log∗ T.

Then:

E (Smax) =
∑

x≥1

Pr (Smax ≥ x)

=

(lnn)(log∗ n)
∑

x=1

Pr (Smax ≥ x) +
∑

x>(lnn)(log∗ n)

Pr (Smax ≥ x) ,

yielding:

E (Smax) ≤ (lnn)(log∗ n) +
∑

x≥(lnn)(log∗(lnn))

Pr (Smax ≥ x) . (12)

Then the second part of the sum in expression (12) satisfies:

12

∑

x≥(lnn)(log∗(lnn))

Pr (Smax ≥ x) =
∑

t≥lnn

(t+1) log∗(t+1)−1
∑

y=t log∗ t

Pr (Smax ≥ y) .(13)

On the other hand, for any y in the interval [t log∗ t, (t+ 1) log∗(t+ 1)− 1]:

Pr (Smax ≥ y) = Pr (Smax ≥ t log∗ t)

= Pr (T ≥ t) ≤
n

2t
, (14)

yielding:

∑

x≥(lnn)(log∗(lnn))

Pr (Smax ≥ x) ≤
∑

t≥lnn
n((t+1) log∗(t+1)−t log∗ t)

2t . (15)

Since log∗(t+ 1) ≤ log∗ t+ 1, this gives:

∑

x≥(lnn)(log∗(lnn))

Pr (Smax ≥ x) ≤
∑

t≥lnn

n (t+ log∗ t+ 1)

2t

= O (logn) . (16)

Hence:

E (Smax) ≤ (lnn)(log∗ n) +O (logn)

= O ((logn)(log∗ n)) , (17)

which ends the proof. �

4. Analysis of the Message Complexity of a Maximum Broadcasting
Algorithm

This section analyses the message complexity of a maximum broadcasting
algorithm. More precisely, it analyses the number of messages exchanged in a
labelled graph for broadcasting the maximal label. This analysis will be useful
in next sections.

Let G be a graph and L a set of labels totally ordered by a relation >. Each
vertex v of G chooses a label from L (all the vertices use the same distribution
to choose a label), memorises its value in maxv and sends it to neighbours.
If vertex v receives a label l greater than maxv then it memorises it in maxv

and sends it to neighbours. The precise description of the algorithm is given in
Algorithm 3 (initially, for each vertex v, labelv is not defined).

We have the following proposition:

Proposition 7. Let G be a graph and let L be a totally ordered set of labels.
Each vertex v of G chooses a label from L; all the vertices use the same distribu-
tion to choose a label. For each run of Algorithm Broadcasting-Max the number
of messages sent by each vertex of G is w.h.p. O (logn).

13

Algorithm 3: Broadcasting-Max.

I : {If labelv is not defined}
begin

choose at random labelv from L;
maxv := labelv ;
send < (labelv) > to all neighbours

end

B : {A Message (label) has arrived at v through port p}
begin

if labelv is not defined then

choose at random labelv from L;
maxv := labelv ;
send < labelv > to all neighbours

if label > maxv then

maxv := label;
send < (label) > to all neighbours except through port p

end

Proof. Let G be a graph having n vertices and v be a vertex of G. Let max
(i)
v

be the value of maxv at the ith round of Algorithm Broadcasting-Max. By

convention, max
(0)
v = labelv.

Let Li = {l ∈ L|∃w ∈ V, labelw = l and l > max
(i)
v } and let Xi denote the

size of Li. Clearly L0 ⊆ L and X0 =| L0 |≤ n.
On the other hand, all the vertices in the graph have the same distribution

for generating labels, then for any pair of vertices (u,w), we have:

Pr (maxu > maxw) = Pr (maxw > maxu)

= Pr (maxu 6= maxw) /2

≤ 1/2. (18)

For any i ≥ 0, let Yi be the r.v. such that Yi = 1 if v sends a message at
round i and 0 otherwise.

