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Without doubt the authentic type of
these figures exists in the mind of God

the Creator and shares His eternity.
J. Kepler [17] (cited in [8])

Abstract

The notion of a Belyi function is a main technical tool which relates the
combinatorics of maps (i.e., graphs embedded into surfaces) to Galois theory,
algebraic number theory, and the theory of Riemann surfaces. In this paper we
compute Belyi functions for a class of semi-regular maps which correspond to the
so-called Archimedean solids.

Résumé

La notion de fonction de Belyi est un outil technique qui relie la combinatoire
des cartes (c’est-a-dire, des graphes plongés sur des surfaces) avec la théorie de
Galois, la théorie des nombres algébriques et la théorie des surfaces de Riemann.
Dans cet article nous calculons les fonctions de Belyi pour une classe des cartes
semi-reguliéres, correspondant & ce qu’on appelle les solides d’Archimede.

1 Introduction

The works of Archimedes, and that of G.V. Belyi are separated by 23 centuries. The
latter represent one of the most recent advances in Galois theory, known (even in the
English literature) under the French name of the theory of “Dessins d’Enfants” (which
means “Children’s drawings”), see for example [27]. The theory of “Dessins d’Enfants”
was called so by its founder Alexandre Grothendieck [14]. The core notion of the theory
is that of a Belyi function. In the planar case (which is the only case we consider here)
a Belyi function is a rational function defined on the Riemann complex sphere which
has at most three critical values, namely, 0, 1 and co. A pre-image of the segment
[1, oo] under such a function is a planar (hyper)map. The coefficients of such a function
are algebraic numbers. This leads to an action of the absolute Galois group on planar
maps. See details in Section 2, and for a more extended presentation see [27].
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An explicit computation of a Belyi function corresponding to a given map is reduced
to a solution of a system of algebraic equations. It may turn out to be extremely
difficult. To give an idea of the level of difficulty, we mention that our attempts to
compute Belyi functions for some maps with only six edges took us several months,
and the result was achieved only after using some advanced Grébner bases software [11]
and numerous consultations given by its author J.C. Faugere (see [23]). The situation
changes dramatically when the map in question possesses rich symmetries. Thus, for
Platonic solids the Belyi functions (under other name) were computed by Felix Klein as
early as in 1875 (see, for example, [19], Sections 10-14 of Chapter II, and also [7]). Our
aim is to continue this study and to compute Belyi functions for a class of semi-regular
maps. There are many possible candidates for such a class; for this paper we have
chosen the class that is often called Archimedean solids; see details in Section 3. Our
biggest “accomplishment” (if we don’t take into account the infinite series of prisms
and antiprisms) is a map of 180 edges.

Of course, we were attracted by the subject not only because we wished to “beat
the records”, not even because of its geometric beauty. We hope to extract from our
computations some interesting facts concerning explicit construction of Galois groups
and other related topics; see in this respect [20], [21], which examine only one of the
Archimedean figures, namely, the truncated icosahedron. The connection of regular
and semi-regular maps to Galois theory is after all not so surprising, if one recalls the
important role played in this theory by the icosahedron [19].

2 Belyi functions
For more details concerning Belyi functions see [29], [7] and [28].

Let C denote the Riemann complex sphere, and let f : C — C be a rational function.
For almost all w € C the equation f(z) = w has the same number n of solutions; n
is called the degree of f (deg f = n). Those values of w € C for which the equation
has less than n solutions (that is, some of the solutions are multiple) are called critical
values. The multiple roots z € C of the equation f(z) = w are called critical points.

Definition 2.1 (Belyi function) A rational function f : C — C is called a Belyi
function if all its critical values are in {0, 1, c0}.

Definition 2.2 (Clean Belyi function) A Belyi function f is called clean if all the
points z such that f(z) =1 are critical points of multiplicity 2.

