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ORDERS OF SIMPLE GROUPS AND THE BATEMAN–HORN CONJECTURE
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Abstract. We use the Bateman–Horn Conjecture from number theory to give strong evidence of a positive

answer to Peter Neumann’s question, whether there are infinitely many simple groups of order a product of

six primes. (Those with fewer than six were classified by Burnside, Frobenius and Hölder in the 1890s.) The

groups satisfying this condition are PSL2(8), PSL2(9) and PSL2(p) for primes p such that p2 − 1 is a product

of six primes. The conjecture suggests that there are infinitely many such primes p, by providing heuristic

estimates for their distribution which agree closely with evidence from computer searches. We also briefly

discuss the applications of this conjecture to other problems in group theory, such as the classifications of

permutation groups and of linear groups of prime degree, the structure of the power graph of a finite simple

group, the construction of highly symmetric block designs, and the possible existence of infinitely many Kn

groups for each n ≥ 5.

1. Introduction

In the 1890s, Burnside [5, 6], Frobenius [11] and Hölder [13] classified those non-abelian finite simple

groups G which have a number-theoretically small order, in the sense that |G| is a product of relatively few

primes, counting repetitions. Between them, they showed that there are only four such groups with at most

five primes, namely the groups PSL2(p) for p = 5, 7, 11 and 13, of orders

22 · 3 · 5, 23 · 3 · 7, 22 · 3 · 5 · 11 and 22 · 3 · 5 · 13.

(Recall that PSL2(q) (or L2(q) in ATLAS [8] notation) has order q(q2 − 1)/d where d = gcd(q − 1, 2), and

that PSL2(4) � PSL2(5) � A5.)

Since the non-abelian finite simple groups are now classified, it is natural to ask which of them have order

a product of six primes. It is straightforward to inspect the orders of the simple groups in such sources as [8]

or [26], and to see that the only possibilities are the groups PSL2(8) and PSL2(9) (� A6) of orders

23 · 32 · 7 and 23 · 32 · 5,
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and PSL2(p), of order p(p2 − 1)/2, for primes p > 13 such that p2 − 1 is a product of six primes. For

instance, see Example 6.3 in Section 6 for the elimination of small unitary groups.

Solomon, in his historical survey [25] of the classification of finite simple groups, notes that Peter Neu-

mann, while editing Burnside’s collected works, asked whether there are infinitely many primes p with this

property. We do not have a definite answer to this question, but we have used the Bateman–Horn Conjecture

to give what we feel is strong evidence that the answer is positive.

To avoid confusion, we point out that the problem we consider here should be distinguished from the

investigation of Kn groups, those simple groups of order divisible by n distinct primes. Nevertheless, we

describe an application of our work to them in Section 9.

2. Factorisations

For a natural number n ∈ N with prime power factorisation

n =
k∏

i=1

pei
i (pi prime, ei ≥ 1),

let

Ω(n) :=
k∑

i=1

ei

denote the total number of prime factors of n, counting repetitions, and for a finite group G let

Ω(G) := Ω(|G|).

For each m ∈ N let Sm be the set of all non-abelian simple groups G such that Ω(G) = m. As explained

in the Introduction, S6 consists of the groups PSL2(8) and PSL2(9), together with the groups PSL2(p) for

those primes p > 13 such that Ω(p2 − 1) = 6.

For any integer p we have

Ω(p2 − 1) = Ω(p − 1) + Ω(p + 1).

Now assume that p is prime and p > 13. Then p ± 1 are both even, one of them is divisible by 4, and one

of them is divisible by 3. This gives us four prime factors contributing to Ω(p2 − 1), and each of p ± 1 must

contribute at least one more prime factor since otherwise p ≤ 13. Thus Ω(p2 − 1) ≥ 6, and this lower bound

is attained if and only if p satisfies one of the following conditions, depending on which of p± 1 is divisible

by 3 or by 4:

a) p − 1 = 4r and p + 1 = 6s,

b) p − 1 = 6r and p + 1 = 4s,

c) p − 1 = 2r and p + 1 = 12s,

d) p − 1 = 12r and p + 1 = 2s,

where r and s are primes. All four of these cases are possible, for example with p = 29, 19, 23 and 37

