UF d'Informatique 2015/2016 Semestre 1

Modèles de Calcul: feuille 1

Bijections

Exercice 1.1

Donner une bijection φ de \mathbb{Z} dans \mathbb{N} . Fournir des formules explicites pour φ et φ^{-1} .

Exercice 1.2

Donner une bijection τ de $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ dans \mathbb{N} . Donner une formule explicite pour τ et une méthode de calcul pour τ^{-1} .

Exercice 1.3

Pouvez-vous trouver d'autres bijections de $\mathbb{N} \times \mathbb{N}$ dans \mathbb{N} ? (Les formules explicites ne sont pas exigées.)

Exercice 1.4

On propose la solution suivante à l'exercice 1.3 :

$$\psi(x,y) = 2^x \cdot (2y+1).$$

Cette solution est-elle correcte? Sinon, pouvez-vous la corriger?

Exercice 1.5

Donner une bijection μ de $\mathbb{Z} \times \mathbb{Z}$ dans \mathbb{N} . Donner une formule explicite pour μ et une méthode de calcul pour μ^{-1} .

Exercice 1.6

- 1. Donner une bijection de $\{(x,y) \in \mathbb{N} \times \mathbb{N} \mid y \leq x\}$ dans \mathbb{N} . Fournir une formule explicite.
- 2. On propose la solution suivante pour cet exercice :

$$\rho(x,y) = x^2 + y^2.$$

Cette solution est-elle correcte? Justifiez votre réponse.

Exercice 1.7

Donner des bijections de $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ dans \mathbb{N} . Fournir des formules explicites.

Exercice 1.8

On appelle liste *finie* d'entiers une application d'un intervalle entier [1, n] $(n \in \mathbb{N})$ dans \mathbb{N} (pour n = 0 la liste est vide). On note \mathcal{L} l'ensemble de toutes les listes finies :

$$\mathcal{L} = \bigcup_{i=0}^{\infty} \mathbb{N}^i.$$

On note \mathcal{L}_0 le sous-ensemble de \mathcal{L} formé des suites qui sont soit la liste vide (), soit la liste (0), soit une liste ne se terminant pas par 0.

1. Donner une bijection de \mathcal{L}_0 dans \mathbb{N} , fondée sur le fait que tout entier naturel $n \notin \{0,1\}$ a une décomposition unique sous la forme

$$n = 2^{m_1} \cdot 3^{m_2} \cdots p_k^{m_k} \cdots p_\ell^{m_\ell}$$

où p_k est le k-ième nombre premier et $m_\ell \neq 0$.

2. Donner une bijection de \mathcal{L} dans \mathbb{N} .

Exercice 1.9

Soit $\mathbb{N}[x]$ l'ensemble des polynômes en variable x à coefficients dans \mathbb{N} . Pour des raisons techniques, on y ajoute un "polynôme vide". Donner une bijection de $\mathbb{N}[x]$ dans \mathbb{N} .

Exercice 1.10

- 1. Donner une bijection de l'ensemble des arbres planaires finis non-étiquetés dans \mathbb{N} . <u>Indication</u>: un arbre planaire fini non-étiqueté A peut être vu comme la liste (finie) de ses sous-arbres. Autrement dit,
 - soit A = () (arbre réduit à un seul noeud);
 - soit $A = (A_1, A_2, \dots, A_\ell)$ où A_1, A_2, \dots, A_ℓ sont des arbres planaires finis et $\ell \geq 1$.
- 2. Donner une bijection de l'ensemble des arbres planaires finis, étiquetés par des entiers naturels, dans \mathbb{N} .

 $\underline{\text{Indication}}$: un arbre planaire fini A, étiqueté par des entiers naturels, peut être vu comme la liste formée de l'étiquette de sa racine suivie de la liste (finie) de ses sous-arbres. Autrement dit,

$$A = (r, A_1, A_2, \dots, A_\ell)$$

où A_1, A_2, \ldots, A_ℓ sont des arbres et $\ell \geq 0$.

Exercice 1.11

On considère l'ordre hiérarchique sur les mots de $\{a,b,c\}^*$: $u \leq_h v$ signifie que |u| < |v| ou (|u| = |v| et $u \leq_{lex} v)$. Ainsi :

$$\epsilon < a < b < c < aa < ab < ac < ba < \dots$$

On pose

$$\varphi(u) = \text{Card}(\{v \in \{a, b, c\}^* \mid v < u\}).$$

Autrement dit, $\varphi(u)$ est le numéro de u selon l'ordre hiérarchique.

- 1. Exprimer $\varphi(ua)$ en fonction de $\varphi(u)$.
- 2. Donner une formule simple pour φ .

Exercice 1.12

Soit $L \subseteq \{0,1\}^*$ un langage, $|L| = \infty$, et nous disposons d'un algorithme qui, pour un mot donné $u \in \{0,1\}^*$, vérifie si u appartient à L ou non. Proposer un algorithme pour calculer une bijection λ de L dans \mathbb{N} . Proposer un algorithme pour calculer la fonction inverse λ^{-1} .