Fonctions génératrices

Exercice 1 Soit la suite définie par la récurrence linéaire

$$a_0 = 2$$
, $a_1 = 1$, $a_n = a_{n-1} + 3a_{n-2}$ pour $n \ge 2$.

- 1. Trouver une fonction génératrice pour cette suite.
- 2. Trouver les fonctions gératrices pour les sous-suites paire a_0, a_2, a_4, \ldots et impaire a_1, a_3, a_5, \ldots
- 3. En utilisant ces fonctions génératrices, trouver les récurrences linéaires qui régissent les sous-suites paire et impaire.

Exercice 2 En utilisant la série binomiale $(1-4x)^{1/2}$ et la fonction génératrice des nombres de Catalan, trouver une formule explicite pour les nombres de Catalan.

Remarque. Pour trouver le *n*ème nombre de Catalan, il nous faut le (n+1)ème coefficient de la série binomiale (pourquoi?).

Exercice 3 En utilisant la formule de Stirling, trouver une formule asymptotique pour les nombres de Catalan.

Exercice 4 On fait des expériences aléatoires indépendantes avec la probabilité de succès égale à p et la probabilité d'échec égale à q = 1 - p. Soit X le nombre d'expériences jusqu'au premier succès.

- 1. Trouver les probabilités que X soit égale à $1, 2, 3, \ldots, k, \ldots$
- 2. Trouver l'espérance (la moyenne) de la variable aléatoire X.

Exercice 5 (Polynômes de Chebyshev) Polynômes de Chebyshev sont des polynômes $T_n(x)$, $n=0,1,2,\ldots$ qui expriment $\cos n\varphi$ en fonction de $\cos \varphi$, à savoir, $\cos n\varphi = T_n(\cos \varphi)$.

1. Montrer les récurrence

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$ pour $n \ge 2$.

<u>Indication</u>. Écrire les formules pour $\cos(\alpha+\beta)$ et $\cos(\alpha-\beta)$, puis prendre $\alpha=(n-1)\varphi$ et $\beta=\varphi$.

- 2. Calculer les polynômes T_n pour n=2,3,4,5.
- 3. Trouver la fonction génératrice $f(t,x) = \sum_{n \geq 0} t^n T_n(x)$.

4. (Optionnel) Dessiner les représentations graphiques des polynômes $T_n(x)$ sur le segment [-1,1].

Exercice 6 (Nombres de Motzkin) Les chemins de Motzkin de longueur n sont les chemins qui rélient le point (0,0) au point (n,0) en utilisant, en plus des pas Nord-Est et Sud-Est, les pas Est (les pas horizontaux) et qui se trouvent entièrement au-dessus de l'axe horizontal. Les chemins de Motzkin peuvent être codé par des mots de Motzkin qui, à par des lettres a et b, utilisent la lettre c pour coder les pas horizontaux. Les nombres de Motzkin m_n comptent le nombre de chemins (et de mots) de Motzkin de longueur n.

- 1. Dessiner et compter les chemins de Motzkin de longeur jusqu'à 4.
- 2. Écrire une grammaire algébrique qui engendre les mots de Motzkin.
- 3. Trouver une formule récurrente pour les nombres de Motzkin. Claculer m_5 et m_6 .
- 4. Écrire une équation pour la fonction génératrices des nombres de Motzkin et trouver cette fonction.