respectively, but the question is whether any of them yields infinitely many primes p.
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In case (a) we have p ≡ 1 mod (4) and p ≡ −1 mod (6), which are equivalent to p ≡ 5 mod (12). If we put

p = 12t+5 where t ∈ N then r = 3t+1 and s = 2t+1. The question is now whether these three polynomials

fi(t) = 12t + 5, 3t + 1 and 2t + 1 (i = 1, 2, 3)

can simultaneously take prime values for infinitely many t ∈ N. The situation is similar in the other three

cases, the only difference being that the triples of polynomials fi(t) are 12t + 7, 2t + 1 and 3t + 2 in case (b),

12t − 1, 6t − 1 and t in case (c), and 12t + 1, t and 6t + 1 in case (d).

3. Number-theoretic conjectures

These four cases are instances of a much more general problem in number theory, namely whether a given

set of polynomials f1(t), . . . , fk(t) ∈ Z[t] can simultaneously take prime values for infinitely many t ∈ N.

Bunyakovsky [4] considered the case k = 1 in 1857. The following conditions are obviously necessary for

a single polynomial f (t) ∈ Z[t] to take prime values for infinitely many t ∈ N:

(1) it has a positive leading coefficient,

(2) it is irreducible in Z[t], and

(3) it is not identically zero modulo any prime.

Bunyakovsky conjectured that these conditions are also sufficient. For example, they are satisfied by the

polynomial t2 + 1, the subject of the Euler–Landau Conjecture on primes of this form. The Bunyakovsky

Conjecture has been proved only in the case where deg f = 1: this is simply a reformulation of Dirichlet’s

Theorem on primes in an arithmetic progression.

Our cases (a) to (d) are instances of Dickson’s Conjecture, which is that polynomials fi(t) (i = 1, . . . , k)

of degree deg fi = 1 simultaneously take prime values for infinitely many t ∈ N if and only if they all satisfy

the first two Bunyakovsky conditions and their product satisfies the third. Particular cases include the twin

primes and Sophie German primes conjectures, with fi(t) = t, t + 2 and t, 2t + 1 respectively. Again, this

conjecture has been proved only in the case k = 1, whereas our six primes problem has k = 3.

In 1957 Schinzel’s Hypothesis [23] generalised both the Bunyakovsky and Dickson Conjectures by re-

moving the condition deg fi = 1 from the latter. In 1962 Bateman and Horn [3], extending earlier work

of Hardy and Littlewood [12] on the twin primes and other related conjectures, proposed an asymptotic

estimate E(x) for the number Q(x) of t ∈ N with t ≤ x such that fi(t) is prime for i = 1, . . . , k. The

Bateman–Horn Conjecture (BHC) asserts that

(3.1) Q(x) ∼ E(x) := C
∫ x

a

dt∏k
i= ln fi(t)

as x→ +∞

where C, known as a Hardy–Littlewood constant, is given by

(3.2) C = C( f1, . . . , fk) :=
∏

r prime

(
1 −

1
r

)−k (
1 −
ω f (r)

r

)
,

with ω f (r) denoting the number of roots of f := f1 . . . fk mod (r), and a in (3.1) chosen to avoid singularities

of the integral, where some fi(t) = 1. In the next section we will give a short heuristic argument to explain

these formulae, but as yet there is no proof (again, apart from the quantified version of Dirichlet’s Theorem,
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due to de la Vallée Poussin). If Schinzel’s conditions are satisfied, the infinite product in (3.2) converges

to a limit C > 0. (See [1] for a proof, and for an interesting account of the background to the BHC.) Now

the definite integral in (3.1) diverges to +∞ as x → +∞, so E(x) → +∞ and hence, if the BHC is true,

Q(x)→ +∞ also, proving that there are infinitely many t ∈ N such that each fi(t) is prime.