We also define the sequence (kj)j≥0 as k0 = 1 and for any j ≥ 0, kj+1 = i−i′

where i′ =
∑j

x=0 kx, Yi = Yi′ = 1 and for any i′ < l < i, Yl = 0.
For any j > 0, using (18), we have:

E
(

Xk0+···+kj+kj+1 | Lk0+···+kj

)

≤ Xk0+···+kj
/2. (19)

Now, defining the r.v. (Zj)j≥0 by Zj = 2jXk0+···+kj
for any j ≥ 0, we have:

E
(

Zj+1 | Lk0+···+kj

)

= 2j+1
E
(

Xk0+···+kj+kj+1 | Lk0+···+kj

)

. (20)

Then, using (19) we obtain:

E
(

Zj+1 | Lk0+···+kj

)

≤ 2jXk0+···+kj
= Zj . (21)

Thus, the r.v. Zj is a super-martingale (see [Wil93]), and then:

E (Zj+1) = E
(

E
(

Zj+1 | Lk0+···+kj

))

≤ E (Zj) .

(22)

14

A direct application of properties on supermartingales (see [Wil93], Chapter 10,
p. 99) yields E (Zi) ≤ Z0 ≤ n. Thus:

E
(

Xk0+···+kj

)

=
1

2j
E (Zj) ≤

n

2j
. (23)

Then, taking j > j0 = (3 + ε) logn for any ε > 0, we obtain:

E
(

Xk0+···+kj

)

≤ 1
n2+ε . (24)

Thus, using the Markov inequality, this yields:

Pr
(

Xk0+···+kj
> 1

)

≤
1

n2+ε
. (25)

Hence, the probability that some vertex in the graph sends more than (3+ε) logn
messages is 1

n1+ε which is o
(

1
n

)

. This ends the proof. �

Corollary 2. Let G be a graph of bounded degree having n vertices and let L be
a totally ordered set of labels. Each vertex v of G chooses a label from L; all the
vertices use the same distribution to choose a label. Procedure Broadcasting-Max
has a message complexity equal to O(n log n).

5. A Monte Carlo Spanning Tree Algorithm Correct w.h.p. (resp.
w.v.h.p.)

This section presents message terminating Monte Carlo algorithms, Algo-
rithm 4 and a variant, for computing a spanning tree of an anonymous graph
without any initial knowledge and with no distinguished vertex; they are correct
w.h.p. (resp. w.v.h.p.).

Each vertex v is initially labelled with the label (tv, idv) generated by the
probabilistic procedure Splitting-naming-whp (resp. Splitting-naming-wvhp).
Each vertex attempts to build a tree considering that it is the root. If two
vertices are competing to capture a third vertex w then w will join the tree
whose root has the higher label; this label is indicated in maxv. The father of
vertex v is indicated by the port number fatherv (by convention, if rootv = true
then fatherv = 0). The children of v correspond to the set of port numbers
childrenv, neighbours of v which are neither children nor the father of v are
indicated in the set of port numbers otherv.

Claim 2. Let G be a graph. For each run of Spanning-Tree-whp, eventually,
the network reaches a terminal configuration. The time complexity is O(D),
where D is the diameter of the graph.

Let (tmax, idmax) be the maximal label of the vertices of G. When the network
reaches a terminal configuration the set of fatherv encodes a spanning forest,
the root of each tree is a vertex labelled (tmax, idmax). If there is a unique vertex
v such that (tv, idv) = (tmax, idmax) then the spanning forest is a spanning tree
whose root is v.

15

Algorithm 4: Spanning-Tree-whp.

I : {If (tv , idv) is not defined}
begin

call Splitting-Naming-whp(v);
maxv := (tv , idv);
rootv := true;
fatherv := 0; otherv := ∅; childrenv := ∅;
send < (tv , idv) > to all neighbours

end

D : {A Message (t, id) has arrived at v through port l}
begin

if (tv, idv) is not defined then

call Splitting-Naming-whp(v);
maxv := (tv, idv);
rootv := true;
fatherv := 0; otherv := ∅; childrenv := ∅;
send < (tv , idv) > to all neighbours

if (t, id) > maxv then

maxv := (t, id);
rootv := false;
fatherv := l; children := ∅; other := ∅;
send < (parent,maxv) > through l;
send < maxv > to all neighbours except through l

else

if (t, id) = maxv then

send < (already,maxv) > through l

end

P : {A Message < (parent,m) > has arrived at v through port l}
begin

if m = maxv then

add l to childrenv

end

A : {A Message < (already,m) > has arrived at v through port l}
begin

if m = maxv then

add l to otherv

end

Remark 3. Algorithm Spanning-Tree-wvhp is obtained by substituting Splitting-
Naming-wvhp to Splitting-Naming-whp in Algorithm Spanning-Tree-whp. Claim
2 is still valid for Algorithm Spanning-Tree-wvhp.