If f is a clean Belyi function, the set f~!([1,00]) is a planar map; for an arbitrary
Belyi function it is a planar hypermap (for the notion of a hypermap see [6]). This
means that it is a connected graph drawn on the Riemann sphere of the variable z, and
the complement of this graph is a disjoint union of sets homeomorphic to the open disk;
these sets are called faces of the map. The following additional information is useful
for understanding the relation between the Belyi function and the map:



e The vertices of the map are the points of f~*(oc0), the vertex degree being equal
to the multiplicity of the corresponding root of the equation f(z) = occ.

e Inside each face there is a unique root of the equation f(z) = 0, its multiplicity
being equal to the face degree. We call this point the center of the face.

e The “open” edges of the map are disjoint intervals of the set f~'([1,00[). Inside
each edge there is a root of the equation f(z) = 1. We call this point the middle
point of the edge. In the case of a map this root always has multiplicity 2; in the
case of a hypermap its multiplicity may be arbitrary.

e Besides the points mentioned above, there are no other critical points of f.

e If we join the center of each face to the vertices and middle points adjacent to this
face, we obtain a canonical triangulation of the (hyper)map. We call a triangle
positive (resp. negative), if its vertices taken in the counter clockwise direction
are labeled as 0,1,00 (resp. 0,00,1). The image under the Belyi function of all
positive triangles is the upper half-plane, and for the negative ones, the lower
half-plane.

Theorem 2.3 (Riemann’s existence theorem) For any hypermap the correspond-
ing Belyt function exists and is unique up to a linear fractional transformation of the
variable z.

Remark 2.4 The above theorem is true not only for “polyhedral” maps but also for
arbitrary maps: loops and multiple edges are allowed, as well as vertices of degree 1
and 2. The only condition is that the corresponding graph must be connected.

The same map may be drawn on the plane in infinitely many ways. But one of its
geometric forms is distinguished: it is the form given as the pre-image of the segment
[1,00] via the Belyi function corresponding to the map. We will call this particular
drawing of the map its dessin d’enfant.

Example 2.5 The following function, which goes back to Felix Klein [19], is the Belyi
function for the dodecahedron (see Figure 1):

(29 —112°—1)°2°

(220 4 228 215 + 494 210 — 228 25 +1)*

fdodeca(z) = 1728

The roots of the polynomial C(z) = 2% + 2282'° + 494 2! — 228 2° + 1 in the
denominator are the coordinates of the 20 vertices of the dodecahedron; degree 3 in the
denominator C/(z)? reflects the fact that all the vertices are of degree 3. The roots of
the polynomial A(z) = (2’ — 11 2% — 1)z in the numerator are the centers of the faces,
all of them of degree 5. We “see” here only 11 faces; the 12th one is situated at oc.
Its degree is also 5, because the total degree of the numerator is 55, and that of the
denominator is 60.
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Figure 1: Dessin d’enfant of a dodecahedron

Finally, if we compute fqodeca(z) — 1, we find

(219 4+ 1) (220 — 522 2% — 10006 210 + 522 25 + 1)?

z)—1=—
faoaecs(2) (220 + 228 215 + 494 210 — 228 25 + 1)°

Thus, all the 30 roots of the equation fyodeca(2) = 1 are of multiplicity 2, and they are
situated at the roots of the polynomial B(z) = (2! + 1)(2%° — 52225 — 10006 2'° +
522 2% 4+ 1). These are the edge middle points.

For completeness one must also verify that there are no other critical points of

fdodeca, that is, that fj j...(2) = 0 implies fyodeca(?) € {0,1, 00}.
Belyi functions for the other Platonic solids are given below.

Tetrahedron (Dessin d’enfant: Figure 2)

(23 +1)° £ (z)_lz_(z6+2023—8)2.

etra(2) = —64——5—,
e 2) (23 — 8)% 23 (23 —8)% 23
Cube (Dessin d’enfant: Figure 3)

(zt+1)* 24
(28 — 1424 + 1)

(212 + 3328 —332*—1)
(28 —1424+1)°

2

fcube(z) = —108 fcube(z) —1=-

Remark 2.6 It is obvious that if f is a Belyi function for a map, then 1/f is a Belyi
function for the dual map. Therefore, for the octahedron and for the icosahedron

1 1
B fcube(z)’ ficosa(z) B fdodeca(z).