4. Heuristic argument for the BHC

According to the Prime Number Theorem, a good asymptotic estimate for the number π(x) of primes

p ≤ x is obtained by integrating the probability of t being prime, to give

(4.1) π(x) ∼
∫ x

2

dt
ln t

as x→ +∞.

(This is significantly more accurate than the widely-used estimate x/ ln x for π(x). Thus, for example, for

the value of π(x) for x = 1028, which may be found in [22], entry A006880, the relative error of the estimate

x/ ln x is −1.576 %, while the relative error of the estimate (4.1) is, approximately, 10−12 %.) This suggests

that if f (t) is a polynomial in Z[t] satisfying Bunyakovsky’s conditions then the expected number of prime

values of f (t) for t ≤ x might be estimated by

(4.2)
∫ x

a

dt
ln f (t)

as x→ +∞,

where a is chosen so that f (t) > 1 for t ≥ a. For a finite set of polynomials f1, . . . , fk satisfying Schinzel’s

conditions we can therefore make a first attempt at an estimate

(4.3)
∫ x

a

dt∏
i ln fi(t)

for the expected number of t ≤ x with all fi(t) prime, multiplying probabilities on the assumption that

these polynomials behave independently of each other. However, they are not independent, and the Hardy–

Littlewood constant C is a product, over all primes r, of correction factors(
1 −

1
r

)−k (
1 −
ω f (r)

r

)
which replace the probability

(
1 − 1

r

)k
that k randomly and independently chosen elements of Zr are all non-

zero with the probability that the product f (t) =
∏

i fi(t) is non-zero mod (r), so that no fi(t) is divisible by

r.

Remark 4.1. Note that the factor C( f ) modifies not only formula (4.3), but also (4.2). As to (4.1), we have

f (t) = t, and it is easy to see that in this case the Hardy–Littlewood constant is C( f ) = 1.

Of course, the above is only a very brief outline of more persuasive heuristic arguments which can be

used to support the BHC. See, however, the following remark.

Remark 4.2. To the best of our knowledge, there is no completely adequate probabilistic model for the

distribution of primes which would imply, even informally, the Bateman–Horn Conjecture (BHC). Maybe,

we must simply change direction and construct a model which would be based on the BHC. At least, this
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latter conjecture has such strong supporting experimental data that a model based on it just has no other way

than to be an adequate description of a statistical behaviour of primes. This task is not yet accomplished.

However, we must keep in mind that the density, taken as a probability measure on N or on Z, is only

finitely additive and not countable additive. Therefore, it is impossible just to take a theorem of Probability

Theory and apply it directly to the distribution of primes. The only particular case of the BHC which is

proved up to now (the quantified version of Dirichlet’s theorem due to de la Vallée Poussin, mentioned

above) was proved by analytic methods. As to Probability Theory, it is used as a heuristic tool, as a source

of conjectures to be proved by other, non-probabilistic methods.

In the absence of a proof, we have to rely on the fact that, time after time, the BHC produces estimates

which agree remarkably closely with experimental data (see subsequent sections of this paper). Indeed, such

evidence would regarded as convincing proof in other areas, such as Physics or Law.

5. Applying the BHC

We applied the BHC to the four triples of polynomials fi(t) in cases (a) to (d) of the six primes problem.

In each case Maple can evaluate the definite integral in (3.1) almost instantly, using numerical integration.

(In the early1960s, when systems like Maple were unavailable and such programming had to be done ‘from

scratch’, Bateman and Horn simplified the integration by ignoring all coefficients of the polynomials fi,

replacing the definite integral in (3.1) with

1∏k
i=1 deg fi

∫ x

2

dt
(ln t)k .

The resulting estimates are asymptotically equivalent, but a little less accurate.

In case (a) we have

f (t) = (12t + 5)(3t + 1)(2t + 1).

This has three roots modulo each prime except 2 and 3, where it has one, so this gives us the terms in the

infinite product (3.2). The product converges slowly, but by taking the product over all primes r ≤ 109 one

can get a good approximation to the limit, namely C( f ) = 5.71649719. If we take x = 109, for example,

then the actual number of t ≤ 109 such that each fi(t) is prime is Qa(109) = 614 423, whereas the estimate

is E(x) = Ea(109) = 615 580.70, representing a relative error of +0.188 %. After the example p = 29 given

above, arising when t = 2, the next primes in case (a) appear when t = 14, giving p = 173, and then t = 26,

giving p = 317.