Concerning the analysis of these algorithms, results of previous sections im-
ply:

Proposition 8. Let G be a graph having n vertices and m edges. Algorithm
Spanning-Tree-whp (resp. Algorithm Spanning-Tree-wvhp) computes a span-
ning tree w.h.p. (resp. w.v.h.p.). The size of messages of Algorithm Spanning-
Tree-whp (resp. Spanning-Tree-wvhp) is O(log n) w.h.p., it is also the ex-
pected value (resp. O

(

(log n)(log∗ n)2
)

w.v.h.p. and the expected value is
O ((log n)(log∗ n))). The message complexity of these two algorithms is w.h.p.
O(m logn).

16

6. A Monte Carlo Counting Algorithm for Rings Correct w.h.p. (resp.
w.v.h.p.)

This section presents a message terminating Monte Carlo algorithm, Al-
gorithm 5, for computing the size of an anonymous ring without any initial
knowledge correct w.h.p. It also presents a variant correct w.v.h.p.

The main idea is very simple: each vertex v generates a label labelv with
the probabilistic procedure Splitting-naming-whp. Then v sends over the ring a
message containing this label and a counter equal to 1. Each vertex v memorises
inmaxv the largest value it has received. A message is rejected if it is received by
a vertex u such that maxu is greater than it. If not, the counter is incremented
until the message is received by a vertex w having the same label as v. In
this case w considers that the message is its own message and the value of the
counter is the size of the ring; therefore it sends over the ring a new message to
indicate this fact to each vertex which memorises this size and the associated
label.

Algorithm 5: Counting-Ring-whp.

I : {If labelv is not defined}
begin

call Splitting-Naming-whp(v);
labelv := (tv , idv);
maxv := labelv ;
send < (labelv , 1) > to Nextv

end

D : {A Message ((t, id), s) has arrived at v}
begin

if labelv is not defined then

call Splitting-Naming-whp(v);
labelv := (tv , idv);
maxv := labelv ;
send < (labelv , 1) > to Nextv

if (t, id) > maxv then

maxv := (t, id);
s := s + 1;
send < ((t, id), s) > to Nextv

else

if (t, id) = maxv = (tv , idv) then

sizev := s;
send < (RES,maxv, s) > to Nextv

end

R : {A Message (RES,m, s) has arrived at v}
begin

if labelv is not defined then

call Splitting-Naming-whp(v);
labelv := (tv , idv);
maxv := labelv
send < (labelv , 1) > to Nextv

if m > maxv then

sizev := s;
maxv := m;
send < (RES,m, s) > to Nextv

end

17

Claim 3. Let G be a ring. For each run of Counting-Ring-whp, eventually,
the network reaches a terminal configuration. The time complexity is O(n),
where n is the number of vertices of the ring.

Let (tmax, idmax) be the maximal label of the vertices of G. If there is a
unique vertex v such that (tv, idv) = (tmax, idmax) then for each vertex v of G,
sizev is equal to the number of vertices of G and maxv = (tmax, idmax).

Remark 4. Algorithm Counting-Ring-wvhp is obtained by substituting Splitting-
Naming-wvhp to Splitting-Naming-whp in Algorithm Counting-Ring-whp. Claim
3 is still valid for Algorithm Counting-Ring-wvhp.

As for the spanning tree computation, properties concerning Algorithm Counting-
Ring-whp (resp. Algorithm Counting-Ring-wvhp) are deduced immediately
from previous sections and summarised by:

Proposition 9. Let G be a ring graph having n vertices. Algorithm Counting-
Ring-whp (resp. Algorithm Counting-Ring-wvhp)

is correct w.h.p. (resp. w.v.h.p.). The size of messages of Algorithm Counting-
Ring-whp (resp. Counting-Ring-wvhp) is O(log n) w.h.p., it is also the expected
value (resp. O

(

(log n)(log∗ n)2
)

w.v.h.p. and the expected value is
O ((log n)(log∗ n))). The message complexity of these two algorithms is w.h.p.
O(n logn).

