
Sublinear Fully Distributed Partition with Applications!

Bilel Derbel†, Mohamed Mosbah‡, and Akka Zemmari‡

† LIFL, INRIA, Université des Sciences et Technologies de Lille
Bâtiment M3, 59655 Villeneuve d’Ascq Cedex - France

bilel.derbel@lifl.fr
‡LaBRI, Université Bordeaux I, ENSEIRB

351, Cours de la libération, 33405 - Talence - France
{mosbah,zemmari}@labri.fr

Abstract. We present new efficient deterministic and randomized distributed algorithms for
decomposing a graph with n nodes into a disjoint set of connected clusters with radius at most
k − 1 and having O(n1+1/k) intercluster edges.
We show how to implement our algorithms in the distributed CONGEST model of computation,
i.e., limited message size, which improves the time complexity of previous algorithms [34,3,36]
from O(n) to O(n1−1/k).
We apply our algorithms for constructing low stretch graph spanners and network synchronizers
in sublinear deterministic time in the CONGEST model.

1 Introduction

Due to the constant growth of networks, it becomes necessary to find new techniques to
handle related global information, to maintain and to update this information in an efficient
way. A Locality-Preserving (LP) network representation [36] can be considered as an effi-
cient data structure that captures topological properties of the underlying network and helps
to design distributed algorithms for many fundamental problems: synchronization [34,41,7],
Maximal Independent Set (MIS) [4], routing [5], mobile users [6], coloring [35] and other re-
lated applications [24,25,28,13,1]. In order to provide efficient solutions for these problems,
it is important to construct LP-representations in a distributed way while maintaining good
complexity measures.

The main purpose of this paper is to give an overview of some LP-representations of spe-
cial interest and to show how to construct them efficiently in the distributed setting. More
precisely, we focus on one important type of LP-representations called clustered representa-
tions. The main idea of a clustered representation is to decompose the nodes of a graph into
many possibly overlapping regions called clusters. This decomposition allows us to organize
the graph in a particular way that satisfies some desired properties. In general, the clusters
satisfy two types of qualitative criteria. The first criterion attempts to measure the locality
level of the clusters. Some parameters like the radius or the size of a cluster are usually used
to measure the locality level of a clustered representation. The second criterion attempts to
measure the sparsity level. This criterion gives an idea about how the clusters are connected
to each others. For instance, in the case of disjoint clusters, the number of intercluster edges
is usually used to express the sparsity level. In the case of overlapping clusters, the aver-
age/maximum number of occurrences of a node in the clusters is usually used to express the
sparsity (or the overlap) of the clustered representation.

! Some materials presented in this paper appeared in two extended abstracts published in the proceedings of
IPDPS06 (20th IEEE International Parallel & Distributed Processing Symposium) [20] and PDCS04 (16th

IASTED International Conference on Parallel and Distributed Computing and Systems) [18].

In general, the locality and the sparsity levels of a clustered representation are tightly
related and often go in an opposite way. For instance, one can take the whole graph to be
one cluster C. In this case, the sparsity level is good (the degree of C is 0), but the locality
level is bad (the radius of C is the radius of the whole graph). In opposite, one can take a
representation in which each node forms a cluster. In this case, the locality level is good (the
radius of each cluster is 0), but the sparsity level is bad (the degree of a cluster may be ∆
where ∆ is the maximum degree of the graph).

The complexity of many applications (using clustered representations as a communication
structure) is also tightly related to the sparsity and locality levels. In fact, a good locality level
implies in general a low time complexity, and a low sparsity level implies low message/memory
complexity. All the clustered representations one can find always attempt to find a good
compromise between the sparsity and the locality levels.

1.1 Goals and related works

In this paper, we focus on an important clustered representation called Basic Partition ([36]
Chapter 11). Our interest in this Basic Partition comes from its good sparsity-locality compro-
mise. In fact, given an n-node graph, the Basic Partition provides a set of disjoint connected
clusters such that the radius of a cluster is at most k−1 and the number of intercluster edges
is O(n1+ 1

k) where k is a given integer parameter. Our goal is to design time efficient algorithms
for constructing a Basic Partition of a graph in a distributed model of computation where
nodes can only communicate with their neighbors by exchanging messages of limited size.

The Basic Partition was first used in [3] in order to design efficient network synchronizers.
The idea of producing a clustered representation satisfying a good compromise between the
locality level and the sparsity level was then studied in [10]. The results of [10] inspired many
other applications and generalizations [17,8,9]. In particular, Awerbuch et al [8] studied two
important types of clustered representations:

1. The first one called network decomposition aims at partitioning the network into disjoint
colored clusters with either weak or strong small radius and using a small number of colors.
For weak -network decompositions, a cluster does not necessarily need to be connected and
its radius is computed using paths which may shortcut through neighboring clusters. For
strong-network decompositions, a cluster must be connected and its radius is computed
in the network induced by this cluster.

2. The second one called network covers constructs a set of possibly overlapping clusters with
the property that for any node v, there exists a cluster which contains the t-neighborhood
of v, i.e., the neighbors at distance at most t from v where t is an integer parameter.
The quality of such covers is measured using the strong radius of clusters and the cluster
overlap, i.e., the maximum number of clusters a node belongs to.

In addition to design new network decompositions satisfying some desirable properties,
many works studied the problem of distributively constructing these representations in an effi-
cient way. For instance, Awerbuch et al [8] gave a deterministic (resp. randomized) distributed
algorithm to construct a (k, t,O(kn1/k))-neighborhood cover in O(tk · 2c

√
log n + tk2 · 24

√
log n ·

n1/k) (resp. O(tk2 · log2 n · n1/k)) time for some constant c > 0. A (k, t, d)-neighborhood is a
set of possibly overlapping clusters such that (i) the strong radius of a cluster is O(kt), (ii)
each node belongs to at most d clusters, and (iii) the t-neighborhood of each node is covered
by at least one cluster. Moreover, a remark in [8] claims that it is possible to translate this

2

neighborhood cover into a strong-network decomposition of comparable parameters by using
some techniques from [17,10].

On one hand, the strong radius of the cover constructed in [8] is 2k − 1 which is worse
(by a factor 2) than the one of the Basic Partition. On the other hand, the distributed model
considered there does not take into account the congestion created at various bottlenecks in the
network (see Section 3.4 of [8]). In fact, the network model used in [8] is the Linial’s free model
[29,30] also known as the LOCAL model (see [36] Chapter 2). TheLOCAL model assumes that
nodes can communicate by exchanging messages of unlimited size. This assumption focuses on
the locality nature of distributed problems, i.e., what can be computed distributively provided
that every node knows its whole neighborhood at some distance?

From a practical point of view, since clustered representations are in the basis of many
applications, it is crucial to design fast algorithms to construct such representations in prac-
tical distributed models. From a more theoretical point of view, it is also interesting and
challenging to design fast algorithms assuming only some weak distributed assumptions, e.g.,
see [37].

In [34], Moran and Snir gave a distributed algorithm that computes a Basic Partition
in O(n) time in a distributed model where the size of a message is at most O(log n) bits,
i.e., CONGEST model (see [36] Chapter 2). The algorithm of [34] improves the previous
constructions of [3,41], and allows us to obtain more efficient algorithms for designing net-
work synchronizers γ, γ1 and γ2. The algorithm of [34] is semi-sequential: Each cluster is
constructed around some node in a distributed and layered fashion. Nevertheless, the clusters
are constructed sequentially. In other words, the clusters are constructed one after the other:
at each iteration, a new node is selected and the next cluster is constructed.

Moran and Snir end their paper [34] saying:

[34] Question:
Are there truly parallel algorithms which construct a Basic
Partition in polylogarithmic or sublinear time complexity in
the CONGEST model?

1.2 Contribution

In the following, we answer the [34] question. In fact, we give new sparse partition algorithms
with O(n1−1/k) time complexity, using messages of size at most O(log n) .

More precisely, we give a fully distributed deterministic algorithm Dist Part with no
precomputation step. The idea is to let the clusters grow spontaneously in parallel in different
regions of the graph, breaking ties using node identities. We give a detailed implementation of
algorithm Dist Part using small messages and we analyze its efficiency. The time complexity
of algorithm Dist Part is only linear. However, the technique of algorithm Dist Part is used
as a black box in order to design a new synchronous deterministic algorithm (Sync Part)
with sublinear time complexity. The main idea to break the linear time barrier is to privilege
the construction of clusters in the dense region of the graph which allows us to finish the
distributed construction in constant time once the graph becomes sparse. This idea is then
adapted in order to run in an asynchronous setting and we obtain algorithm Fast Part.
Our new asynchronous algorithm is even faster than the synchronous one for many particular
graphs.

We also give a randomized distributed algorithm (Elect Part) which is based on a local
election technique (LEk) in balls of radius k. This k-local election technique is a generalization

3

of the algorithms given in [33] and can be of an independent interest. For general graphs, our
randomized construction has the same sublinear time complexity as the deterministic one, but
it provides improved bounds for many particular graphs. In fact, the analysis of algorithm
Elect Part enables us to express analytically the degree of parallelism of our construction
and to compute the expected number of clusters constructed in parallel.

The basic partition can be applied for designing network covers, network synchronizers
and also graph spanners. Hence, we obtain new fast algorithms for all of these applications.
For instance, we obtain new O(n1−1/k) time deterministic algorithm for constructing optimal
spanners with size O(n1+1/k) and stretch 2k − 1 which improves on previous constructions.
Fast construction of sparse spanners is a real challenge and has been intensively studied over
many years and are of special interest for many useful graph structures such as shortest paths,
distance oracles and routing [21,23,22,12,11,42,40,15,2]. We should note that the best known
distributed algorithms for constructing graph spanners with optimal stretch-size tradeoffs are
either randomized [11] or use unbounded size messages [19].

One should finally note that at each round of our distributed constructions the number
of messages exchanged by nodes can be order of the number of edges which is rather large.
In this paper, we focus only on providing time efficient constructions. Improving the message
complexity of our algorithms remains an open research field as it will be pointed later.

Outline In Sections 2 and 3, we give some definitions and we review the Basic Part al-
gorithm for constructing the Basic Partition in a semi-sequential manner. In Section 4, we
give a detailed implementation and analysis of the fully distributed algorithm Dist Part.
In Sections 5 and 6, we describe algorithms Sync Part, Fast Part and Elect Part, and
we analyze their time complexity. In Section 7, we apply our algorithms to construct sparse
graph spanners.

The application of the basic partition to network covers and network synchronizers γ, γ1

and γ2 is given in Appendix A. In appendix B, we also give a constructive analysis of our
algorithms in the case of Circulant graphs and we obtain logarithmic time complexity.

2 Model and definitions

We represent a network of n processes by an unweighted undirected connected graph G =
(V,E) where V represents the set of processes (|V | = n) and E the set of links between
them. We consider the distributed model of computation used in [34,3] and known as the
CONGEST model. More precisely, we assume that a node can only communicate with its
neighbors by sending and receiving messages of size O(log(n)) bits. Each node processes
messages received from its neighbors, performs local computations, and sends messages to
its neighbors in negligible time. In a synchronous network, all nodes have access to a global
clock which generates pulses. A message which has been sent in a given pulse arrives before
the next pulse. In a synchronous network, the time complexity of an algorithm is defined
as the worst-case number of pulses from the start of the algorithm to its termination. In an
asynchronous network, there is no global clock and a message delay is arbitrary but finite. In
the latter case, the time complexity is defined as the worst-case number of time units from
the start of the algorithm to its termination, assuming that a message delay is at most one
time unit (this assumption is introduced only for the purpose of performance evaluation).