The other three cases all give the same Hardy–Littlewood constant C as in (a), leading to very similar

BHC estimates. For instance, in case (b) we have Qb(109) = 615 369, while the estimate is Eb(109) =

615 580.614, an error of +0.034%. In the other two cases Qc(109) = 616 509 and Qd(109) = 616 289,

whereas the estimates are Ec(109) = 616 720.62 and Ed(109) = 616 720.51, giving errors of +0.034 % and

+0.070 %.

The accuracy of these estimates is comparable to that obtained in many other applications of the BHC,

such as to twin or Sophie Germain primes (see also subsequent sections of this paper). Based on this

evidence, we make the following conjecture:
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Conjecture 5.1. There are infinitely many primes p satisfying the conditions in each of cases (a) to (d), and

in particular there are infinitely many groups PSL2(p) of order a product of six primes.

6. More than six primes

One can easily modify the preceding arguments to obtain similar evidence for the existence of infinitely

many groups PSL2(p) in Sm for any m ≥ 6. For instance, this can be done by replacing the conditions in

case (a) with

(6.1) p − 1 = 4r and p + 1 = 2as (a := 3m−5),

where p, r and s are primes. Then p ≡ 1 mod (4) and p ≡ −1 mod (2a), so p ≡ 2a − 1 mod (4a). Writing

p = 4at + 2a − 1 we have

r =
p − 1

4
= at +

a − 1
2

and s =
p + 1

2a
= 2t + 1,

so we have an instance of the BHC with

(6.2) fi(t) = 4at + 2a − 1, at +
a − 1

2
and 2t + 1 (i = 1, 2, 3).

Example 6.1. Let us take m = 7, so that a = 3m−2 = 9. The polynomials we need to consider are

f1(t) = 36t + 17, f2(t) = 9t + 4 and f3(t) = 2t + 1.

For r = 2 and 3 the product (36t+17)(9t+4)(2t+1) has a unique root modulo r, while for all the other primes

r it has three roots. Therefore, the constant factor C( f ) remains the same as in Section 5. Then, taking, for

example, x = 109, we find that the number of t ≤ x for which the values of all the three polynomials are

prime is Q(x) = 556 373, while the BHC estimate gives E(x) = 556 520.2. The relative error of this estimate

is 0.026 %.

We make the following conjecture:

Conjecture 6.2. Given any a = 3e (e ≥ 1), the three polynomials in (6.2) simultaneously take prime values

for infinitely many t ∈ N. In particular, given any m ≥ 6 there are infinitely many groups PSL2(p) of order

a product of m primes.

This raises the question of whether one can prove that there is an infinite set of primes p such that

Ω(p2 − 1) is bounded above, or more generally that there is an infinite set S of non-abelian finite simple

groups G with Ω(G) bounded above. Any such set S must contain only finitely many alternating groups,

and hence any groups G ∈ S of Lie type must have bounded Lie rank, for otherwise their Weyl groups

would involve alternating groups of unbounded degree. Likewise, the field of definition Fq (q = pe) of G

must have bounded degree e over Fp, for otherwise the order of the Sylow p-subgroups of G, which contain

copies of the additive group of Fq, would be an unbounded power of p. This suggests that the simplest way

of constructing candidates for S is to use the groups PSL2(p) as we have done here, with the Lie rank and

the degree e both equal to 1.
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Example 6.3. As another example where the rank and degree are both low, consider the simple unitary

groups G = PSU3(p) (= U3(p) in ATLAS notation) of order p3(p3 + 1)(p − 1)/d, p > 2 prime, where

d = gcd(3, p + 1). Since p3 + 1 = (p + 1)(p2 − p + 1) it is not hard to see that Ω(G) ≥ 9, attained if

and only if Ω(p2 − 1) = 6 (as in the case of PSL2(p)) and p2 − p + 1 or (p2 − p + 1)/3 is prime. (The

latter case arises when p ≡ −1 mod (3), so that d = 3.) When we considered PSL2(p) in Sections 2 and 5

the prime p was represented by f1(t) in each of cases (a) to (d), so one can apply the BHC to PSU3(p) by

adding the polynomial f4(t) = f1(t)2 − f1(t) + 1 to the triples fi(t) (i = 1, 2, 3) used earlier in cases (b) and