7. A Monte Carlo Election Algorithm Correct w.h.p. (resp. w.v.h.p.)

This section presents, after some preliminaries, message terminating Monte
Carlo election algorithms for anonymous graphs without any initial knowledge
correct w.h.p. (resp. w.v.h.p.). They differ from Algorithm ELECT in [AM94]
p. 315 only by the choice of labels of vertices.

7.1. Preliminaries

We assume that initially every node is marked undetermined. An election
algorithm is an algorithm such that in a final configuration exactly one process is
marked as elected and all the other processes are labelled non-elected. Moreover,
it is supposed that once a process becomes elected or non-elected then it remains
in such a state until the end of the algorithm. In fact for anonymous ring graphs
without any initial knowledge we have:

Theorem 1. There is no election algorithm for ring graphs that is correct with
probability α > 0.

This theorem is a direct consequence of Theorem 4.2 in [IR90] given below.

Theorem 4.2[IR90] There is no process terminating algorithm for computing
the ring size that is correct with probability α > 0.

Thus in the sequel of this section we use the sentence “election algorithm”
as Afek and Matias in [AM94] considering that the state elected may be not
terminal: a process marked as elected can be marked non-elected later.

18

7.2. An Election Algorithm

The aim of Algorithm Elect-whp (Algorithm 6) is to choose as elected the
unique vertex v (if there exists a unique), such that:

∀ w 6= v (tw, idw) < (tv, idv).

Algorithm 6: Elect-whp.

I : {If (tv , idv) is not defined}
begin

call Splitting-Naming-whp(v);
maxv := (tv , idv);
leaderv := true;
send < (tv , idv) > to all neighbours

end

D : {A Message (t, id) has arrived at v through port l}
begin

if (tv, idv) is not defined then

call Splitting-Naming-whp(v);
maxv := (tv, idv);
leaderv := true;
send < (tv , idv) > to all neighbours

if (t, id) > maxv then

maxv := (t, id);
leaderv := false;
send < (t, id) > to all neighbours except through l

end

Remark 5. Initially, each vertex is labelled elected and each vertex modifies
its label at most once.

Claim 4. Let G be a graph. For each run of Elect-whp, eventually, the network
reaches a terminal configuration. The time complexity is O(D), where D is the
diameter of G.

Let (tmax, idmax) be the maximal label of the vertices of G. If there is a
unique vertex v such that (tv, idv) = (tmax, idmax) then there is a unique vertex
such that leader is true, the others have leader equal to false.

Remark 6. Algorithm Elect-wvhp is obtained by substituting Splitting-Naming-
wvhp to Splitting-Naming-whp in Algorithm Elect-whp. Claim 4 is still valid
for Algorithm Elect-wvhp.

Concerning the analysis of these algorithms, results of previous sections imply:

Proposition 10. Let G be a graph having n vertices and m edges. For each
run of Algorithm Elect-whp (resp. Algorithm Elect-wvhp), G reaches a stable
configuration and there is exactly one vertex with the label elected w.h.p. (resp.
w.v.h.p.). The size of messages of Algorithm Elect-whp is O(log n) w.h.p., it
is also the expected value. The size of messages of Algorithm Elect-wvhp is
O
(

(log n)(log∗ n)2
)

w.v.h.p. and the expected value is O ((log n)(log∗ n)). The
message complexity of these two algorithms is w.h.p. O(m log n).

19

8. Ring with Identities + Splitting Procedure = O(n logn) Message
Complexity w.h.p. Election Algorithm

This section gives an illustration of the power of the splitting procedure
studied in Section 2 thanks to Proposition 7.

Let R be a ring having n vertices. We assume that vertices of R are aware
of n, and each vertex v has a unique identity denoted identv.

We consider the order defined in Section 2.

Algorithm 7: Procedure Splitting(v).