However, if the center of the “outer” face of the initial map was situated at oo, which
is only natural, then for the dual map it is one of its vertices which is situated at
o0, and that is not so convenient if we want to draw the dessin d’enfant. Therefore in
practice this simple transformation needs a certain “remake”, which is a linear fractional
transformation of the variable z. This operation may not be entirely harmless, as the
coefficients of the transformation may involve some irrational algebraic numbers even
if the coefficients of the original function are rational.

focta (Z)
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Figure 2: Tetrahedron Figure 3: Cube
Figure 4: Octahedron Figure 5: Icosahedron

The computation of the above Belyi functions is a story of a rediscovery. First we
computed them using a kind of a “brute force” approach, with very few computational
shortcuts. Then we have found them in [7], and, after some additional hints of our
colleagues, in [19]. Felix Klein called these functions “fundamental rational functions”,
and computed them without any advanced software, using the theory of invariants.
Finally we have found out that the easiest way to compute them consists of using some
very classical interrelations between Platonic solids:

1. The Belyi function of the tetrahedron may be easily computed by hand, see the
discussion of the truncated tetrahedron below.

2. The middle points of the six edges of a regular tetrahedron are the six vertices
of a regular octahedron. This gives us immediately the Belyi function for an
octahedron, and hence for a cube.

3. There is a well-known construction of a cube inscribed in a dodecahedron (see, for
example, [4], Section 12.5.5.1), which gives that 8 out of 20 vertices of a regular
dodecahedron are the vertices of a cube. This leads to an easy way of obtaining
the Belyi function for a dodecahedron, and hence for an icosahedron.

It is this interplay of geometric and algorithmic ideas that makes the whole subject
so fascinating.

Remark 2.7 As we were informed by J. Borwein [5], the Belyi function of the tetra-
hedron is related to his cubic parametrization of Kline’s absolute invariant for the full
modular group. This relation also involves some theta function identities. For more
details see his paper in this volume.



3 Archimedean polyhedra

In order to introduce Archimedean polyhedra, consider planar maps without loops and
multiple edges, and also without vertices of degree 1 and 2. For a vertex of degree k
let us call its type the list of numbers (fi, fo, ..., fr), where f; are the degrees of the
adjacent faces taken in the counter-clockwise direction around the vertex. Two such
lists are equivalent if one can be obtained from the other by making (a) a cyclic shift,
and (b) the inversion of the order (which means the change of orientation at this vertex).

Definition 3.1 (Archimedean map) A map is called Archimedean if the types of all
its vertices are equivalent.

It turns out that, combining the above definition with the Euler formula, we ob-
tain as solutions (a) five Platonic maps; (b) two infinite series of maps (prisms and
antiprisms), and (c) fourteen other solutions. All solutions except Platonic maps are
listed in the table below. Here V| F' and E are the number of vertices, faces and edges
respectively, and notation “20 : 3+ 30 : 4 + 12 : 5” in the “face distribution” column
means “20 triangles, 30 squares and 12 pentagons”.

Name V | vertex type F face distribution E
1 | n-prism 2n (4,4,n) n+2 n:4+2:n 3n
2 | n-antiprism 2n | (3,3,3,n) | 2n+2 2n:3+2:n 4n
3 | truncated tetrahedron 12 (3,6,6) 8 4:34+4:6 18
4 | truncated cube 24 (3,8,8) 14 8:3+6:8 36
5 | truncated octahedron 24 (4,6,6) 14 6:44+8:6 36
6 | truncated icosahedron 60 (5,6,6) 32 12:54+20:6 90
7 | truncated dodecahedron 60 | (3,10,10) 32 20:3+12:10 90
8 | truncated cuboctahedron 48 (4,6,8) 26 12:4+8:6+6:8 72
9 | truncated icosidodecahedron | 120 (4,6,10) 62 30:4+20:6+12:10 | 180
10 | cuboctahedron 12 (3,4,3,4) 14 8:3+6:4 24
11 | icosidodecahedron 30 (3,5,3,5) 32 20:3+12:5 60
12 | rhombicuboctahedron 24 (3,4,4,4) 26 8:3+18:4 48
13 | rhombicosidodecahedron 60 (3,4,5,4) 62 20:34+30:4+12:5 | 120
14 | snub cube 24 | (3,3,3,3,4) 38 32:3+6:4 60
15 | snub dodecahedron 60 | (3,3,3,3,5) 92 80:3+12:5 150
16 | pseudorhombicuboctahedron | 24 (3,4,4,4) 26 8:3+18:4 48

All the listed maps have geometric realizations in a form of a polyhedron all of whose
faces are regular polygons, and all polyhedral angles are congruent. Such polyhedra are
called Archimedean.