(d). In cases (a) and (c) we have f1(t) ≡ −1 mod (3) so f1(t)2 − f1(t) + 1 is divisible by 3 and we can take

f4(t) = ( f1(t)2 − f1(t) + 1)/3. The following example gives strong evidence that there are infinitely many

groups PSU3(p) ∈ S9.

Example 6.4. Let us consider one particular example coming from case (c): we have

f1(t) = 12t − 1, f2(t) = 6t − 1, f3(t) = t, and f4(t) =
f1(t)2 − f1(t) + 1

3
= 48t2 − 12t + 1.

In order to compute the constant C( f ) we need to know the value ω f (r) which is the number of roots of the

product f (t) = f1 f2 f3 f4 in Zr, with r prime. For r = 2 and 3 this product has a single root. For r > 3 the

factors f1, f2, f3 provide us with three roots, while the quadratic polynomial f4 may have two roots or no

roots. Let us look at this case in more detail.

The discriminant of f4 is −48 = 42 · (−3). Therefore, f4 has two roots in Zr if −3 is a quadratic residue

modulo (r), and no roots if not. Recall the notation for the Legendre symbol: for p prime and q ∈ Z

(
q
p

)
=


0 if q ≡ 0 mod (p);

1 if q is a quadratic residue mod (p);

−1 otherwise.

(See [14, Chapter 7] for quadratic residues and the Legendre symbol.) This symbol is multiplicative: for all

q, q′ ∈ Z we have (
qq′

p

)
=

(
q
p

) (
q′

p

)
, therefore

(
−3
p

)
=

(
−1
p

) (
3
p

)
.

The value of
(
−1
p

)
is known: it is 1 if p = 4k+ 1, and −1 if p = 4k− 1. As to

(
3
p

)
, we may use Gauss’ Law of

Quadratic Reciprocity: for p, q prime we have
( q

p

)
=

(
p
q

)
if one or both p and q are of the form 4k + 1, and( q

p

)
= −

(
p
q

)
if both p and q are of the form 4k − 1. Collecting all these data, we find out that(

−3
p

)
=

( p
3

)
=

 1 if p ≡ 1 mod 3,

−1 if p ≡ −1 mod 3.

We may now conclude: for a prime r > 3 the product f (t) = f1(t) f2(t) f3(t) f4(t) has five roots in Zr if

r ≡ 1 mod (3), and has three roots if r ≡ −1 mod (3). This permits us to compute the constant C( f ): taking

the product over the primes r ≤ 109 we get C( f ) = 12.10128533. The number of t ≤ 109 such that all fi(t)

are prime is Q(109) = 30 452; the estimate of this number given by the BHC is 30 504.71; the relative error

is 0.173 %.
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7. Permutation groups of prime degree

Although we have concentrated in this paper on the six primes problem, our involvement with the BHC

began with a different problem in group theory. This was motivated by our study of Klein’s papers [19, 20]

on equations (and hence coverings and permutation groups) of degree 7 and 11, and our desire to extend his

results to all primes (see [15] for details). In doing this we encountered an important but rarely discussed

gap in the classification of transitive permutation groups of prime degree, a problem going back two and a

half centuries to Lagrange. Building on early work by Galois and Burnside, the classification of finite simple

groups implies that these groups are as follows:

(a) subgroups of AGL1(p) containing the translation group, for primes p;

(b) alternating and symmetric groups Ap and Sp, for primes p ≥ 5;

(c) PSL2(11) and Mathieu groups M11 and M23, of degrees 11, 11 and 23;

(d) subgroups G of PΓLn(q) containing PSLn(q), in those cases when the natural degree d =
qn − 1
q − 1

is

prime.

