Modèles de Calcul : Corrigé du devoir à la maison

Exercice 1

Répondre par oui ou par non aux questions suivantes. Les explications ne sont pas exigées.

- 1. L'ensemble ℕ des entiers naturels est dénombrable. Oui
- 2. L'ensemble $\mathbb Z$ de tous les entiers est dénombrable. Oui
- 3. L'ensemble Q des nombres rationnels est dénombrable. Oui
- 4. L'ensemble $\mathbb R$ des nombres réels est dénombrable. Non
- 5. L'ensemble $T = \{x \in \mathbb{Z} \mid x \equiv 3 \mod 7\}$ est décidable. Oui
- 6. Tout langage rationnel est décidable. Oui
- 7. Le complément à un ensemble fini est décidable. Oui
- 8. Toute fonction $f: \mathbb{N} \to \mathbb{N}$ telle que f(n) = 17 pour tout $n \ge 91$, est calculable. Our
- 9. Tout algorithme peut être réalisé par un automate à pile. Non
- 10. Tout algorithme peut être réalisé par une machine de Turing. Oui

Exercice 2

Soit $C = \{(x, y) \in \mathbb{N}^2 \mid y \ge x^2\}$. Donner une bijection de C dans \mathbb{N} .

Corrigé. L'application $f:(x,y)\to (x,y-x^2)$ est une bijection de C dans \mathbb{N}^2 . En effer, elle fait une "translation" de chaque colonne verticale de l'ensemble C de x^2 unités vers le bas et, étant donné que $y\geq x^2$, nous obtenons $y-x^2\geq 0$. Maintenant, après avoir obtenu \mathbb{N}^2 , on peut appliquer, par exemple, la fonction τ (vue en TD) qui réalise une bijection $\tau:\mathbb{N}^2\to\mathbb{N}$. Une bijection de C dans \mathbb{N} est donc $\tau(x,y-x^2)$.

Autres solutions sont aussi possibles.

Exercice 3

La conjecture de Goldbach formulée en 1742, et qui reste toujours non démontrée, affirme que tout nombre pair à partir de 4 est la somme de deux nombres premiers. Représenter cette conjecture sous forme d'un problème de l'arret pour un algorithme (ou un programme) particulier.

Corrigé. Soit une fonction premier (m) qui retourne vrai si m est premier, et qui retourne faux sinon. Le programme suivant (voir la page suivante) cherche, et retourne s'il le trouve, le plus petit entier n qui soit pair mais ne soit pas une somme de deux nombres premiers. Selon la conjecture, un tel n n'existe pas, ce qui est équivalent à dire que le programme ci-dessous ne s'arrête pas.

```
n = 6
ind = 1
tantque ind = 1 faire
   ind = 0
   k = 3
   tantque (ind = 0) ET (k \le n/2) faire
      si premier(k) ET premier(n-k) alors
         ind = 1
      sinon
         k = k+2
      fin-si
   fin-tantque
   si ind = 1 alors
      n = n+2
   fin-si
fin-tantque
retourner n
```

Exercice 4

Soit A un alphabet fini, et soit $f: A^* \to A^*$ une fonction calculable et totale.

- 1. (Facile) Montrer que pour tout langage $L \subseteq A^*$ semi-décidable son image f(L) est semi-décidable.
- 2. (Difficile) Montrer que si L est décidable, cela n'implique pas que f(L) soit décidable.

Corrigé.

- 1. Soit un algorithme P qui énumère le langage L. En appliquant à chaque sortie de P la fonction f nous obtenons un algorithme qui énumère le langage f(L).
- 2. Soit M un langage semi-décidable mais non-décidable, et soit Q un algorithme qui vérifie l'appartenance $v \in M$. Cet algorithme peut répondre positivement mais ne peut pas répondre négativement.

Soit R l'ensemble de paires (v,t), $v \in A^*$, $t \in \mathbb{N}$, telles que l'algorithme Q, ayant été appliqué à v, donne une réponse positive après avoir fait au plus t opérations. Il est évident que l'ensemble R est décidable : si une réponse positive de Q n'est pas parvenue après t opérations, on peut répondre négativement, en affirmant que $(v,t) \notin R$. Il est clair aussi que la fonction f(v,t) = v donne f(R) = M. Il reste à représenter l'ensemble R sous forme d'un langage $L \subseteq A^*$; la forme concrète de cette représentation n'a pas d'importance.

Exercice 5

Construire une machine de Turing à deux bandes qui, pour un mot $u \in \{a, b\}^*$ donné, compte le nombre d'occurences de la lettre a dans u.

Corrigé. Le symbole \square représente l'espace blanc, le symbole | indique que la tête ne bouge pas.

Le mot d'entrée est écrit sur la première bande. La tête se trouve sur la première lettre du mot. Le nombre à calculer, en binaire, se trouve sur la deuxième bande; la tête se trouve sur le dernier chiffre du nombre. Au début, la deuxième bande est vide.

La première bande est destinée à la lecture seule, le symbole "écrit" pour cette bande n'est donc pas représenté.

Les colonnes de la table :

A : Lecture sur la première bande

B : Déplacement de la tête sur la première bande

C: L'état suivant

D : Lecture sur la deuxième bande

E: Écriture sur la deuxième bande

F : Déplacement de la tête sur la deuxième bande

G: L'état suivant

Les états de la machine :

 q_0 : L'état initial; lecture sur la première bande

 q_1 : Addition de 1 sur la deuxième bande

 q_2 : Retour au dernier chiffre du mot binaire sur la deuxième bande

 q_f : L'état terminal

éta	t	A	В	С	D	E	F	G
q_0		a	\rightarrow	q_1				
		b	\rightarrow	q_0				
				q_f				
$\overline{q_1}$					0	1		q_2
					1	0	\leftarrow	q_1
						1		q_2
$\overline{q_2}$					0	0	\rightarrow	$\overline{q_2}$
					1	1	\rightarrow	q_2
							\leftarrow	q_0
$\overline{q_f}$								