To give an exhaustive or even reasonably representative bibliography on Archime-
dean polyhedra would be an impossible task. Even their history is rather complicated.
Traditionally, their discovery is attributed to Archimedes (Heron and Pappus refer to
his manuscript, which perished in a fire of the library at Alexandria). They were
rediscovered (and baptized by their now usual names) by Johannes Kepler [18]; see also
[9]. Before Kepler, partial lists were found by Piero della Francesca [24], Albrecht Diirer
and W. Jamnitzer [9]. Pictures of some of the Archimedean solids made by Leonardo da
Vinci (they served as illustrations for a book by Luca Pacioli) may be found in many



books on history of mathematics. The last figure, the pseudorhombicuboctahedron,
was overlooked for more than 2000 years and found only in the XX-th century [1].

With three exceptions (namely, polyhedra number 8 9 and 16 in the table) the
group of the orientation-preserving isometries acts transitively on the vertices of each
polyhedron. In a more naive language we may say that its vertices are indistinguishable.
The same does not hold for the truncated cuboctahedron (resp. truncated icosidodeca-
hedron), whose vertex types, when read in positive direction, may be (4,6, 8) or (4, 8, 6)
(resp. (4,6,10) or (4,10, 6)). But the group of all isometries, orientation-preserving and
reversing ones, acts transitively on vertices. (Apart from the vertex-transitive polyhedra
there are 92 convex polyhedra whose faces are regular polygons, see [15], [32].)

Two snub figures have two “chiral”, or “enantiomorphic” forms each. This means
that they are not congruent to their mirror image. For our work this implies that their
fields of definition are no longer Q but some imaginary quadratic fields. We will see
later that in both cases the field is Q(v/—15).

For the pseudorhombicuboctahedron neither of the isometry groups acts transi-
tively on its vertices. This might be the intuitive reason why it took so long to discover
this polyhedron. For the same reason many authors do not include it in the list of
Archimedean solids. It would be only too easy for us to follow their example, since for
exactly the same reasons the computation of the corresponding Belyi function proved to
be the most difficult. But we did not want to avoid the challenge. Curiously enough, the
field of definition of this map is of degree 4; namely, it is Q(v/12). It turns out that, be-
sides the pseudorhombicuboctahedron, there exist three other (not semi-regular!) maps
with the same vertex and face distributions and with the same group of orientation-
preserving automorphisms, which thus form a Galois orbit containing 4 maps.

Remark 3.2 In the book [22] one may find the spherical coordinates of the vertices of
all Archimedean polyhedra. The question is, if we project their edges from the center
of the sphere onto its surface, and then make the stereographic projection on the plane,
shall we obtain the corresponding dessins d’enfants? The answer is yes for Platonic
solids and no for Archimedean ones, because in the dessins d’enfants all the angles at
each vertex must be equal.

Now, returning to the idea so vividly expressed by Kepler (see epigraph), we may
ask which of the two geometric forms is “more authentic”. In this connection we
would like to note that for 3-dimensional polytopes there are infinitely many geometric
realizations for any combinatorial type. Therefore we must impose additional “human
made” conditions of regularity of all faces and of equality of all polyhedral angles. At the
same time, the geometric form of the dessin d’enfant is unique (up to a linear fractional
transformation), and this is true for any map, not only for regular or semi-regular ones.

The polyhedra dual to the Archimedean ones may also be considered as semi-regular.
We do not treat them here for the obvious reasons given in Remark 2.6. The pictures
of the polyhedra in the next section are borrowed from [2].



4 Computation of Belyi functions
Our methods may roughly be classified as follows:

e We used various symmetry and covering considerations and many relations that
exist between different Platonic and Archimedean bodies. We also used some
cartographic operations, such as “vertex truncation” or “edge duplication” (see
below). All these operations may be represented as compositions of Belyi func-
tions, see [10].

e When the map in question is reduced as much as possible, we use “brute force”
algorithms in order to compute its Belyi function. More precisely, this means (1)
an efficient MAPLE package implemented by the first author for manipulating
Belyi functions and producing dessins d’enfants; (2) the GB program for finding
Grobner bases [11], [12], [26]; and (3) an interface between the two systems, also
implemented by the first author.