In (c), PSL2(11) has two actions of degree 11, on the cosets of two conjugacy classes of subgroups

isomorphic to A5; the Mathieu groups act on the points of the Steiner systems S (4, 5, 11) and S (4, 7, 23).

In (d), G acts on the d points (and also the d hyperplanes if n ≥ 3) of the projective geometry Pn−1(Fq) of

dimension n − 1 over Fq.

It is an open problem whether the degree d in case (d) is prime for infinitely many pairs (n, q). Such

projective primes, as we call them, include the Fermat primes, of the form q + 1 = 22 f
+ 1, for n = 2, and

the Mersenne primes, of the form 2n − 1, for q = 2. Five Fermat primes are known, and it is conjectured

that there are no more; at the time of writing 51 Mersenne primes are known, and it is conjectured that

there are infinitely many of them. In investigating this problem (see [16] for details), having nothing new

to contribute to the extensive research on those very difficult topics, we restricted our attention to the cases

n, q ≥ 3.

If we write q = pe, we are asking whether p and

(7.1) d := p(n−1)e + p(n−2)e + · · · + pe + 1

can both be prime for infinitely many p. Clearly, this requires n to be prime, and a simple argument involving

cyclotomic polynomials shows that e must be a power of n, possibly equal to n0 = 1.

We concentrated on the simplest and most frequently-arising case n = 3, e = 1, applying the BHC to the

polynomials

f1(t) = t, f2(t) = t2 + t + 1.

Typical results obtained were

• E(1010) = 1.579642126 × 107 and Q(1010) = 15 801 827, an error of −0.03420956 %,

• E(1011) = 1.292974079 × 108 and Q(1011) = 129 294 308, an error of +0.00239757 %.

For other pairs (n, e), such as (5, 1) and (3, 3), the results were good but much less convincing, since the

primes increase so rapidly that relatively few of them were within our computing range. Nevertheless, on

the basis of this evidence we make the following conjecture:
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Conjecture 7.1. For each prime n ≥ 3 there are infinitely many prime powers q such that PSLn(q) is a

transitive permutation group of prime degree d = (qn − 1)/(q − 1).

8. Linear groups of prime degree

In [9] Dixon and Zalesskii classified the irreducible finite subgroups G ≤ SLd(C) of prime degree d, in the

case where the socle S of their image G in PSLd(C) is non-abelian and acts primitively, that is, preserving

no non-trivial direct sum decomposition of Cd. (In this section ‘degree’ and ‘primitive’ always refer to the

dimension and structure of the vector space on which G acts, and not to any permutation representation of

G.) In this case S is simple and G ≤ Aut S . Theorem 1.2 of [9] gives a finite list of families of simple groups

S which can arise, with necessary and sufficient conditions on d and their parameters for such groups G to

exist. It is unknown whether some of these families are finite or infinite. Here we give a brief outline of how

we have used the BHC to give strong evidence that they are infinite (see [16] for full details).

A typical example has S � PSUn(q) for n ≥ 3, where q is a prime power pe and the degree

d =
qn + 1
q + 1

= qn−1 − qn−2 + · · · − q + 1

is prime. The pair of polynomials

(8.1) f1(t) = t and f2(t) = t(n−1)e − t(n−2)e + · · · − te + 1

satisfy the conditions of Schinzel’s Hypothesis if n is prime and e is a power of n. This is the same as the

condition in Section 7 for (qn −1)/(q−1) to be a projective prime, and indeed the substitution t 7→ −t shows

that the Hardy–Littlewood constants C( f ) are the same in both cases: they are equal to 1.521730.