A cluster C is a subset of V such that the subgraph induced by C is connected. A cluster
is always considered with a leader node and a BFS spanning tree rooted at the leader. We

4

also assume that each node v of a graph G has a unique identity Idv (of O(log(n)) bits). The
identity IdC of a cluster C is defined as the identity of its leader.

For every pair of nodes u and v of a graph G, dG(u, v) denotes the distance between u
and v in G (we also write d(u, v) when G is clear from the context). For any node v of a
graph G, N (v) = {u ∈ V | dG(u, v) ! 1} denotes the neighborhood of v. For any cluster C of
a graph G, Γ (C) =

⋃

v∈C N (v) denotes the neighborhood of C. For any cluster C of a graph
G, Rad(C) denotes the radius of the cluster C, i.e., the radius of the subgraph induced by C
in G. Similarly, for any set C of clusters, Rad(C) = maxC∈C Rad(C) denotes the radius of C.

In all our algorithms, clusters are constructed in a layered and concurrent fashion. In other
words, a cluster may grow and explore a new layer but it may also lose its last layer. Some
clusters may disappear because they lost all their layers and some others may be newly formed.
A cluster is called finished if it belongs to the final decomposition that we are constructing.
A node belonging to a finished cluster is also called finished. A node is called active if it does
not belong to a finished cluster.

3 A basic algorithm for constructing a sparse partition

1: Set C := ∅

2: while V "= ∅ do

3: Select an arbitrary vertex v ∈ V

4: Set C := {v}
5: while |Γ (C)| > n1/k|C| do

6: C := Γ (C)
7: end while

8: Set C := C ∪ C and V := V − C
9: end while

10: return C

Fig. 1. Algorithm Basic Part [36]

Let k " 1 be an integer parameter. Typically, k is taken to be small compared with n
(k ! log n). Let us consider algorithm Basic Part (Fig. 1) as given in Peleg’s book [36]
(Chapter 11, page 130). Algorithm Basic Part was first used in [3] as a data structure
for synchronizer γ, then some improvements were given in [41,34]. The algorithm operates
in many phases. At each phase, a node is selected from the set of nodes which are not yet
covered by a cluster. Then a new cluster is constructed in many iterations according to the
sparsity condition of line 5, i.e., |Γ (C)| > n1/k|C|. It is important to note that the graph G
changes in line 8 of the algorithm and the notations in the while loop correspond to the new
graph G obtained after the deletion of the corresponding nodes.

Algorithm Basic Part constructs a Basic Partition. In fact, we have the following:

Theorem 1 ([36]). The output C of algorithm Basic Part is a partition of G which satisfies
the following properties:

1. Rad(C) ! k − 1 (locality level)
2. There are at most n1+1/k intercluster edges (sparsity level)

5

Proof. On one hand, once the construction of a cluster C is finished, the nodes of C are
definitely removed from the graph G. Thus, the clusters constructed by the algorithm are
disjoint. On the other hand, the algorithm terminates once no node remains uncovered. Thus,
the final output C is a partition of G.

Using the sparsity condition, if a cluster C adds i layers, then the size of C satisfies
|C| > ni/k. Hence, a cluster cannot add more than k − 1 layers and the first property of the
partition holds.

Let GC be the graph induced by the clusters of the partition C: the nodes of GC are
the clusters of C and there is an intercluster edge between two clusters if the clusters are
at distance 1 from each others. Now, consider a cluster C ∈ C. Once the construction of C
is finished, there are at most n1/k|C| nodes in G at distance 1. Thus, there will be at most
n1/k|C| neighboring clusters that will be constructed after C. Thus, there are at most n1/k|C|
intercluster edges that can be added to the graph GC after the construction of C is finished.
Thus, the number of intercluster edges is bounded by

∑

C∈C n1/k|C|. Since C is a partition,
∑

C∈C |C| = n and the second property of the partition holds. #$

There are many distributed implementations of the Basic Part algorithm. All of these
implementations are semi-sequential. First, they distributively elect a new leader in the net-
work which corresponds to the center of a new cluster. Then, the cluster is constructed in a
distributed way by adding the layers in many iterations. The construction of the cluster ends
when there are no new layers to add or when the sparsity condition is no longer satisfied. Once
the construction of the cluster is finished, a new leader is elected from unprocessed nodes and
a new cluster grows up around this leader.

The main difficulty in these algorithms is to distributively elect the next leader. In [34],
a preprocessing is used to overcome this difficulty. First, a spanning tree T of the graph
G is constructed. Then, the next leader is elected by achieving a DFS traversal of T . This
technique allows us to improve the complexity bounds of the decomposition: O(|E|) messages
and O(|V |) time.

In the next sections, we introduce a new algorithm with no precomputation step and no
next leader election step.

4 A deterministic fully distributed basic partition algorithm

4.1 Overview of the algorithm

The main idea of algorithm Dist Part is to allow clusters to grow in parallel in different
regions. In fact, consider two nodes u and v such that dG(u, v) " 2k where k is the same
parameter as that in algorithm Basic Part. Then, it is possible to grow two clusters respec-
tively around u and v without any interference. Based on this observation, we initially let each
node of the graph be a singleton cluster. Then, we allow the clusters to grow spontaneously.
The main difficulty here is to guarantee that the clusters do not share any nodes.

We do not avoid cluster collisions but we try to manage the conflicts that can occur. For
instance, consider some region of the graph and suppose that some clusters have indepen-
dently grown as shown in Fig. 2. The clusters cannot add a new layer simultaneously without
overlapping. Thus, we make each cluster compete against its neighbors in order to win a new
layer. There are two critical situations. Either, a cluster enters in conflict with an adjacent one

6

Cluster C4

Cluster C3

Cluster C2

Cluster C1

Fig. 2. An example of conflicts between clusters at distance 1 or 2

or with another cluster at distance two. For instance, in the example of Fig. 2, cluster C1 tries
to invade some nodes that belong to cluster C3 and C2 at distance 1. Thus, the neighboring
cluster C1, C2 and C3 are in conflicts. Similarly, cluster C4 tries to invade some nodes in
cluster C3. Nevertheless, these nodes are also required for the new layer of cluster C1. Thus,
the two clusters C1 and C4 (at distance 2) are also in conflict. To resume, each cluster must
compete against all clusters at distance 1 or 2 in order to add a layer. In addition, a layer not
satisfying the sparsity condition of algorithm Basic Part must be rejected.

1: continue := True
2: while continue do

3: execute the Exploration Rule
4: if success of the Exploration Rule then

5: add the new layer
6: execute the Growth Rule
7: if Non success of the Growth Rule then

8: reject the last explored layer
9: switch to a finished cluster

10: continue := False
11: end if

12: else

13: execute the Battle Rule
14: end if

15: end while

Fig. 3. Algorithm Dist Part: code for a cluster

In order to manage the conflicts and the cluster growth, we use the following rules:

1. Exploration Rule: a cluster is able to add a new layer if its identifier is bigger than those
of not finished neighboring clusters at distance one or two. If a cluster wins in exploring
a new layer then it must apply the Growth Rule, otherwise it must apply the Battle Rule.

2. Growth Rule: If the sparsity condition is satisfied then a cluster adds the last explored layer
and tries to apply the Exploration Rule once again. Otherwise, the cluster construction is
finished and the cluster rejects the last explored layer. The nodes in the rejected layer are
re-initialized to singleton clusters with their initial identifiers.

7

3. Battle Rule: a cluster loses its whole last layer if at least one neighboring cluster at distance
one has successfully applied the Exploration Rule. The nodes lost by a cluster are re-
initialized to singleton clusters with their initial identifiers.

Based on the three previous rules, we obtain the fully distributed algorithm Dist Part

described in a high level way in Fig. 3.

Remark 1. It is important to choose a unique identifier for each cluster. For instance, the
identifier of a cluster can be chosen to be the identity of its leader. This is implicitly assumed
in the rest of this section. However, we can also choose the couple (|C|, Idv) as the identifier
of a cluster C with a root v, and the lexicographical order to compare cluster identifiers.

Example: Let us consider the concrete example of Fig. 4. We have five clusters 1, 2, 3, 4 and
5 with identities Id1 > Id2 > Id3 > Id4 > Id5. Assume that the identifier of each clusters
corresponds to the identity of its leader node. When a new exploration begins, cluster 1 wins
against clusters 5 and 3. Cluster 2 wins against clusters 4 and 5 but loses against cluster 1
which is at distance two. Thus, cluster 2 cannot add a new layer. Cluster 4 loses against both
clusters 2 and 3 but it will not be invaded because both clusters 2 and 3 cannot grow. Cluster
3 wins against cluster 4 but loses against cluster 1. Cluster 3 will be invaded by cluster 1
which wins against all clusters at distance two (cluster 5, 2 and 3). Thus, cluster 3 will lose
its last layer. The node connecting it with cluster 4 becomes a singleton cluster with its
initial identity Id6. The node connecting cluster 3 with cluster 1 becomes a leaf in cluster 1.
Now, suppose that the sparsity condition for the new enlarged cluster 1 is not satisfied. Then,
cluster 1 rejects the last explored layer and its construction is finished. Hence, the nodes in the
rejected layer become singleton clusters. Then, the remaining active clusters spontaneously
continue new explorations. In our example, both cluster 2 and cluster 3 will succeed their
explorations and add a layers. Note that in the other regions of the graph, there are other
clusters which are fighting against each others. Hence, many clusters can grow in parallel.

4.2 Detailed description and implementation

In this section, we give a complete description of how to implement the three rules of the
Dist Part algorithm using message passing. For the clarity of our algorithm, we assume that
the identifier of a cluster is the identity of its root. The main difficulty when implementing
the three rules of algorithm Dist Part is to coordinate the center of a cluster with its leaves,
i.e., nodes at the border of the cluster. On one hand, the center of a cluster cannot see what is
happening on the borders of its cluster. Hence, it must always wait for pieces of information
from the leaves before making a decision. Symmetrically, the leaves cannot see the global state
of their cluster. Hence, they must also wait for information from the center of their cluster.

To apply the three rules, the nodes in a cluster must collaborate. Each node can be in five
states root, leaf, relay, orphan or final. At the beginning, all nodes are orphans and they form
orphan clusters, i.e., cluster with only one node. If a node is in a final state, then it belongs
to a finished cluster and thus it does not make any computation. Roughly speaking, if a node
v is in a root state, then it is the leader and it makes decisions for its cluster. If v is in a leaf
state, then it tries to invade new nodes and it informs its root. If v is in a relay state, then it
forwards information from the leaves to the root.

As long as new layers are added (resp., removed) to (resp., from) a cluster, the nodes in
the cluster maintain a layered BFS spanning tree. The root of the tree corresponds to the

8

Id1

Id3

Id4

Id2

Id5

(a) starting configuration.