1: tv := 0
2: repeat
3: draw uniformly at random a bit b(v);
4: tv := tv + 1
5: until b(v) = 1

For electing a vertex of R, first each vertex v of R applies Procedure Splitting
obtaining tv, and then it broadcasts over the ring the triple (tv, identv, hop),
where identv is the initial identity of v and hop is an integer (its initial value is
1) which is incremented as it moves over the ring. Each vertex memorises the
maximal value that it sees. A message is stopped as soon as it reaches a vertex
w having a maximal value greater than or equal to the couple of the message.

Algorithm 8: Elect-ring.

I : {If tv is not defined}
begin

call Splitting(v);
maxv := (tv , identv);
send < (tv , identv , 1) > to Next

end

D : {A Message (t, ident, h) has arrived at v}
begin

if tv is not defined then

call Splitting(v);
maxv := (tv, identv);
send < (tv , identv , 1) > to Next

if (t, ident) > maxv then

maxv := (t, ident);
send < (t, ident, h + 1) > to Next

else

if (t, id) = (tv , identv) and h = n then

Leaderv := true

end

The elected vertex is the vertex u which receives a message (t, ident, h) with
t = tu, ident = identu and h = n. Initially, for each vertex v leaderv is
undefined.

20

Proposition 11. Let R be a ring having n vertices such that each vertex has a
unique identity and knows n. Algorithm Elect-ring terminates and elects a vertex
with messages of size O(log n) w.h.p. and the number of messages through the
ring is w.h.p. O(n log n).

Proof. Any two vertices v and w of R choose at random with the same distri-
bution the first elements tv and tw of their couples. Proposition 7 and the order
on couples imply that each vertex sends w.h.p. O(log n) messages with respect
to the first element of couples. The proposition is then a direct consequence of
Proposition 2.

Remark 7. In a certain sense our result is optimal since any decentralised wave
algorithm for ring networks exchanges Ω(n logn) messages, on the average as
well as the worst case (see [Tel00] Corollary 7.14).

9. From Asymptotic Error Probabilities to Decentralised Instanta-
neous Error Probabilities

9.1. Presentation of the Problem

One may wonder whether it is possible to obtain Monte Carlo algorithms
which solve problems discussed above and which ensure for each vertex v an error
probability bounded by a constant ǫv determined by v in a fully decentralised
way.

This section gives a positive answer to this question illustrated through the
election problem.

9.2. The Case of the Election Problem

We prove the following theorem:

Theorem 2. Let G = (V,E) be a graph having n vertices. For each v ∈ V , let
ǫv > 0 be an error probability. There exists a message terminating algorithm to
perform election in G w.h.p. with error probability ǫ = min{ǫv | v ∈ V }. Its
time complexity is O(D) (where D is the diameter of the graph), its message
complexity is O(m log n) w.h.p. and the size of each message is O(log(n+ ǫ−1))
with probability at least 1− ǫ.

Proof (Begin of the proof of Theorem 2). Let G be a graph, v be a
vertex of G and let ǫv be a constant (ǫv < 1) known by v. The vertex v wants
to ensure that the election performed by the Monte Carlo algorithm is correct
with probability 1 − ǫv. Instead of drawing a bit uniformly at random until it
gets 1, the vertex v does this operation rv =

⌈

ǫv
−1

⌉

times and it memorises the

maximal lifetime, denoted t
(rv)
v , among the rv lifetimes it obtains. The sequel of

the algorithm is the same as Elect-whp: the vertex v draws at random a number

idv in the set {0, ..., 2t
(rv)
v +3 log(t(rv)

v) − 1} etc.
Now we prove that, in this way, we obtain a Monte Carlo algorithm which

elects in a graph w.h.p. and ensures an error probability bounded by a constant

21

ǫ where ǫ is the smallest value among the set of error probabilities fixed indepen-
dently by each vertex of the graph G (this algorithm is denoted Elect-whp-ǫ).

Thus Algorithm Elect-whp-ǫ resembles the standard election in a virtual
graph of N =

∑

v rv vertices with the difference that only one of the virtual
vertices corresponding to v and having the same maximum lifetime tv continues
the drawing process. We would intuitively expect this pruning of vertices to
reduce the probability of failure but our argument does not depend on a proof
of this intuition.

As for Algorithm Elect-whp, the time complexity of Elect-whp-ǫ is O(D)
(where D is the diameter of the graph) and the message complexity is w.h.p.
O(m logn).