We may compare the results, for example, for x = 1010. The definite integrals in (3.1) are very similar:

in fact, they differ by 0.456 (and the estimates E(x) thus differ by C( f ) · 0.456 ≈ 0.7). Therefore, we may

suppose that the actual numbers Q(x) will also be close to each other. And, indeed, we have seen above

that the value of Q(x) for f1(t) = t, f2(t) = t2 + t + 1 was 15 801 827, while for the polynomials f1(t) = t,

f2(t) = t2 − t + 1 we have 15 801 414 (the relative error in this case is −0.0316 %). It is interesting to note

that, again for x = 1010, the computation of the estimate E(x) on a particular (modest) laptop we have used

took 0.002 seconds, while the computation of the exact value of Q(x) took 54 hours. The computation of

E(x) for x = 1030 with 30 digits of accuracy takes 2.4 seconds, while the computation of Q(x) for this value

of x is far beyond our reach. Regrettably, we don’t have a (conjectural) upper bound for the error term.

Another family appearing in [9] consists of groups S � PSL2(q) where q and the degree d = (q − 1)/2

are both prime. This is equivalent to d being a Sophie Germain prime, a case where the BHC has already

provided strong evidence of infinitely many examples.

A more difficult family in [9] has S � PSL2(q) for prime degrees d = q+1
2 , where q = p2k

≥ 5 for an odd

prime p and integer k ≥ 0. To apply the BHC we took

f1(t) = 2t + 1 (= p) and f2(t) =
(2t + 1)2k

+ 1
2

=

2k∑
i=1

(
2k

i

)
2i−1ti + 1 (= d)
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for some fixed k ≥ 0. In this case the calculation of the Hardy–Littlewood constants C( f ) for k ≥ 1 is less

straightforward (the case k = 0 is similar to the Sophie Germain primes problem). We have

ω f (r) =


0 if r = 2,

2k + 1 if r ≡ 1 mod (2k+1),

1 otherwise,

leading to the results for small k shown in Table 1:

k C( f ) Q(109) E(109) relative error

1 4.426783 5 448 994 5 448 648.05 −0.006 %

2 10.433814 6 373 197 6 365 668.39 −0.118 %

3 7.885346 2 394 012 2 395 075.38 0.044 %

4 14.642571 2 219 445 2 218 975.66 −0.021 %

Table 1. Q(109) is the number of t ≤ 109 such that both f1(t) and f2(t) are prime; E(109) is

the BHC estimate for Q(109).

On the basis of this we conjecture that for each k ≥ 0 there are infinitely many primes p such that d is

prime.

The above example is, in fact, the particular case n = 1 of a more general family involving the symplectic

groups S = PSp2n(q) where d = (qn + 1)/2 is prime, n = 2 j for some integer j ≥ 0, and q is as before, but

without the restriction q ≥ 5 when n > 1. (Note that PSp2(q) � PSL2(q).) For a fixed pair j, k we applied

the BHC to the polynomials

f1(t) = 2t + 1 (= p) and f2(t) =
(2t + 1)2 j+k

+ 1
2

(= d).

These are the same as the preceding pair f1, f2, but with j + k replacing k, so the same estimates E(x) and

search results Q(x) apply in this case.

There are several other potentially infinite families of groups in [9, Theorem 1.2], but since they involve

exponential functions rather than polynomials they are beyond the scope of the BHC.

In a corrigendum to [9] Dixon and Zalesskii showed that if G is primitive, and the socle S is non-abelian

and imprimitive, then G has an imprimitive commutator subgroup G′ � PSLn(q) where d = (qn − 1)/(q− 1),

with q odd or q = 2. Our results on projective primes apply in this case for odd q, and they are also relevant

to [10] where the same authors have considered imprimitive linear groups of prime degree, transitively

permuting the one-dimensional subspaces in a direct sum decomposition.