Id2

Id5

Id4

Id3

Id1

(b) Cluster 1: Exploration rule success.

Id2

Id5

Id1

Id3

Id4

(c) Cluster 3: Battle rule.

Id2

Id4

Id6

Id3

Id1

(d) Cluster 1: Growth rule, Cluster 3:
Battle rule.

Id5

Id1

Id7

Id6

Id3

Id4

Id2

(e) Cluster 1: Growth rule.

Id5

Id1

Id7

Id3

Id4

Id2

Id6

(f) Clusters 3,2: Exploration rule.
Cluster 4: Battle rule.

Fig. 4. An example of algorithm Dist Part

root of the cluster, the leaves of the tree correspond to the leaves of the cluster and the nodes
in the interior of the tree correspond to relay nodes. The decisions of adding or removing a
layer are broadcasted by the root node according to the information forwarded by the leaves
all along the constructed BFS tree. Each time that some new nodes join a cluster, the BFS
spanning tree is enlarged by making each new node choose a parent among the leaves of the
already constructed tree.

9

In next paragraphs, we detail the actions to be performed by each node according to its
state. Notice that the state of a node can change several times. For instance, the state of a
node can be relay at some time, then becomes leaf, after that orphan, and at last final.

Remark 2. In the pseudo-code of our algorithms, a node uses the function Send to send a
message to a (or some) neighbor(s). The function Receive allows a node to receive a message
from a (or some) neighbor(s). The receive function is blocking, that is, a node cannot execute
the next instruction in the algorithm unless the receive action is terminated, i.e., all messages
were arrived.

Root nodes The algorithm executed by a root node is given in Fig. 5. First, the root verifies
if the sparsity condition is satisfied and it informs the leaves (Growth rule). More specifically,
if the sparsity condition is satisfied, then the root broadcasts a notification message NEW to
the leaves in order to begin a new exploration. Otherwise, it broadcasts a REJECT message
saying that the construction is finished.

After broadcasting a NEW message, the root waits the response from its leaves. There are
three possible cases:

1. The root receives only STOPPED messages from its leaves. This means that the leaves
did not find new nodes to explore. In this case, the root broadcasts a STOP message
informing all the nodes that the cluster construction is finished.

2. The root does not receive any LOST message, i.e., only WIN (or STOPPED) messages.
This means that the exploration was globally successful. Thus, the root broadcasts a
SUCCESS message to the leaves. Then, the root waits to learn the size of the new enlarged
cluster.

3. The root receives at least one LOST message. This means that the exploration was not
successful (at least one leaf has lost against a neighboring cluster). Thus, the root informs
the leaves by broadcasting a FAILURE message. Then, the root waits for the leaves
responses. There are two cases:

– At least one leaf is invaded by another cluster. Thus, the root must receive at least one
BYE message. In this case, the cluster must reject its last layer (Battle rule). Hence,
it broadcasts a DOWN message asking the leaves to become orphans.

– All leaves have resisted to neighbor’s attacks. Thus, the root must receive only SAFE
messages, i.e., no neighboring cluster has succeeded in invading the current cluster. In
this case, the root broadcasts an OK message saying that the cluster is not invaded
and asking for a new exploration.

Leaf nodes The algorithm executed by a leaf is given in Fig. 6.

Remark 3. We remark that a leaf does not always belong to the last layer of a cluster. For
instance, a leaf node may have only final neighbors belonging to finished clusters. Hence, it
cannot add new nodes to its cluster. Nevertheless, other leaves belonging to the same cluster
can continue exploring new nodes. Therefore, the construction of the cluster can continue
even if some leaves cannot locally explore new nodes. In order to handle this situation, for
each node we use a local variable h which corresponds to its depth in the BFS-spanning tree
of its cluster. If h = 1 then the leaf belongs to the last layer and it can compete to add new
layers, otherwise the leaf cannot explore any new layer.

10

Receive count From Children; Compute |Γ (C)|;1

if Γ (C) > n1/k|C| then2

Send NEW To Children ;3

Receive LOST WIN STOPPED From Children;4

if there exists at least one LOST message then5

exploration success := false ;6

else if all messages are STOPPED then7

cluster stopped := true;8

else9

exploration success := true ;10

if cluster stopped then11

Send STOP To Children ; State := Final ;12

else13

if exploration success then14

Send SUCCESS To Children ;15

h := h + 1; /* the radius of the cluster */16

else17

Send FAILURE To Children ;18

Receive BYE SAFE From Children ;19

if there exists at least one BYE message then20

Send DOWN To Children ;21

h := h− 1 ;22

if h = 1 then State := Orphan ;23

else24

Send OK To Children ;25

else26

h := h− 1;27

State := Final ;28

Send REJECT To Children ;29

Fig. 5: Dist Part: high level code for the root node of a cluster C

11

Since the exploration of a new layer is done before verifying the sparsity condition, when-
ever a node u becomes a leaf in a new cluster, it sends 1 to its parent v in the new cluster and
waits for a message from its parent. The parent node v sends back the number of its children
and so on. Thus, by a convergecast process, the root will be able to compute the size of the
new cluster and to broadcast its decision to the leaves.

If the leaf u receives a REJECT message from its parent, then u leaves its new cluster
(Growth rule) and it becomes an orphan cluster. Otherwise, u receives a NEW message from
its parent. This means that a new layer must be explored. If u cannot explore new regions,
then u sends back a STOPPED message. Otherwise, u begins a new exploration using an
election technique in a ball of radius two: First, u sends its cluster identifier to its neighbors.
Symmetrically, it waits for the identifiers of the neighboring clusters. Second, u computes
the maximum of the neighbor identifiers (including the identifier of its own cluster) and
sends it again to the neighbors. Symmetrically, it waits for the maximum identifiers sent by
neighboring leaves. If all the identifiers received by u are equal to the identifier of u’s cluster,
then u has locally succeed its exploration and it sends back a WIN message. Otherwise, u
sends back a LOST message.

Remark 4. Since the clusters have unique identifiers, then two neighboring leaves can easily
decide whether they belong to the same cluster, e.g., when exchanging their identifiers in a
new exploration.

Once the exploration is finished, the leaf node u waits for the decision of its root. There
are three cases :

1. If u receives a STOP message from the root, then none of the leaves can explore new
nodes. Thus, u becomes a final node, i.e., the construction of the cluster is finished.

2. If u receives an SUCCESS message from the root, then all leaves have succeeded their
local explorations, i.e., they won against all neighbors at distance 1 or 2. Thus, u sends a
JOIN message to neighboring leaves asking them to join its cluster. Then, u switches to a
relay state.

3. If u receives a FAILURE message from the root, then at least one leaf has not succeeded
the exploration. Thus, u sends a STAY message to neighboring leaves informing them that
they will not be invaded by u’s cluster. Then, u waits to know if the neighboring clusters
succeeded their explorations. There are two cases:
– If u receives at least a JOIN message from a neighboring leaf (in a different cluster),

then it sends back a BYE message to its root, waits for an acknowledgment (DOWN
message) and it joins the new cluster.

– Otherwise, if none of the neighboring cluster has succeeded in invading the leaf (STAY
message), the leaf sends back to its root a SAFE message. At this stage of the algorithm,
the leaves (except those who have received a JOIN message) do not know whether their
cluster is being invaded or not (only the root globally knows what is happening at its
frontiers). Thus, the leaves wait for either an OK or a DOWN message from the root.
If a leaf receives an OK message, then it remains in the same cluster and it begins a
new exploration once again. Otherwise, it receives a DOWN message and it becomes
an orphan node.

Orphan nodes An orphan node acts like a root and like a leaf node. In fact, it makes
decisions for its singleton cluster and it fights against neighboring nodes. If an orphan node

12

Send 1 To parent ; Receive msg From parent; /* msg is either NEW or REJECT */1

if msg = NEW then2

if there are new nodes to explore then3

Send IdC To neighbors in other active clusters;4

Receive ∪C′IdC′ From neighbors in other active clusters ;5

max1 := the maximum of ∪C′IdC′ ;6

if max1 < IdC then7

Send IdC To neighbors in other active clusters;8

else9

Send max1 To neighbors in other active clusters;10

Receive Ids From neighbors in other active clusters ;11

max2 := the maximum of received Ids;12

if max2 > IdC then13

Send LOST To parent ;14

else15

Send WIN To parent ;16

else17

Send STOPPED To parent ;18

Receive msg From parent; /* msg is either SUCCESS or STOP or FAILURE */19

if msg = SUCCESS then20

Send JOIN To neighbors in other active clusters ;21

Receive messages From neighbors in other active clusters ;22

Mark the new Children in the BFS tree of C; h := h + 1; State := Relay;23

else if msg = STOP then24

State := Final ;25

else26

Send STAY To neighbors in other clusters ;27

Receive messages From neighbors in other active clusters ;28

if there exists at least one JOIN message then29

Send BYE To parent ;30

Receive msg From parent; /* the message must be a DOWN message*/31

choose a new parent in the new winner cluster; h := 1 ;32

else33

Send SAFE To parent; Receive msg From parent ;34

if msg = DOWN then35

if h = 1 then State := Orphan ;36

if h "= 1 then h := h− 1 ;37

else38

if h = 1 then State = Orphan ;39

if h "= 1 then h := h− 1; State = Final ;40

Fig. 6: Dist Part: high level code for a leaf node in a cluster C

13

succeeds an exploration, it becomes a root node in a new cluster of radius 1. If it is invaded by
a cluster, it becomes a leaf. Otherwise, it re-tries to invade its neighbors (new exploration).
If it has only neighbors belonging to finished clusters, then it switches to a final state. The
type of messages that must be sent by an orphan node to neighbors can be deduced from the
previous discussion.
Relay nodes The main role of a relay node is to forward information from the root to the
leaves. If a relay node receives a message from its parent, it simply forwards it to its children.
If the message is a REJECT or a STOP message, then the node knows that the cluster
construction is finished and it switches to a final state. If the message is a SUCCESS message,
then the node knows that there is a new layer that will join the cluster. Thus, the depth of the
node is incremented by one. If the message is a DOWN message then the relay node knows
that its cluster was invaded and lost the last layer. In this case, if a relay node belongs to the
layer before the last one (h = 2) then the relay node becomes a leaf.

On the other hand, if a relay node receives a message from its children, it can deduce
which step the leaves are executing (exploration of a new layer: WIN, LOST or STOPPED
messages, resistance against neighbors attacks: OK or BYE messages, and computation of
the sparsity condition: integer message). In all cases, the relay node can easily compute what
kind of message it must forward to its root.

Remark 5. Each node can easily know which of its neighbors belongs to a finished cluster.
It is sufficient to make each node (which becomes final) send a message to its neighbors to
inform them. However, we can avoid these extra communication messages as following. When
a node v is explored by a cluster C, it uses the Ids sent by neighbors in order to compute a
set FC of neighbors belonging to the layer before the last one. Then, if v receives a REJECT
message from the root of C, i.e., the sparsity condition for the last layer of C is not satisfied,
then v marks its neighbors in FC as finished. Now, consider any edge (u, v). Suppose that u
and v do not belong to the same cluster at the end of the algorithm. W.l.o.g., suppose that u
becomes in a final state before v. Thus, the cluster containing u must have explored v. Thus,
v must have received a REJECT message from its parent. Thus, v can decide that u switched
to a final state. The case where nodes u and v ends up in the same cluster is trivial since both
the two nodes stop communicating.