We number the vertices of G from 1 to n with the first vertex v1 one of those
with the minimum ǫ and abbreviate rv1 as r1 etc.

For any t0, we have Pr(failure) ≤ Pr(T < t0) + Pr(failure|T ≥ t0).
Before continuing the proof of the theorem we prove a lemma concerning the

second term in this sum.

Lemma 3. Pr(failure|T ≥ t0) ≤ (N − r1)× 2−(2t0+3 log t0).

Proof. Since T ≥ t0, there is at least one vertex v which has drawn 00...0
(t0 − 1 times) in at least one of its rv drawings. Let vi be the first of these
vertices. We consider, for i ≤ j ≤ n, the number ej of excess vertices, that is
those in vi · · · vj which have the maximum couple (t, id) not counting the first
with this maximum. Initially j = i and ei is zero; passing from j to j+1, either
vj+1 has the same couple as the maximum so far (in i..j) and ej+1 = ej + 1,
or its couple is greater than this maximum and ej+1 = 0, or else it is less and
ej+1 = ej . Let t−1 be the number of 0-bits at the start of the current maximum
drawing; t ≥ t0. The probability that vj+1 has the same couple is at most the
product of three probabilities:

• some drawing started with t− 1 0-bits: probability at most rj+12
1−t,

• all drawings that started with t− 1 0-bits had a 1-bit in position t: prob-
ability at most 1/2,

• the idvj chosen (in 0 · · · 2t+3 log t−1) was identical to the maximum so far:

probability 2−(t+3 log t).

The product of these three probabilities is at most rj+12
−(2t0+3log t0). Hence we

deduce by induction that:

E(ej) ≤

j
∑

m=i+1

rm2−(2t0+3log t0)

and, in particular,:

E(en) ≤

n
∑

m=i+1

rm2−(2t0+3log t0).

22

Thus we have that E(en) is the weighted sum of values (for the possible values
of i) each ≤ (N − r1) × 2−(2t0+3log t0), and so is itself upper bounded by this
value.

Finally we have Pr(failure|T ≥ t0) = Pr(en > 0|T ≥ t0) ≤ E(en|T ≥ t0)
completing the proof of the lemma. �

Proof (Continuation of the proof of Theorem 2). We return to the up-
per bound Pr(T < t0) + Pr(failure|T ≥ t0).

The first term is the probability that no virtual vertex draws t0 − 1 or more
0-bits before the first 1. We will use the upper bound e−N/2t0−1

except when
t0 = 2 for which we have the exact value 2−N .

The bound on the probability is given, for each N , by choosing a suitable
value for t0; this value is t0 = ⌈logN − log logN⌉ except for 3 ≤ N ≤ 4 for
which t0 = 2.

We consider two cases:

• 3 ≤ N ≤ 4: t0 = 2 giving failure probability ≤ 2−N + (N − 1)/27 < 1/N .

• N > 4: We will show that each of the two terms in the sum is bounded
by half the allowed error probability of 1/r1. For the first term we have
t0 < logN−log logN+1 giving 2t0−1 < N/ logN so that our upper bound
on Pr(T < t0) is less than e− logN = N− log e < 1/2N .

For the second term we use the lemma that it is less than (N − r1) ×
2−(2t0+3⌈log t0⌉) and claim that this is at most 1/2r1. This follows because
2r1(N − r1) ≤ N2/2 and t0 ≥ logN − log logN so that
2(2t0+3log t0) ≥ N2t30/ log

2 N ≥ N2/2. the critical case being N = 16, t0 =
2 for which equality holds.

Then, we have proved that the probability of failure is upper bounded by 1/N
which is less than ǫ.

We proved that if each vertex v acts as a set of rv = ⌈ǫ−1⌉, then we obtain
an election algorithm correct w.h.p. and with probability at least 1 − ǫ, where
ǫ = min{ǫv | v ∈ V }.

To achieve the proof of the theorem we analyse the size of the messages.
Exchanged messages are of size at most T +3 logT where T is the maximum

lifetime over all the N vertices. We have:

Pr

(

T > 3 log

(

n+
1

ǫ

))

= Pr
(

X3 log(n+ 1
ǫ)

≥ 1
)

≤ E

(

X3 log3(n+ 1
ǫ)

)

=
n/ǫ

(n+ 1
ǫ)

3
≤ ǫ. (26)

Thus, with probability at least 1− ǫ, messages are of size O
(

log
(

n+ 1
ǫ

))

.