In what follows Fj,(z) denotes the Belyi function for the map number £ in the table
above, K =1,...,16. Sometimes we omit expressions that are too complicated.

4.1 Prisms and antiprisms

The simplest type of a symmetry is the rotational one.

R e e

Figure 6: Reducing a map using rota-

tional symmetry Figure 7: Another example

Suppose we have a map possessing a center of symmetry of order n, and this center
is positioned at the origin of the complex plane. Making the transformation z — 2" we
obtain a “reduced map” which consists of only one “branch” of the original map. It
remains now to find the Belyi function for the simpler “reduced” map.

Note that we may get the same map starting from different ones, as is shown on
Figures 6 and 7. This operation may be immediately used in order to find Belyi functions
for prisms and antiprisms.

Prisms The Belyi function of the map (A) of Figure 9is fa(z) = —108%’ and
Fl(n) = fA(zn) Note that F1(4)(Z) = fcube(z)'



Figure 9: Map (A): g S
reduced prism

Figure 8: The 7-prism Figure 10: Dessin for Flm

Antiprisms The Belyi function of the map (B) is fg(z) = —256%, and
F{™ = fg(z") (Figure 12 and 13).

zﬁﬂ
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Figure 13: Dessin for F2(4)

Figure 12: Map (B):

Figure 11: The 4-antiprism reduced antiprism

4.2 Truncated Platonic solids

For an arbitrary map, the operation of truncating the vertices consists of replacing
every vertex of the map by a face having the same degree as the vertex. All the vertices
of the new map thus obtained are of degree 3; see Figure 14.

b be

01

Figure 14: The truncation operation Figure 15: The truncating hypermap

If we apply the Belyi function of the original map to the truncated map, we obtain as
its image, instead of the segment [1, oc], a small “truncating hypermap” (see Figure 15),
with a vertex of degree 3 inside the segment [1, 0], and with a face of degree 1 going
“around infinity”. It is easy to find its Belyi function:

22

ftrunc(z) = —27m-

Finally, if f(2) is the Belyi function of a map, then fiunc (f(2)) is the Belyi function of
the corresponding truncated map.



Truncated tetrahedron The map (C) of Figure 17 is the reduced tetrahedron. We

have 5
(z+1)

fe(z) = —64W,

ftetra(z) = fC(Zs)a

and thus
(23 +1)° 23 (23 — 8)°

F3(2) = firunc(fietra(2)) = 1728 .
3(2) = e freaa(2)) (212 — 829 + 240 26 — 464 23 + 16)°

Figure 17: Map (C):
reduced tetrahedron

Figure 16: The truncated

tetrahedron Figure 18: Dessin for Fj

Truncated cube
) — 19683 (28— 1424 +1)° (2 +1)° 28
4(2) = furune{ feupe(#)) = = (224 — 15220 4 699 216 — 2666 212 + 699 28 — 15 2% + 1)*

PRO

Figure 19: The truncated cube Figure 20: Dessin for F}

Truncated octahedron We have fp(z) = 1/fa(2), hence fora(2) = fp(2*), and

24 (z4 + 1)4 (z4 — 4224 1)6 (z4 +422+ 1)6

F5(2) = firun z)) = 2916 .
5(2) = furune( focta (2)) (224 + 390 220 + 2319 216 — 236 212 + 2319 28 + 390 24 + 1)3

Truncated icosahedron For the map (E) of Figure 25 we compute
1 (2" +2282° +4942% — 2282 +1)°

T 1728 (22—112—-1)"2 '
Therefore ficosa(z) = fE(Z5)7 and FG(Z) = ftrunc(ficosa(z))-

fr(2)
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Figure 22: Map (D): J
reduced octahedron

Figure 21: The truncated (dual to the map (A))
octahedron

Figure 23: Dessin for Fj
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Figure 25: Map (E): A R
Figure 24: The truncated reduced icosahedron

cosahedron Figure 26: Dessin for Fg

Truncated dodecahedron We have F7(2) = firunc(fdodeca(?))-

= 2 71' 0 1 2 3

Figure 27: The truncated dodecahedron Figure 28: Dessin for F%

Remark 4.1 The symmetry of the truncated icosahedron is very interesting from the
group theoretic point of view [20], [21]. Together with the explicit formula for its Belyi
function this may give rise to interesting examples for Galois theory. We think that
other figures are equally interesting, but not yet thoroughly studied.