Remark 6. Although our algorithm is completely asynchronous, we remark that there is a
kind of synchronization in our implementation which is close to the one used in synchronizer
γ (see Appendix A). On one hand, the root nodes control the execution of the algorithm and
give the starting signal to all the actions of the leaves using the relay nodes. Hence, the actions
of nodes inside one cluster are synchronized. On the other hand, the decisions made by the
roots in neighboring clusters are synchronized since a root must wait for some information
concerning those neighboring clusters. The leaves in different clusters synchronize also their
actions to execute the decisions of their roots.

4.3 Analysis of the algorithm

Theorem 2. Algorithm Dist Part terminates.

Proof. From the algorithm description, the cluster having the biggest identifier in the graph
always succeeds the Exploration rule. Thus, it always succeeds adding new layers until the
sparsity condition is violated. Thus, after at most k−1 layers, the nodes in the biggest cluster

14

are in final states. Now, the remaining cluster with the biggest identifier always succeeds its
new explorations and so on until all the nodes are in final states. #$

Theorem 3. Algorithm Dist Part emulates the Basic Part algorithm.

Proof. From the algorithm description, once the construction of a cluster is finished, the
cluster cannot be invaded by any other active cluster. Hence, the constructed clusters are
disjoint.

In addition, a new layer is added if and only if it verifies the sparsity condition (Growth
rule). Symmetrically, if a cluster is invaded, then it loses its whole last layer. Hence, the layers
of finished clusters satisfy the sparsity condition.

Thus, the constructed partition satisfies the sparsity and locality properties of algorithm
Basic Part. #$

Theorem 4. In the worst case, the time complexity of algorithm Dist Part is:

T ime(Dist Part) = O(n)

Proof. In the following proof, we consider the clusters in an increasing order of the time of
their construction. Let C be a cluster in the final partition C. Let r be the radius of C. We
remark that the construction of a cluster always ends with a sequence of successive successful
explorations, and in all these explorations except for the last one the growth condition holds.
Consider the first time t when the cluster C starts to successively completes all its explorations.
Let T ime(C) be the number of time units from t to the end of C’s construction. In other
words, T ime(C) is the duration of the successive successful explorations. Let j be the radius
of C at time t. For any i ∈ {j, · · · , r}, we consider the time when C contains i layers, and we
denote by rmaxi the maximum radius of the neighboring clusters of C.

In order to decide if a layer is added or not, the cluster C must be traversed at most a
constant number of times. In addition, before a node joins a new cluster, it informs its previous
root and waits for the acknowledgment of this root. Thus, T ime(C) !

∑

0<i!r O(i + rmaxi).
Using Theorem 1, we have r ! k − 1 and rmaxi ! k − 1. Thus, T ime(C) = O(kr).

In the worst case, two clusters are never constructed in parallel. Thus,

T ime(Dist Part) =
∑

C∈C
T ime(C)

Hence, using the fact that
∑

C∈C r ! n, we get

T ime(Dist Part) = O(k · n)

The previous analysis is not sufficient to prove the theorem if the parameter k is not
a constant. Nevertheless, it gives us a precious remark. In fact, we remark that it can be
interesting to take the couple (Rad(C), Idv) to be the identifier of a cluster C rooted at a
node v and the lexicographical order to compare cluster identifiers (which do not change the
overall implementation). In this case, we have rmaxi ! r. Thus, for the relevant range of
k ! log(n), we have:

|C| " nr/k ⇒ r !
k

log(n)
log(|C|) ⇒ r ! log(|C|)

15

Thus,
T ime(Dist Part) =

∑

C∈C

∑

0<i!r
O(i + rmaxi) !

∑

C∈C
O(r2)

!
∑

C∈C
O(log(|C|)2)

!
∑

C∈C
O(|C|)

Since C is a partition, the theorem holds. #$

Remark 7. Since at each time unit nodes could exchange order of |E| messages in a worst case
scenario, the message complexity of our algorithm can be rather large. However, this does not
take into account the fact that finished clusters stop communicating with their neighbors. In
this paper, we are mainly interested in the time complexity and we will not consider improving
the message complexity measure.

Remark 8. One shall remark that our theoretical analysis is still sequential. In fact, in our
analysis we consider that clusters are never constructed in parallel. This can actually happen
for instance if the graph contains a path with nodes having a decreasing sequence of identities.
In Fig. 7, such a bad scenario is illustrated. In fact, at each round of the algorithm execution
there will be only one cluster constructed. At the beginning, all nodes but node number 2n fail
to explore a new layer. Then, node number 2n switches to a final state, and only node number
2n−1 wins the exploration and so on. Thus, it takes O(n) time to terminate the construction.
Also in the example of Fig. 7, there will be order of O(n2) messages exchanged at each new
exploration round. In fact, the nodes of the clique will not be able to switch to final states
before the last round. Hence, the message complexity is large. Nevertheless, by considering
a random permutation of node identities, one can see that the path in Fig. 7 is likely to be
broken in many pieces rather quickly allowing more than only one cluster to grow in parallel.
This leads to a better time and message complexity in practice. For the general case of any
graph, we think that the average complexity of our algorithm can be much better than the
worst case bound of Theorem 4. It would be very nice to prove this claim analytically. This
could be a hard task since one have to consider any connected graph with n nodes and all
possible permutations of node identities.

n

2n − 1 n + 1

1

2

2n

Path with n nodes

Complete graph with n nodes

n − 2

n − 1

n + 2

Fig. 7. An example of bad node distribution

16

5 Sublinear deterministic distributed partition

In the following, we show how to improve algorithm Dist Part in order to obtain sublinear
time algorithms for constructing a basic partition. First, we describe and analyze a new
synchronous algorithm called Sync Part. Then, we show that the synchrony of the network
is not important to achieve a sublinear time construction, and we provide a new asynchronous
algorithm called Fast Part.

In the remainder, we denote by Vf the set of finished nodes, i.e., nodes in a finished cluster.
Furthermore, we are interested in active nodes in V − Vf , hence the degree dv of a node v is
defined as its degree in the graph GV −Vf induced by V − Vf .

5.1 A synchronous deterministic algorithm

In this section, we assume that the network is synchronous, i.e., there exists a global clock.
At any time t, At denotes the set of active nodes (nodes not in Vf at time t), and Rt = {v ∈
At | dv > n

1
k } denotes the set of active nodes having high enough degrees at time t.

We remark that the sparsity condition for a singleton cluster rooted at some node v is
dv > n

1

k . Hence, a singleton cluster rooted at some node in At \ Rt cannot grow any layer.
Thus, at any time t, we only let the nodes in Rt compete in order to grow some clusters. Once
Rt becomes empty, we just let the remaining active nodes be finished singleton clusters.

The new algorithm Sync Part works in two stages. The first stage is performed until
time T = O(k2n1−1/k) is reached. The second stage begins at time T and lasts O(1) time
units.

In the next paragraphs, we give the details of algorithm Sync Part and discuss its cor-
rectness and its complexity.

First stage of the algorithm During this stage, all nodes execute algorithm Dist Part

with the following additional exploration rules:

– If a node v ∈ At is no longer in Rt, i.e., v ∈ At \ Rt, then v sets its identity to −∞.
– Singleton clusters rooted at nodes in At \ Rt do not explore any layer.

Notice that the previous modifications are made only by singleton clusters that do not
verify the sparsity condition. We use the same three rules of algorithm Dist Part to manage
the growth of other clusters rooted at any node in Rt.

Let us consider a singleton cluster rooted at v ∈ At \ Rt. Then, when applying the new
rules, v sets its identity to −∞. Hence, v has the lowest identity among all other possible
identities. Therefore, node v will not stop the growth of another cluster rooted at a node of
Rt. In fact, v can only be a part of other neighboring dense clusters (if it is asked to join).
If the neighborhood of v is also in At \ Rt, then the cluster behaves as if it has the lowest
identity, i.e., it does not explore any layer. In a practical implementation, a node needs to
know whether it is in Rt or not. Since at any moment of algorithm Dist Part a node is aware
of its finished neighbors (see Remark 5), there are no further communications to be done by
a node in order to know if it is still in Rt.

Second stage of the algorithm At time T , all remaining active nodes in At stop computing
and just decide to be finished singleton clusters.

17

Proposition 1 (Correctness). Algorithm Sync Part emulates algorithm Basic Part.

Lemma 1. Let C be the cluster with the biggest identity among active nodes at some moment
of the algorithm. We need O(k2) time in the worst case before the construction of C is finished.

Proof. On one hand, the communications performed by the algorithm are done using a broad-
cast convergecast process inside the BFS spanning tree of each cluster. Since a cluster has a
radius at most O(k), a broadcast (or a convergecast) costs at most O(k) time units.

On the other hand, using the Exploration rule, cluster C always wins against its neighbor-
ing clusters and it always succeeds in exploring new layers. In the worst case, there will be at
most k − 1 new explored layers. Thus, it takes at most O(k · k) time before the construction
of C is finished. #$

Lemma 2. For any time t either |At+O(k2)| < |At|− n1/k or Rt+O(k2) = ∅.

Proof. Consider a given time t. If Rt = ∅ then Rt+O(k2) = ∅ (because a finished node will
never be active again). In the remainder of the proof we consider the less trivial case where
Rt '= ∅.

Consider a node v in Rt, i.e., v has more than n1/k active neighbors at time t. Node v
must belong to some cluster C. Let u be the root of C. Suppose that u is active at time t,
then u must be in Rt (because sparse nodes cannot explore new layers). The cluster having
the biggest identity will end up having radius at least 1 and size at least n1/k. The vertices of
that cluster become inactive and so at least n1/k vertices become inactive. Using Lemma 1,
the construction of the cluster having the biggest identity is terminated within at most O(k2)
time. Thus, |At+O(k2)| < |At|− n1/k.

Suppose now that for each node v ∈ Rt, the root of the cluster containing v at time t is
inactive. This may happen since it may take some time for a root node to inform the other
nodes in its cluster that the construction of the cluster is finished. This information takes at
most O(k) time to reach a node v. Thus at time t′ = t + O(k), either v becomes inactive or
v ∈ Rt′ or v ∈ At′ \ Rt′ . Thus, we have two relevant cases:

– No node v becomes in Rt′ . This means that Rt′ = ∅ and the second property of the lemma
holds.

– At least one node v becomes in Rt′ . By considering the cluster having the biggest identity
at time t′ and using Lemma 1, we have that |At′+O(k2)| < |At′ |−n1/k. Since |At′ | ! |At| and

t′ + O(k2) = t + O(k) + O(k2) = t + O(k2), we can conclude that |At+O(k2)| < |At|−n1/k.
Thus, the first property of the lemma holds.

In all cases, either the first property or the second property of the lemma holds. #$

Lemma 3. For t = O(k2n1−1/k), Rt = ∅.

Proof. Using Lemma 2, at the beginning of the algorithm we have |AO(k2)| < |A1| − n1/k or

RO(k2) = ∅. If RO(k2) = ∅ then the lemma holds. Otherwise, we have |AO(k2)| < |A1|− n1/k.