9. Other group-theoretic applications of the BHC

A Kn group is a simple group which is n-primary, that is, it has order divisible by exactly n distinct

primes. The K1 groups are the cyclic groups of prime order. By Burnside’s paqb theorem there are no

K2 groups, and it follows from the classification of finite simple groups that there are just eight K3 groups,

namely PSL2(q) for q = 5, 7, 8, 9 and 17, PSL3(3), PSU3(3) and PSp4(3). In Problem 13.65 of the Kourovka
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Notebook [18] Shi asked whether the set of K4 groups is finite or infinite. The corresponding question for

Kn groups is open for each n ≥ 4 (see [24]). In [21, Theorem 2] Kondrat’ev has classified the almost simple

5-primary groups; of his 12 classes, (1) and (12) are clearly finite, while the groups in each of classes (2)

to (11) are defined in terms of a prime p satisfying some number-theoretic conditions, and it is not clear

whether any of these classes is infinite. His class (5) consists of the groups PSL2(p) and PGL2(p) for primes

p ≥ 41 such that p2 − 1 is divisible by just four primes. For any n ≥ 5, we may replace a in (6.1) with

a := 3p1 . . . pn−5 for distinct primes pi > 3, so that by the argument in Section 6 the BHC gives strong

evidence that there are infinitely many Kn and n-primary groups PSL2(p) and PGL2(p).

Cameron, Manna and Mehatari [7] have recently studied the power graph P(G) of a finite group G. The

vertices of P(G) are the elements of G, and a pair of them are joined by an edge if one of them is a power of

the other. In their Theorem 1.3 they characterise those non-abelian finite simple groups G for which P(G) is

a cograph. (This is a graph with no induced subgraph isomorphic to the path P4 with four vertices; cographs

form the closure of the one-vertex graph K1 under the operations of disjoint union and complement.) In their

Problem 1.4 they ask whether there are infinitely many such groups G.

One family appearing in their characterisation consists of the groups PSL2(q) for odd prime powers q ≥ 5

such that (q±1)/2 are each either a prime power or a product of two primes. The groups PSL2(p) in cases (a)

and (b) of the six primes problem (see Section 2) satisfy this condition, so the BHC gives strong evidence

of a positive answer to their question.

In [2] Amarra, Devillers and Praeger have recently constructed families of block designs which have

interesting symmetry properties (a group of automorphisms acting transitively on blocks, and transitively

but imprimitively on points) and which maximise various parameters. Their constructions, based on finite

fields, require certain quadratic polynomials to take prime power values. By using the BHC, together with

some extensions from primes to prime powers, we have in [17] provided strong evidence that these families

are infinite.
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Péteresbourg, 6e série, vol. VI (1857), 305–329.

Available at https://books.google.fr/books?hl=fr&id=wXIhAQAAMAAJ&pg=PA305#v=onepage&q&f=false.

arXiv-math[NT]:1807.08899v4
arXiv-math[CO]:2009.00282
https://books.google.fr/books?hl=fr&id=wXIhAQAAMAAJ&pg=PA305#v=onepage&q&f=false


12 Int. J. Group Theory x no. x (201x) xx-xx G. A. Jones and A. K. Zvonkin

[5] W. Burnside, Notes on the theory of groups of finite order. I: On the proof of Sylow’s Theorem. II. On the possibility of simple

groups whose orders are the products of four primes, Proc. London Math. Soc. 25 (1894), 9–18. Also available at The Collected

Papers of William Burnside, vol. I: 1883–1899, Oxford Univ. Press (2004), 401–410, Note II.

[6] W. Burnside, Notes on the theory of groups of finite order, Proc. London Math. Soc. 26 (1895), 191–214. Also available at The

Collected Papers of William Burnside, vol. I: 1883–1899, Oxford Univ. Press (2004), 561–214, Note VII.

[7] P. J. Cameron, P. Manna and R. Mehatari, On finite groups whose power graph is a cograph, J. Algebra 591 (2022), 59–74.

Also available at arXiv-math[GR]:2106.14217v3.

[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Clarendon Press, Ox-

ford (1985). Available at https://epdf.pub/queue/atlas-of-finite-groups-maximal-subgroups-and-ordinary-characters-for-simple-

grou.html.

[9] J. D. Dixon and A. E. Zalesskii, Finite primitive linear groups of prime degree, J. London Math. Soc. (2) 57 (1998), 126–134;

corrigendum: ibid. 77 (2008), 808–812.

[10] J. D. Dixon and A. E. Zalesskii, Finite imprimitive linear groups of prime degree, J. Algebra 276 (2004), 340–370.
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