Remark 8. The same constructions and results can be obtained for spanning
tree construction and other problems which are easily solved once a leader is
elected.

23

Remark 9. A similar method based on modifying Algorithm Elect-wvhp gives
an algorithm which is correct both w.v.h.p. and with the probability 1− ǫv re-
quired by each vertex v. The range in which idv is chosen must be the maximum
of those used by algorithms 1 and 2 for this to be correct for small N .

10. Conclusion

We have analysed splitting and naming procedures and proved, in particular,
that w.h.p. or w.v.h.p. they provide exactly one maximal labelled vertex which
can be used later for computing a spanning tree, electing or even counting the
number of vertices of a ring. The splitting procedure may be used also to ensure
that the total number of messages broadcast through a network for determin-
istically solving some problems, e.g. election or spanning tree computation, is
low w.h.p. Thanks to these procedures we can also obtain Monte Carlo algo-
rithms correct with w.h.p. (resp. w.v.h.p.) and correct with a probability 1−ǫv
required by a vertex v.

It seems interesting to investigate relations between fundamental techniques
and principles of protocols in radio networks presented in [JS02, MW05] (see
also references therein) and the ones studied in this paper.

References

[AAER07] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The com-
putational power of population protocols. Distributed Computing,
20(4):279–304, 2007.

[AM94] Y. Afek and Y. Matias. Elections in anonymous networks. Inf.
Comput., 113(2):312–330, 1994.

[Ang80] D. Angluin. Local and global properties in networks of processors. In
Proceedings of the 12th Symposium on Theory of Computing, pages
82–93, 1980.

[ASW88] H. Attiya, M. Snir, and M. K. Warmuth. Computing on an anony-
mous ring. J. ACM, 35(4):845–875, 1988.

[AW04] H. Attiya and J. Welch. Distributed computing: fundamentals, sim-
ulations, and advanced topics. John Wiley & Sons, 2004.

[FMS96] J. A. Fill, H. M. Mahmoud, and W. Szpankowski. On the distri-
bution for the duration of a randomized leader election algorithm.
Ann. Appl. Probab, 6:1260–1283, 1996.

[GR05] R. Guerraoui and E. Ruppert. What can be implemented anony-
mously? In DISC, pages 244–259, 2005.

[IR90] A. Itai and M. Rodeh. Symmetry breaking in distributed networks.
Inf. Comput., 88(1):60–87, 1990.

24

[JS02] T. Jurdzinski and G. Stachowiak. Probabilistic algorithms for the
wakeup problem in single-hop radio networks. In Algorithms and
Computation, 13th International Symposium, ISAAC 2002 Vancou-
ver, BC, Canada, November 21-23, 2002, Proceedings, pages 535–
549, 2002.

[KMW11] R. Kalpathy, H. M. Mahmoud, and M. D. Ward. Asymptotic prop-
erties of a leader election algorithm. Journal of applied probability,
48(2):569–575, 2011.

[Lav95] C. Lavault. Evaluation des algorithmes distribués. Hermès, Paris,
1995.

[MW05] T. Moscibroda and R. Wattenhofer. Maximal independent set in
radio networks. In Proceedings of the 25 Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 148–157.
ACM Press, 2005.

[Pro93] H. Prodinger. How to select a loser. Discrete Mathematics, 120(1-
3):149–159, 1993.

[RFJ+07] M. K. Ramanathan, R. A. Ferreira, S. Jagannathan, A. Grama, and
W. Szpankowski. Randomized leader election. Distributed Comput-
ing, 19(5-6):403–418, 2007.

[SS94] B. Schieber and M. Snir. Calling names on nameless networks. Inf.
Comput., 113(1):80–101, 1994.

[Tel00] G. Tel. Introduction to distributed algorithms. Cambridge University
Press, 2000.

[Wil93] D. Williams. Probability with Martingales. Cambridge University
Press, 1993.

[YK88] M. Yamashita and T. Kameda. Computing on an anonymous net-
work. In PODC, pages 117–130, 1988.

25