Let t = O(k2). Again by Lemma 2, we have |At+O(k2)| < |At| − n1/k or Rt+O(k2) = ∅. If

Rt+O(k2) = ∅ then the lemma holds. Otherwise, we have |At+O(k2)| < |At|− n1/k. Hence it is
easy to see that each O(k2) time period p, either the set of active nodes decreases by at least
n1/k factor or all nodes become sparse. Thus, by a simple induction, after at most n1−1/k

periods p either set A becomes empty or set R becomes empty. Since at any time t, Rt ⊆ At,
then we can conclude that RO(k2n1−1/k) = ∅. #$

18

Since the first stage of the algorithm costs T = O(k2n1−1/k) time units and the second
one is performed in O(1) time units, we get the following theorem:

Theorem 5 (Time Complexity). The time complexity of algorithm Sync Part is O(k2 n1−1/k).

Remark 9. We remark that since we are interested in small values of k (typically constant
values of k), the time complexity of our algorithm is O(n1−1/k). However, we can show that
for any k verifying k < log n, the value of T in the previous algorithm can be chosen to be
equal to O(n1−1/k). To do that, we slightly modify our algorithm by privileging the growth of
clusters having the biggest couple (Radius,Id). The proof of this claim is technically similar
to the proof of Theorem 4. In fact, consider a cluster C rooted at some node v in Rt. Consider
the cluster C having the biggest couple (r,Idv) where r is the radius of C and Idv the identity
of v. Similarly to the analysis of Theorem 4, it takes at most O(r) time to explore a new
layer. Moreover cluster C contains at least nr/k nodes that will be removed from set At once
the construction of C is finished. Let $ " 1 the radius of C in the final partition. Overall, it
costs O($2) time to construct cluster C. Moreover at least n!/k nodes become inactive at the
end of the cluster construction. Now, for k < log n, we have that n!/k/$2 = Ω(n1/k). Thus,
by considering the clusters in an increasing order of their time construction, it is easy to see
that the way that our algorithm removes nodes from set At is equivalent to removing at least
Ω(n1/k) nodes each O(1) time units. Thus, after at most O(n1−1/k) time units, either set
At becomes empty or Rt becomes empty. Thus, after O(n1−1/k) time units, no clusters with
radius at least 1 can be constructed. Hence, T can be chosen to be O(n1−1/k) and the factor
k2 can be removed in the time complexity.

5.2 An asynchronous deterministic algorithm

Algorithm Sync Part uses the property that the system is synchronous to find a bound
on the time T before no nodes can grow a non zero radius cluster. The time T informs
all remaining active nodes that there are no more active dense clusters in the graph. This
compels us to wait T time units even if the input graph is sparse. Furthermore, algorithm
Sync Part cannot be run in an asynchronous system without using any synchronizers (see,
e.g., Appendix A). In the following, we give a new asynchronous algorithm Fast Part which
does not use any global clock. The general idea of the algorithm is to allow sparse clusters
to become finished without waiting until pulse T . Our asynchronous algorithm shows that
the key point for speeding up the construction does not rely on the global synchrony of the
system, but rather on more local parameters.

Details of the algorithm Let us call a cluster C dense, if C has a radius at least 1 or if the
single node v of C verifies dv > n

1
k . We also define a sparse cluster to be a singleton cluster

which is not dense (this corresponds to a node in At \ Rt in algorithm Sync Part).
Algorithm Fast Part uses the three rules of algorithm Dist Part with the following

modifications:

– A dense cluster can explore a new layer if it has an identity bigger than those of its active
dense neighbors at distance one or two.

– A sparse cluster is not allowed to explore a new layer.
– A sparse cluster declares itself finished singleton cluster if:

• all its neighbors are sparse,

19

• or if none of its dense neighbors has succeeded in exploring a new layer.

Using these new rules, a sparse node is allowed to declare itself finished if it is not explored
by any neighboring cluster. This occurs if all neighbors are sparse or if the dense neighbors have
not succeeded their explorations. This simple idea enables us to improve the time complexity
of the previous synchronous algorithm.

It is obvious that the new modifications can be implemented using messages of size at most
O(log(n)) using the same techniques than in algorithm Dist Part. For instance, we can use
a couple (Id,Dense) for the cluster identifiers, where Dense is a boolean variable indicating
whether a cluster is dense or sparse.

Proposition 2 (Correctness). Algorithm Fast Part emulates algorithm Basic Part.

Let Λ be the number of clusters of radius at least 1 at the end of algorithm Fast Part.
Then, the following theorem holds:

Theorem 6 (Time Complexity). The worst case time complexity of algorithm Fast Part

satisfies:

T ime(Fast Part) = O(k2 Λ) = O(k2 n1− 1
k)

Proof. The new rules guarantee that a dense cluster is never stopped by a sparse one. In the
worst case, no two dense clusters are constructed in parallel. Thus, let us consider the finished
dense clusters in a decreasing order of their time construction.

The construction of a cluster costs at most O(k2). Thus, after at most O(k2Λ) time, it only
remains active sparse clusters in the graph. In two rounds, all remaining sparse clusters detect
that their neighbors are sparse. Thus, using the new rules, they become finished clusters and
the algorithm terminates. Thus, the first part of the theorem holds. In addition, since the
cluster are disjoint, it is obvious that for any graph and for any execution of the algorithm,
Λ is bounded by n1− 1

k which completes the proof. #$

Remark 10. Note that we can apply Remark 9 for the asynchronous algorithm Fast Part

in order to remove the k2 factor and obtain a O(n1− 1
k) time complexity.

Remark 11. The bound O(k2 Λ) becomes of special interest in the case of graphs where Λ can

be shown to be small compared to n1− 1

k , e.g., see Appendix B for the case study of Circulant
graphs.

Remark 12. A nice property of algorithm Fast Part is to privilege the clustering of dense
regions of the graph. For instance, if we consider a graph with only some few dense regions, e.g.,
some cliques connected by some paths. Our algorithm will automatically capture the topology
of the underlying graph and the clustering will have a high priority at those dense regions.
In the example of Fig. 7, algorithm Fast Part constructs a basic partition in constant time
whereas algorithm Dist Part needs O(n) time.

6 Sublinear randomized distributed partition

Although, the previous deterministic algorithms allow us to construct clusters in parallel,
their analysis is still sequential. In this section, we give a new randomized algorithm enabling
us to compute a lower bound of the number of clusters constructed in parallel.

20

6.1 Randomized local elections

In [33], a randomized algorithm called L2-election (LE2 for short) is introduced in order
to implement distributed algorithms described with Closed Star (CS for short) relabeling
systems. Relabeling systems can be considered as a formal tool to describe and to prove
distributed algorithms independently of the underlying model of communication. The reader
can refer to [31,32,26,14] for a review on the mathematical foundations of relabeling system.
Roughly speaking, a distributed computation step in the CS relabeling system formalism
consists in relabeling the nodes attached to a star according to a precise relabeling rule. This
encodes the fact that local computations done by a node in a distributed environment can
be viewed as a function of the states (labels) of its neighbors. The execution of a distributed
algorithm is then described as a sequence of relabeling steps. Each relabeling step changes
the labels of a star in the graph according to some rule. The relabeling could be executed
in parallel in different regions of the graph at the condition that the corresponding stars do
not intersect. In this context, algorithm LE2 [33] is a message passing algorithm used to
implement any formal algorithm described using the relabeling system formalism. Algorithm
LE2 works in fact in rounds where at each round some nodes are elected centers of some stars.
In other words, at each round, algorithm LE2 computes some disjoint stars to be relabeled
in parallel.

Algorithm LE2 is based on the following simple idea. At each round, a node chooses a
random number. If the number chosen by a node is bigger than the number chosen by its
neighbors at distant 2, then the node is elected center of a star. Thus, the stars centered at
the elected nodes can be relabeled in parallel since they are disjoint. Now, suppose that we
want to construct the basic partition for k = 2. By Theorem 1, the radius of a cluster is
at most 1. Thus, we remark that we can use algorithm LE2 to first compute some disjoint
stars. Since the elected stars are disjoint, the elected nodes can verify the sparsity of their
corresponding stars in parallel without interfering with each other. Thus, whenever a node is
elected center of a star, it computes the size of its corresponding star and then it decides to
be either a radius 1 finished cluster or a finished singleton cluster. By repeating this process
until each node gets clustered, we obtain the basic partition we want to compute.

In [33], the authors studied the number of nodes locally elected by their LE2 algorithm,
and they interpreted that as the degree of parallelism authorized by their algorithm. Thus,
by applying the LE2 algorithm for constructing the basic partition, we can study the number
of clusters constructed in parallel in one round and for k = 2. Using that study, we can derive
new upper bounds on the time needed to cluster all the nodes.

In the following we will argue that the local election algorithm of [33] can be extended
to elect nodes which are centers of disjoint balls of radius k " 2. Our LEk algorithm is then
used as a sub-procedure in algorithm Elect Part in order to construct the basic partition.
These algorithms are described in next paragraphs.

6.2 Algorithm Elect Part

Algorithm Elect Part is depicted in Fig. 8 below. It runs in many phases until each node
of the graph becomes part of a finished cluster. A phase of the algorithm is executed in two
stages.

In the first stage, we construct disjoint balls of radius at most k using algorithm LEk

depicted in Fig. 9. Algorithm LEk can be viewed as a variant of algorithm Dist Part. It

21

works in at most k rounds. At each round, a node applies the exploration rule and tries to
add a new layer. If the exploration is not successful, then the node executes the battle rule
as in algorithm Dist Part. Note however that whenever the exploration is successful then
the new explored layer is added even if it does not satisfy the sparsity condition. At the end
of algorithm LEk, some nodes will succeed growing a cluster up to some distance t ! k.
Nevertheless, some layers of those clusters may not verify the sparsity condition.

The second stage allows us to compute finished clusters and to re-initialize the compu-
tations for a new phase. In fact, each cluster in the input of the second phase computes
independently whether there is a layer that does not satisfy the sparsity condition (Step 2.a).
This can be done distributively using convergecast and broadcast between the root and the
leaves. If there exists a layer j violating the sparsity condition then the cluster rejects all
layers l " j and declares itself finished (Steps 2.b and 2.c). Otherwise, if all its neighbors are
finished then the cluster declares itself finished (Step 2.d). This is because the cluster will not
be able to grow any more. Finally, the remaining clusters are broken into singleton clusters
in order to run a new phase (Step 2.e).

1: while There exist nodes not in a finished cluster do

2: (0.) each node selects randomly an identity from a big set of integers.
3: Stage 1: local election in balls of radius k
4: (1.a) Each node v not in a finished cluster runs algorithm LEk

5: Stage 2: reinitialization

6: (2.a) Each formed cluster C computes independently the sparsity condition for each layer j ! k,
7: if S contains a layer j violating the sparsity condition then

8: (2.b) C releases all layers l " j and becomes a finished cluster,
9: (2.c) nodes in released layers become singleton clusters.