4.3 Truncated cuboctahedron and icosidodecahedron

These two Belyi functions could have been computed in the same way as above (that
is, using the truncation operation), if only we had known the Belyi functions for the
cuboctahedron and icosidodecahedron themselves (before truncation). We choose an-
other way out and introduce an operation of duplication of edges. This operation is also
defined for arbitrary maps. It consists in replacing every edge by two edges forming a
face of degree 2, as in Figure 29. In the language of Belyi functions this operation con-
sists in replacing a function f by the function fgupi(f), where fgup is the Belyi function
for the map on Figure 30, namely, faupi(z) = 42(1 — 2).

11
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Figure 29: The duplication operation
Figure 30: The duplicating map

Truncated cuboctahedron The map of the truncated cuboctahedron may also be
considered as the truncation of the map (F) of the duplicated octahedron. Thus

FS(Z) = ftrunc(fdupl(focta(z)))-
See also Remark 4.2.

bk e e e

Figure 32: Map (F): the e

Figure 31: The truncated duplicated octahedron Figure 33: Dessin for Fj

cuboctahedron

Truncated icosidodecahedron In the same way, the truncated icosidodecahedron
coincides with the truncation of the map (G) of the duplicated icosahedron. Thus

Fg (Z) = ftrunc (fdupl(ficosa(z)))'

Figure 34: The truncated

icosidodecahedron Figure 35: Map (G): the Figure 36: Dessin for Fy

duplicated 1cosahedr0n

4.4 Cuboctahedron and icosidodecahedron

Cuboctahedron We have already computed the Belyi function Fg for the truncated
cuboctahedron. Now in order to get the Belyi function for the cuboctahedron itself, we

12



must bring together the centers of all faces of degree 4 of Fy (which become vertices of
the new map), and in the same way bring together the centers of all the faces of degrees
8 and 6 (they become centers of faces of the new map, of degrees 4 and 3 respectively).
It remains to find the numeric factor in front of the function.

We can also obtain Fig if we try to “draw the dessin on the cube”. It is easy to guess
that the vertices of the cuboctahedron occupy the same positions as middle points of
the edges of the cube; the centers of faces of degree 4 of the cuboctahedron are at the
centers of the cube faces; and the centers of the faces of degree 3 of the cuboctahedron
are at the cube vertices. All this may be summed up as follows:

feube(2) (2% —142* + 1)3 (z* + 1)4 24
= 432 .
(feube(2) — 1)? (212 43328 — 3324 — 1)

Fio(z) = —4

Figure 37: The cuboctahedron Figure 38: Dessin for Fig
Icosidodecahedron Using the same techniques as above we get

(220 + 228 215 + 494 210 — 228 25 + 1)° (211 — 1128 — 2)°
(230 — 522 225 — 10005 220 — 10005 210 + 522 25 + 1)*

Fn(Z) = —6912

Figure 39: The icosidodecahedron Figure 40: Dessin for Fi;

Remark 4.2 The simple geometric fact that two different maps may produce the same
map after truncation has a remarkable impact on the old problem of the uniqueness of
representation of a rational function as a composition of simpler functions [16], [25]. In
the case of polynomials there are, roughly speaking, only two cases of non-uniqueness:
when polynomials are of the form 2" or when they are Chebyshev polynomials. “The
analogous problem for fractional rational functions is much more difficult. There is a
much greater variety of possibilities ...” (J.F. Ritt [25]). Our example is very interesting
because of the fact that firunc(F10(2)) = firunc(fr(2)), while Fig(z) # fr(2).
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4.5 Two rhombi-polytopes

The rhombicuboctahedron has the same symmetry group as the cube. If we try to
“draw” it on the cube surface, we will see that all the positive triangles of the canonical
triangulation of the cube contain the same image, and the same is true for the negative
triangles. If we repeat both images only once, we get the map (H) of Figure 42. This
map is the image of the dessin of the rhombicuboctahedron under the function feype.
The same map is the image of the rhombicosidodecahedron under the function ficoga-

The Belyi function for the map (H) is

Rhombicuboctahedron

(28 — 1424+ 1)3 (216 +3422 —342* — 1)4z4
(224 — 150 220 + 159 216 — 3476 212 + 159 28 — 150 2% + 1)*