10: else

11: if all neighbors are finished then

12: (2.d) C becomes finished.
13: end if

14: end if

15: (2.e) Break all non finished clusters and form new singleton clusters.
16: end while

Fig. 8. Algorithm Elect Part

1: Round← 0;
2: while Round < k do

3: execute the Exploration Rule;
4: Round← Round + 1;
5: if Non Success of the Exploration Rule then

6: execute the Battle Rule;
7: end if

8: end while

Fig. 9. Algorithm LEk: code for a cluster

22

Remark 13. Algorithm LEk grows balls of radius k whereas a radius k − 1 suffices. This
allows us to mark edges connecting a cluster with the nodes in the last rejected layer and we
avoiding the preferred edge election step needed for some applications. This step is discussed
in Section 7.

6.3 Analysis of the algorithm

In this section, we compute a bound of the expected number of phases needed before algorithm
Elect Part terminates. The main idea of our analysis is to bound the number of nodes
becoming part of a finished cluster in a phase, by using the number of clusters constructed in
parallel in each phase.

In the sequel, we say that a node is locally k-elected if it succeeds the first stage of
algorithm Elect Part without losing against any other cluster, i.e., line 6 of algorithm
LEk is never executed by a locally k-elected node. We also use a parameter K such that:
∀v ∈ V , N2k(v) ! K, where N2k(v) = {u ∈ V | d(u, v) ! 2k}, i.e., K is an upper bound of
the 2k-neighborhood of any node.

It is not difficult to show that the probability that a node v is locally k-elected in a given
phase is Ω(1/N2k(v)). On the other hand, if we denote by X the random variable which
counts the number of locally k-elected nodes, then X can be written as the sum of n random
variables Xv (for each v ∈ V) such that Xv = 1 with probability q = Ω(1/N2k(v)) and 0 with
probability 1 − q. Hence, by the linearity of the expectation, we obtain E(X) =

∑

v∈V −Vf
q.

Thus, the following lemma is straightforward:

Lemma 4. The expected number of nodes locally k-elected in a phase is lower bounded by

Ω(
|V −Vf |

K).

Theorem 7. Let T be the time complexity of algorithm Elect Part. The expected value of
T satisfies:

E (T) = O

k2 log(n)

log
(

K
K−1

)

Proof. Let i " 0 be a phase of the algorithm and (Gi)i"0 the sequence of graphs such that G0 =
G and for all i " 1, Gi is the graph obtained by removing the nodes (and the corresponding
incident edges) belonging to a finished cluster from Gi−1. Obviously, Gi is the input graph of
phase i.
Let Xi be the random variable which denotes the size of the graph Gi (the number of its

nodes) for all i " 0, and let Yi be the number of nodes locally k-elected in the ith phase. It
is clear from Lemma 4 that we have the following inequality:

E (Yi | Gi) " X(Gi)/K

It is also easy to see that Xi+1 ! Xi − Yi for all i " 0. Thus,

E (Xi+1 | Gi) ! Xi − E (Yi | Gi) ! Xi · (1 − 1

K
)

23

For i " 0, we define a new r.v. Zi by Zi = Xi/(1 − 1
K)i. Then, E (Zi+1 | Gi) ! Zi. Thus, the

r.v. Zi is a super-martingale (see [43]), and then

E (Zi+1) = E (E (Zi+1 | Gi)) ! E (Zi)

A direct application of a theorem from [43] chapter 9, yields E (Zi) ! Z0 = n. Thus

E (Xi) =

(

1 − 1

K

)i

E (Zi) ! n

(

1 − 1

K

)i

.

The algorithm terminates when Vf = V , i.e., Xi = 1. This implies that i is upper bounded
by the ratio log(n)/ log(K

K−1). Since both the first and the second stage of the algorithm take

at most O(k2) time to be finished, the assertion in the theorem is proved. #$

Remark 14. The bound given by Theorem 7 does not take into account the size of the finished
clusters at each phase but only the number of clusters constructed in parallel. Furthermore,
the number of clusters constructed in parallel is just lower bounded using the variable K
which corresponds to the initial graph G and not to the subgraph in the input of each phase.
It would be very interesting to take all this features into account in order to get a better
bound on the number of phases needed to terminate algorithm Elect Part.

6.4 Improvements

In algorithm Elect Part, sparse nodes also participate in the computations and compete
against other nodes in order to grow a ball. This slows down the construction because an
elected sparse node will always form a finished singleton cluster. Thus, we can improve al-
gorithm Elect Part by allowing only dense nodes to compete in order to grow a ball of
radius k.

Similarly to algorithm Fast Part, we let a dense node win against a sparse one using a
couple (Id,Dense). In other words, we prohibit that a sparse node stops the growth of a dense
cluster. We also let a sparse node declare itself finished if it is not invaded by any neighboring
cluster, i.e., if dense neighbors lose their explorations or if all neighbors are sparse.

By considering the number of dense nodes at each phase and using the same arguments
than in Theorem 7, we can find a bound on the expected number of phases needed to terminate
the construction. Unfortunately, the theoretical analysis leads to the same bound than in
Theorem 7. It is also easy (using the same reasoning than in Theorem 6) to prove that the
complexity of the modified algorithm is bounded by O(k2Λ).

This new modified version of algorithm Elect Part is particularly interesting because
it has a sublinear time complexity for general graphs, and at the same time, it allows us to
express the high degree of parallelism of our method. For instance, consider a graph G such
that K = O(nε) with ε < 1. This defines a large class of graphs for which we can achieve an
improved time complexity, namely O(log(n)nε).

In Appendix B, we show that the expected running time of the modified algorithm is
O(log(n)) in the case of Circulant graphs.

7 Application to graph spanners

In this section, we show how to efficiently construct graph spanner in the CONGEST dis-
tributed model using our previous algorithms. A subgraph H is an (α,β)-spanner of a graph

24

G if H is a spanning subgraph of G and dH(u, v) ! α · dG(u, v) + β for all nodes u, v of G,
where dX(u, v) denotes the distance from u to v in the graph X. The couple (α,β) is called
the stretch of H, and the size of H is the number of its edges.

One immediate application of algorithm Basic Part is the construction of a (4k − 3, 0)-
spanner with O(n1+1/k) edges for any n-node graph G. The spanner is obtained by considering
the set of edges spanning each cluster and by selecting an inter-cluster edge for each pair
of two neighboring clusters. The bounds on the stretch and the size of the spanner are a
straightforward consequence of Theorem 1. In order to construct such a spanner distributively,
we must first construct the basic partition, and second select an edge between every two
neighboring clusters. However, we can both avoid this additional step of selecting preferred
edges and at the same time improve the bound on the spanner size.

In fact, let us consider any cluster C under construction in algorithm Dist Part. Before
the construction of C is finished (just after the sparsity condition is no longer satisfied) and
for every neighboring vertex u of C (u is on the last rejected layer of C), we select an edge
from u to some v in the last layer of C and we add it to the spanner S. Moreover, we add the
BFS spanning tree of each cluster C to the spanner S. It is well known that this idea allows
us to construct a (2k−1, 0)-spanner with O(n1/k) edges. This idea is in fact attributed to [27]
in [36] (Exercise 3, page 188) and is used in [22] as a first step to construct (1+ ε,β)-spanners.
The same idea is also used in [34] to improve the complexity of synchronizers γ1 and γ2. The
time complexity of the algorithms used in [36,34] is O(n) and it has not been improved since.

We remark that the last rejected layer is always explored in all the distributed algorithms
described in previous sections. Hence, the edges connecting a cluster with nodes in the last
rejected layer are implicitly computed by our algorithms without any extra communications.
Hence, by the previous discussion, the following results are straightforward:

Theorem 8. There is a deterministic distributed algorithm that given a graph with n nodes
and a fixed integer k " 1, constructs a (2k− 1, 0)-spanner with O(n1+1/k) edges in O(n1−1/k)
time using messages of length O(log n).

Corollary 1. There is a deterministic algorithm that given a graph with n nodes constructs
a (3, 0)-spanner with O(n3/2) edges in O(

√
n) time using messages of length O(log n).

One can find many papers concerning the construction of graph spanners. In [39,38,44],
the reader can find excellent and recent reviews on graph spanners.

To our knowledge Theorem 8 provides the best time complexity for constructing (2k−1, 0)-
spanners with O(n1+1/k) edges in a deterministic manner and using small messages. The
fastest deterministic algorithm was given very recently in [19]. It constructs (2k−1, 0)-spanners
with O(kn1+1/k) edges in O(k) time using messages of polynomial size. Fast randomized
algorithms using small messages exist. The best one is due to Baswana et al. [12,11]. The
authors there gave a (Las-Vegas) randomized algorithm that computes a (2k − 1, 0)-spanner
with expected size O(kn1+1/k) in O(k) time using O(log(n)) size messages. As mentioned
in [8], a randomized solution might not be acceptable in some cases, especially for distributed
computing applications. In the case of graph spanners, deterministic algorithms that guarantee
a high quality spanner are more than of a theoretical interest. Indeed, one cannot just run
a randomized distributed algorithm several times to guarantee a good spanner, since it is
impossible to check efficiently the global quality of the spanner in the distributed model.

25

8 Open questions

In this paper, we focus on the time complexity of constructing sparse partitions in the practical
CONGEST distributed model. One important motivation of our work is to understand and to
study the effects of the congestion created by small messages into the overall time complexity
of a distributed algorithm.

We left open the following questions:

1. Can we improve the time complexity of our algorithms from n1−1/k to n1/k in the CONGEST
model? In particular, we remark that, in the case of small k (2, 3, 4, 5), the locality level of
the basic partition and the time complexity bound obtained using our technique are better
than the bounds one can obtain by both assuming a more powerful distributed model, i.e.,
unlimited message size, and using techniques from [8]. This observation is intriguing and
one can be interested in a lower bound on the time complexity of distributively computing
the basic partition. Although, the case k = 2 seems hard to improve, we are optimistic
that deterministic algorithms with better bounds exist for other values of k.

2. We have studied the sparse partition problem from a locality point of view. In other
words, we only consider the problem of improving the time complexity. Can we improve
the message complexity of our algorithms while maintaining the same time complexity?

References

1. Y. Afek and M. Ricklin. Sparser : a paradigm for running distributed algorithms. Journal of Algorithms,
14:316–328, 1993.

2. I. Althofer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted graphs. Discrete
Computational Geometry, 9:81–100, 1993.

3. B. Awerbuch. Complexity of network synchronization. Journal of the ACM, 32:804–823, 1985.
4. B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Poltkin. Network decomposition and locality in

distributed computation. 30th IEEE Symposium on Foundation of Computer Science (FOCS89), pages
364–369, 1989.

5. B. Awerbuch and D. Peleg. Routing with polynomial communication-space trade-off. SIAM Journal on
Discrete Mathematics, 5:151–162, 1992.

6. B. Awerbuch and D. Peleg. Online tracking of mobile users. Journal of the ACM, 42:1021–1058, 1995.
7. B. Awerbuch and D. Peleg. Network synchronization with polylogarithmic overhead. 31st IEEE Symposium

on Foundations of Computer Science (FOCS90), 2:503–513, October 1990.
8. Baruch Awerbuch, Bonnie Berger, Lenore J. Cowen, and David Peleg. Fast distributed network decompo-

sitions and covers. Journal of Parallel and Distributed Computing, 39:105–114, 1996.
9. Baruch Awerbuch, Bonnie Berger, Lenore J. Cowen, and David Peleg. Near-linear time construction of

sparse neighborhood covers. SIAM Journal on Computing, 28(1):263–277, February 1998.
10. Baruch Awerbuch and David Peleg. Sparse partitions. In 31th Symposium on Foundations of Computer

Science (FOCS90), pages 503–513. IEEE Computer Society Press, October 1990.
11. Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. New constructions of (α, β)-

spanners and purely additive spanners. In 16th Symposium on Discrete Algorithms (SODA05), pages
672–681. ACM-SIAM, January 2005.

12. Surender Baswana and Sandeep Sen. A simple linear time algorithm for computing a (2k − 1)-spanner
of O(n1+1/k) size in weighted graphs. In 30th International Colloquium on Automata, Languages and
Programming (ICALP03), volume 2719 of Lecture Notes in Computer Science, pages 384–396. Springer,
July 2003.

13. F. Belkouch, M. Bui, L. Chen, and A. K. Datta. Self-stabilizing deterministic network decomposition.
Journal of Parralel and Distributed Computing, 62:696–714, 2002.

14. J. Chalopin and Y. Métivier. A bridge between the asynchronous message passing model and local compu-
tations in graphs. In Mathematical Foundations of Computer Science (MFCS05), volume 3618 of Lecture
Notes in Computer Science, pages 212–223. Springer-Verlag, aug 2005.

26

15. Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretch t. SIAM Journal on
Computing, 28(1):210–236, 1998.

16. Francesc Comellas, Javier Ozón, and Joseph G. Peters. Deterministic small-world communication networks.
Inf. Process. Lett., 76(1-2):83–90, 2000.

17. Lenore J. Cowen. On Local Representations of Graphs and Networks. Ph. D Thesis, MIT, 1993.
18. B. Derbel and M. Mosbah. A fully distributed linear time algorithm for cluster network decomposition.

16th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS04),
pages 548–553, 2004.

19. Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. On the locality of distributed sparse
spanner construction. In 27th Symposium on Principle Of Distributed Computing (PODC), pages 273–
282, 2008.

20. Bilel Derbel, Mohamed Mosbah, and Akka Zemmari. Fast distributed graph partition and application.
In 20th IEEE International Parallel & Distributed Processing Symposium (IPDPS06). IEEE Computer
Society Press, April 2006.

21. Michael Elkin. Computing almost shortest paths. In 20th ACM Symposium on Principles of Distributed
Computing (PODC01), pages 53–62. ACM Press, 2001.

22. Michael Elkin and David Peleg. (1 + ε, β)-spanner constructions for general graphs. SIAM Journal on
Computing, 33(3):608–631, 2004.

23. Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1 + ε, β)-spanners in the distributed
and streaming models. In 23rd ACM Symposium on Principles of Distributed Computing (PODC04), pages
160–168. ACM Press, July 2004.

24. I. Gaber and Y. Mansour. Centralized broadcast in multihop radio networks. Journal of Algorithms,
46:1–20, 2003.

25. J.A. Garay, S. Kutten, and D. Peleg. A sublinear time distributed algorithm for minimum-weight spanning
trees. SIAM Journal on Computing, 27:302–316, February 1998.

26. E. Godard, Y. Métivier, and A. Muscholl. Characterizations of classes of graphs recognizable by local
computations. Theory of Computing Systems, 37:2:249–293, 2004.

27. S. Halperin and U. Zwick. Unpublished result. 1996.
28. Shay Kutten and David Peleg. Fast distributed construction of small k-dominating sets and applications.

Journal of Algorithms, 28(1):40–66, 1998.
29. Nathan Linial. Distributive graph algorithms - Global solutions from local data. In 28th IEEE Symposium

on Foundations of Computer Science (FOCS87), pages 331–335. IEEE Computer Society Press, October
1987.

30. Nathan Linial. Locality in distributed graphs algorithms. SIAM Journal on Computing, 21(1):193–201,
1992.

31. I. Litovsky, Y. Métivier, and E. Sopena. Different local controls for graph relabelling systems. Mathematical
Systems Theory, 28:41–65, 1995.

32. I. Litovsky, Y. Métivier, and E. Sopena. Graph relabelling systems and distributed algorithms. In Handbook
of graph grammars and computing by graph transformation, volume 3, pages 1–56. World Scientific, 1999.

33. Y. Métivier, N. Saheb, and A. Zemmari. Randomized local elections. Information Processing Letters,
82:313–120, 2002.

34. Shlomo Moran and Sagi Snir. Simple and efficient network decomposition and synchronization. Theoretical
Computer Science, 243(1-2):217–241, 2000.

35. A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring and network decomposition.
24th ACM Symposium on Theory of Computing (STOC92), pages 581–592, 1992.

36. David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete
Mathematics and Applications, 2000.

37. David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of distributed
minimum-weight spanning tree construction. SIAM Journal on Computing, 30(5):1427–1442, 2000.

38. Seth Pettie. Low distortion spanners. In 34th International Colloquium on Automata, Languages and
Programming (ICALP), pages 78–89, July 2007.

39. Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. In 27th Symposium
on Principle Of Distributed Computing (PODC), pages 253–262, 2008.

40. Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate distance oracles
and spanners. In 32nd International Colloquium on Automata, Languages and Programming (ICALP),
volume Lecture Notes in Computer Science, 2005.

41. L. Shabtay and A. Segall. Low complexity network synchronization. 8th Internatinal Workshop on Dis-
tributed Algorithms, pages 223–237, 1994.

27

42. Mikkel Thorup and Uri Zwick. Spanners and emulators with sublinear distance errors. In 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 802–809, 2006.

43. D. Williams. Probability with Martingals. Cambridge University Press, 1993.
44. David P. Woodruff. Lower bounds for additive spanners, emulators, and more. In 47th Annual IEEE

Symposium on Foundations of Computer Science (FOCS), pages 389–398, October 2006.

28

A Application to Neighborhood Covers and Network Synchronizers

Neighborhood covers can be thought as a generalization of the basic partition. In fact, for
any positive integer ρ, a ρ-neighborhood cover of a graph G can be defined as a collection of
clusters C = ∪C such that for every v ∈ V , there exists a cluster C ∈ C such that Nρ(v) ⊆ C
where Nρ(v) = {u ∈ V | d(u, v) ! ρ} denotes the ρ-neighborhood of node v in the graph
G. Hence, the basic partition described before is a 0-neighborhood cover of G having a low
average degree, namely O(n1/k). In Peleg’s book [36] (Chapter 12), one can find a survey on
different types of covers obtained on the basis on the basic partition algorithm. In particular,
given an initial cover S, it is shown in [36] how to extend algorithm Basic Part to construct
a coarsening cover T of S, that is a cover that subsumed S. By taking S = ∪v∈V Nρ(v), it can
be shown that a ρ-neighborhood cover with radius O(k ·ρ) and average degree O(n1/k) can be
constructed on the basis of algorithm Basic Part (the proof is by Theorem 12.2.1 of [36]).
This type of neighborhood covers is also used in [34] as an auxiliary communication structure
to design network synchronizers. More specifically, the authors in [34] described a distributed
1-neighborhood cover algorithm that is used to design a new efficient synchronizer. Based on
the extended construction of [36], it is not difficult to extend our basic partition distributed
algorithms to construct ρ-neighborhood covers distributively. Since we are mainly interested
in the application of covers in the design of network synchronizers, we will briefly outline
the modifications to be done to obtain the ρ-neighborhood cover used in [34]. Extending our
technique for any ρ is left as an exercise.

A.1 Distributed construction of 1-neighborhood covers

In this section, we extend algorithm Dist Part in order to cover the 1-neighborhood of each
node. We use the same distributed techniques to manage cluster growth. However, we make
a cluster explore two layers at the same time instead of only one. At each new exploration,
each cluster fights to maintain two layers li and li+1 with i the radius of the cluster. The
first layer li allows the cluster to compute the sparsity condition (the same one than in
algorithm Dist Part). The second layer li+1 (which is the last explored layer) guarantees
that the neighborhoods of all nodes in layer li are in the current cluster. There are mainly
five important modifications to do:

1. At the beginning of the algorithm, all nodes are orphans. An orphan node first explores
two consecutive layers before starting computing the sparsity condition.

2. If the sparsity condition is satisfied for layer li, then a cluster begins a new exploration,
i.e., the leaves in layer li+1 try to invade new nodes. If the new exploration succeeds, then
layer li+1 becomes layer li′=i+1 and the new explored layer becomes the new li′+1 layer.

3. If the sparsity condition for layer li is not satisfied, then the construction of the cluster is
finished. The finished cluster contains not only all layers lj<i but also the two layers li and
li+1. Nevertheless, only nodes in layers lj<i are in a final state. The 1-neighborhoods of all
nodes in layer li are covered by the finished cluster but they do not stop computing yet.
In fact, the 1-neighborhoods of nodes in layer li+1 may not be covered by a cluster. Hence,
nodes in layer li become orphan clusters with identity −∞ in order to allow other clusters
to grow and cover the neighborhoods of nodes in layer li+1. On the other side, nodes in
layer li+1 become orphan clusters with their initial identifiers and continue competing in
order to grow new clusters.

29

4. If a new exploration fails, i.e., there is a cluster at distance 1 or 2 (from layer li+1) with
a bigger identifier, then:

– either the winner lost against another neighboring cluster and the current cluster is
not invaded. Hence, the cluster simply retries a new exploration.

– or the current cluster is invaded and the cluster loses its last layer li+1. Hence, invaded
nodes in layer li+1 become part of the last layer liwin+1 of the winner cluster. Nodes
in layer li+1 which have not been invaded become orphan nodes and begin a new
exploration using their own identifiers. Layer li becomes the last layer li′+1=i and layer
li−1 becomes layer li′=i−1. Then the cluster begins a new exploration once again.

5. When the construction of a cluster is finished, nodes at distance at least 2 from the border
of the cluster, i.e., layers lj!i−1, switch to final states. In fact, layer li−1 of a finished
cluster acts as a barrier that protects the finished cluster from future invasions. Layers
lj!i−1 are usually called the Kernel of the cluster.

It is easy to see that the time and message complexity of the extended algorithm increases
by only a constant factor due to the computation of the extra layer li+1. Notice also that it
is not difficult to adapt the techniques of algorithms Fast Part and Elect Part in order
to obtain sublinear time complexity.

An example of cluster growth In Fig. 10, we give an example of how the cover is
constructed. In our example, there are four active clusters: 1, 2, 3 and 4 with identities
Id1 > Id2 > Id3 > Id4. We suppose that there is a finished cluster in the neighborhood of
cluster 1.

The nodes in layer li of the finished cluster (first part of Fig. 10) still participate in the
computation with identity −∞, all the nodes in the Kernel of the finished cluster are in a
final state. There is also a node in layer li+1 of the finished cluster which belongs to layer li+1

of cluster 1.