Fia(2) = fu(feuve(2)) = —1728

Figure 42: Map (H)

Figure 41: The rhombi-

cuboctahedron Figure 43: Dessin for Fi

Rhombicosidodecahedron Fi3(z) = fu(ficosa(2))

Figure 44: The rhombicosidodecahe-

Figure 45: Dessin for Fi3
dron
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4.6 The snub polytopes

The group of the orientation-preserving automorphisms of the snub cube coincides
with that of the cube itself. Hence we must try the same approach as in the previous
subsection, that is, “draw” the snub cube on the cube surface, and find its image via
feube- The result now depends on our choice of “left” or “right” twin figure. In this way
we obtain one of two hypermaps (I), (J), see Figures 46 and 47. Their Belyi functions
are algebraically conjugate:

25 (34 8x) 2 (882 — (57 + 64))°

fu(z) =

and
1 (8822 — (580z + 256)z + (572> + 641))” (z — 1)

_7744 (z —+ :1;)5 ’

fuz)—1=
where z is a root of the equation 22 — 61456 4+ 1 =0, that is,

 7+33/~T5
T= T8

One of the roots gives the hypermap (I), the other one gives (J).

0 1 0 1
Figure 46: Hypermap (I) Figure 47: Hypermap (J)

The result is exactly the same if we apply fyodeca t0 the snub dodecahedron.

Snub cube Fi4(2) = fij(feuve(2)).

Snub dodecahedron Fi5(2) = fi3(faodeca(2))-

We give the dessins for only one of two enantiomorphic forms of each figure.

Figure 48: The snub cube Figure 49: Dessin for Fi,
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Figure 50: The snub dodecahedron Figure 51: Dessin for Fy;

4.7 The pseudorhombicuboctahedron

The computation is very complicated, so we only outline the main stages. First, the
transformation z — 2* applied to the dessin of Figure 53 gives the map (K) of Figure 54.
Using a kind of an antipodal symmetry of the map (K), we may reduce it once more,
thus obtaining the hypermap (L). It remains to compute the Belyi function f;, for the
hypermap (L).

2
A

AN
{ ) )
—al — w//
Figure 52: The pseudorhombicuboctahedron Figure 53: Dessin for Fig

Figure 54: Map (K): reduced

pseudorhombicuboctahedron Figure 55: Hypermap (L)

Surprise: this hypermap has three other Galois conjugates, and its Belyi function is
defined over the field of degree 4, namely, Q(v/12); we mean by that the field generated
by all the four roots of degree 4 of 12.

(For the fields of degree greater than 2 it is not an easy thing to compare two different
presentations of the same field. Our own computations gave us more complicated
expressions. The above much simpler form of the field was found by L. Granboulan [13].)

What does it all mean?

The answer is, there exist, besides the pseudorhombicuboctahedron, three other
maps with the same vertex distribution (namely, 42*), with the same face distribution
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(namely, 4'83%), and with the same group of orientation-preserving automorphisms
(namely, the cyclic group of order 4). These maps are shown in Figure 56 (for two of
them, corresponding to the imaginary roots of v/12, only one of the two enantiomorphic
forms is given). The four Belyi functions have the same expression, but their coefficients
depend on v/12. Substituting four different values of the root gives four different Belyi
functions, thus producing the four maps in question.

Figure 56: Maps conjugate to the pseudorhombicuboctahedron

The right-hand map of Figure 56 may be easily found in the following way: take a
truncated octahedron; cut its 8 hexagonal faces by a diagonal into two quadrilaterals,
thus obtaining 16 quadrilaterals; cut 4 of its 6 quadrilateral faces by a diagonal into
two triangles, thus obtaining 8 triangles; the remaining 2 quadrilateral faces are not
touched. There are exactly two ways of doing that so that all the vertex degrees become
equal to 4.

According to the well-known theorem of Steinitz [30], any 3-connected planar map
without loops and multiple edges and without vertices of degree 1 and 2, can be realized
as a polyhedron. However, the faces of the above three maps cannot be regular polygons,
because there are some vertices surrounded by four quadrilaterals.

A natural question arises: Do there exist, for other Archimedean solids, non semi-
reqular maps having the same verter and face distributions? Probably the answer is
well known; but we did not find the appropriate references.
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