Suppose that the layers li of the active clusters satisfy the sparsity condition, then these
clusters will try to grow. Cluster 2 cannot grow because cluster 1 is at distance two of it and
has a bigger identity. Cluster 1 will invade both clusters 3 and 4. Cluster 4 is orphan and it
simply joins the last layer of cluster 1. Cluster 3 will lose its last layer li+1. The invaded nodes
of cluster 3 join cluster 1 and the other nodes which have not been invaded become orphan
clusters (second part of Fig. 10). Note also that the node with identity −∞ in the finished
cluster is invaded by cluster 1. This guarantees that the neighborhood of the children of the
(−∞)-node in the finished cluster is covered by cluster 1.

Once the new exploration is finished, cluster 1 verifies the sparsity condition. If it is
satisfied, a new exploration will begin and clusters 2 and 3 will be invaded. Note that nodes
in the Kernel of the finished cluster will not be invaded by cluster 1. If the sparsity condition
is not satisfied which is the case in the third part of Fig. 10, the construction of cluster
1 is finished. The nodes in layer li′ become orphans with identity −∞. The nodes in layer
li′+1 become orphan nodes except those which are already in layer li of another finished
cluster (those whose neighborhoods are covered). Note that the two finished clusters we have
constructed overlap (they have a common edge).

30

li

li

li+1

li+1

li

li+1

Id2

Id1

Id3

Id4

−∞

Finished

(a) Before cluster 1 expansion

Id1

l
i′

l
i′

l
i′+1

Id3

Id5

Id2

li

li+1

l
i′+1

Finished

(b) After cluster 1 expansion

Id3

Id4

−∞

Id2

li+1

li

l
i′+1

l
i′

Id5

Id6

Finished

−∞

−∞

−∞

Finished

(c) After construction of cluster 1 is finished

Fig. 10. An example of a cluster expansion for cover needed for γ2

A.2 Application to network synchronizers

The basic partition and the 1-neighborhood covers constructed in previous sections are of
special interest for designing network synchronizers γ, γ1 and γ2 [34]. In the following, we
review the basic properties of these synchronizers.

Background Network synchronizers allow us to transform a synchronous algorithm into an
asynchronous one. In general, one prefers to design a distributed algorithm in a synchronous
model rather than an asynchronous model which is typically harder to grasp and to analyze
([36], Chapter 6). From a practical point of view, network synchronizers provide a uniform
methodology for transforming synchronous distributed algorithms into asynchronous ones.

Generally speaking, the basic idea of network synchronizers is to simulate a global clock
by using local pulse generators. If the local clock pulse of some node v is equal to p, then node
v knows that the messages that it has sent at pulse p − 1 have reached their destinations.
Many simulation techniques were developed in order to guarantee this property:

1. The first basic technique is known as synchronizer α. The general idea of synchronizer α
is to send an acknowledgment corresponding to each received message of the original syn-

31

chronous algorithm. Once, a node receives an acknowledgment of all the original messages
corresponding to one pulse, the node informs its neighbors and then it generates the next
pulse. This technique leads to an overhead of O(|E|) messages in order to simulate a pulse.
Assuming that a message delay is at most O(1) (this is only for performance analysis), it
also leads to the theoretical O(1) time overhead per pulse.

2. The second basic technique called synchronizer β assumes a precomputed rooted BFS
spanning tree T of G. Only the root of T have a pulse generator which controls all other
nodes. In fact, once a node u receives the acknowledgments of the messages it has sent,
the node u is ready for the next pulse and it informs its parent in the tree T . The parents
forward this information until it reaches the root of T . Once the root learns that all the
nodes are ready for the next pulse, it broadcasts a message saying “it is time for the next
pulse”! Thus, synchronizer β implies an overhead of O(|V |) messages and O(D) time per
pulse, where D is the diameter of G.

3. The third technique is an intermediate technique which provides a good time-message
trade-offs. This technique implies three synchronizers γ, γ1 and γ2 ([34]). All of these
three synchronizers use sparse covers. More precisely, synchronizer γ uses the basic parti-
tion as an auxiliary communication structure. Synchronizer γ1 uses a cover based on the
basic partition where each edge belongs to at least one cluster. This property is easily
obtained by our partition algorithms by simply marking the last rejected layer as part of
the cluster. Finally, synchronizer γ2 uses the the 1-neighborhood cover described in the
previous section.

A detailed description of synchronizers γ, γ1 and γ2 can be found in [34]. In the following,
we just outline the basic ideas used in synchronizer γ (the two other synchronizers are based
on the same general ideas). First, we assume the following:

1. A partition C of G is constructed.
2. A rooted BFS spanning tree TC for each cluster C ∈ C is constructed.
3. A set I of intercluster edges is selected.

To simulate a pulse, we combine the techniques of synchronizers α and β. Roughly speak-
ing, the root of each tree TC first waits to learn that the nodes in C are ready for the next
pulse (which costs O(|C|) messages and O(Rad(C)) time for each cluster). Then, the cluster
tries to synchronize with its neighbors using the intercluster edges. More precisely, the root
of C broadcasts a notification message all along the tree TC saying that all the nodes in its
cluster are ready. When the leaves of TC receive the notification message, they forward it
to neighboring clusters using the selected intercluster edges (which costs O(|I|) message and
O(1) time). Symmetrically, the leaves receive a notification from their neighboring clusters.
When receiving such a notification, they send it back to their root. Once the root receives the
notification messages of its neighbors, it sends a message to the nodes in its cluster saying “it
is time for the next pulse”. Thus, the global overhead is O(n + |I|) messages and O(Rad(C))
time per pulse.

Thus, if we take the basic partition as a communication structure, then the global overhead
is O(n1+1/k) messages and O(k) time per pulse which gives a good compromise compared to
synchronizer α and β.

Contribution The previous overhead is essentially optimal according to Lemma 25.1.7 in
Peleg’s book [36]. Synchronizers γ, γ1 and γ2 have the same performances up to a constant

32

factor. Hence, one remaining challenge is to improve the pre-processing step of constructing
the required covers. Using our algorithms, the time complexity of this pre-processing step is
reduced from O(n) in previous implementations to O(n1−1/k).

B Case Study: Circulant Graphs

In this section, we study the efficiency of algorithms Fast Part and algorithm Elect Part

in the case of Circulant Graphs. In fact, Circulant Graphs are dense enough to be interest-
ing for the algorithm we are studying. They have enough large diameter in order to let the
analysis non trivial and constructive. In addition, the analysis given here is interesting from
a theoretical point of view. In particular, the proof of Theorem 12 below illustrate the im-
provements discussed in Section 6.4. The reader should also note that this class of graphs was
studied in many past works and for different purposes. For instance, it is used in [16] as a
basis for the construction of graphs having the small-world property.

Definition 1. A circulant graph Cirn(L) is a graph of n nodes {1, 2, ..., n} in which a vertex
i is adjacent to nodes (i − j) and (i + j) for each i and j in the list L (see Fig. 11 for an
example).

Fig. 11. An Example of Cirn(L) graphs with n=8 and L ∈ {{1}, {1, 2}, {1, 2, 3}}

Definition 2. For every parameter ε such that 0 < ε ! 1, we define the graph Cirε
n to be the

circulant graph Cirn(1, 2, ..., ,nε

2 -).

In the sequel, we suppose that ε > 1
k . In fact, if ε ! 1

k then the graph is already sparse
and all our algorithms terminate in O(1) rounds.

Theorem 9. For k < log(n) and for every graph Cirε
n, the time complexity of algorithm

Fast Part is bounded by O(n1−ε).

Proof. For k < log(n), any constructed cluster has radius at most 1. It can also be shown
that Λ ! 2 n

nε = O(n1−ε). Thus, the theorem follows as a consequence of Theorem 6. #$

Theorem 10. Let T be the time complexity of algorithm Elect Part. Then, for every graph
Cirε

n, the expected value of T satisfies:

E(T) = O(k3 log(n) nε)

Proof. For any graph Cirε
n, it is easy to show that K = 2k nε (we recall that K is an upper

bound of the 2k-neighborhood of any node). Thus, log(1− 1
K) ! − 1

K = − 1
2knε and the result

follows immediately from Theorem 7. #$

33

The two theorems 9 and 10 are immediate consequences of the analysis we have already
made for algorithms Sync Part and Elect Part. In particular, we obtain a time complexity
which is better than O(n1− 1

k). Nevertheless, using a more careful analysis, we obtain the
following bounds:

Theorem 11. For every graph Cirε
n, the expected time complexity T of algorithm Elect Part

satisfies:

E(T) = O
(

k3 log(n) + kn
1
k

)

Theorem 12. Using the improved version of algorithm Elect Part described in Section 6.4,
the expected time complexity T of algorithm Elect Part satisfies:

E(T) = O(k3 log(n))

Proof. We prove the previous two theorems in two parts. The first part is common to the two
theorems. The technical arguments are similar to those in the analysis made in Theorem 7
but the reasoning is different.

First Part of the proof Let i " 0 be a phase of algorithm Elect Part and (Gi)i"0 be the
sequence of graphs such that G0 = G and for all i " 1, Gi is the graph obtained by removing
the nodes belonging to a finished cluster from Gi−1.
Let Vi be the set of nodes having a degree higher than ,nε

2 - in phase i. Let Xi be the random
variable which denotes the number of nodes in Vi, and let Yi be the number of nodes from Vi

which are locally k-elected in the ith step. The following inequality holds:

E (Yi | Gi) "
Xi

K
,

One can show that if the node v belongs to Vi, then every active neighbor w of v is also
in Vi. Hence, we can state the following:

E (Xi+1 | Gi) ! Xi − E (Yi | Gi)
nε

2

! Xi(1 − nε

2K)

! Xi(1 − 1
2·2k).

By induction and using the same arguments as in Theorem 7, the expected time such that
Xi = 1 is bounded by:

O(k2 log(n)

log(4k
4k−1)

)

Let us consider the time after which all nodes in the graph have a degree less than ,nε

2 -,
i.e., the time such that Vi = 0) . One can show that the remaining nodes are grouped in many

connected fragments that can be divided in two types: dense components with more than n
1
k

nodes and sparse components with no more than n
1
k nodes. All theses components are disjoint

and do not share any node. Thus, the algorithm runs independently on each component.

34

Let us consider a dense component Cd, i.e., n
1
k < |Cd| < ,nε

2 -). In one phase, there will
be exactly one elected node in Cd and the finished cluster constructed around this node will
contain the whole component Cd. Thus, in O(k) time, all nodes in Cd become finished.
Second part of the proof of Theorem 11: Let us consider a sparse component Cs, i.e.,
|Cs| ! n

1
k). The nodes of such a component have a degree less than n

1
k . At each phase of

algorithm Elect Part, there will be exactly one elected node in Cs which forms a finished
singleton cluster. Thus, we need at most O(n

1
k) phases of O(k) time units each before all

nodes in Cs become finished.
To conclude, if Vi becomes empty then we need at most O(kn

1
k) time units before the

algorithm terminates and Theorem 11 holds.

Second Part of the proof of Theorem 12: Let us consider a sparse component Cs, i.e.,
|Cs| ! n

1

k). The nodes of such a component have a degree less then n
1

k . Thus, using from
the improvements of algorithm Elect Part in Section 6.4, these nodes are allowed to be
finished. Hence, in O(1) time, they all become finished singleton clusters.

To conclude, if Vi becomes empty then we need at most O(k) time units before the
algorithm terminates and Theorem 12 holds. #$

35

