Actualités
  Période
semaine
ou mois
aucune période


  Thèmes:
Thèses
Colloques
Autres
Groupes
Tous les thèmes

   
  Liens:
Voir les thèses

Voir les colloques

Voir les autres événements

Voir la page des groupes

Accéder à l'intranet

Intitulé:   
Polynomial Vector Addition Systems With States
du groupe Séminaire Méthodes Formelles

Date 2018-03-13  11:00-12:00
TitrePolynomial Vector Addition Systems With States 
RésuméThe reachability problem for vector addition systems is one of the most difficult and central problem in theoretical computer science. The problem is known to be decidable, but despite instance investigations during the last four decades, the exact complexity is still open. For some sub-classes, the complexity of the reachability problem is known. Structurally bounded vector addition systems, the class of vector addition systems with finite reachability sets from any initial configuration, is one of those classes. In fact, the reachability problem was shown to be polynomial-space complete for that class by Praveen and Lodaya in 2008. Surprisingly, extending this property to vector addition systems with states is open. In fact, there exist vector addition systems with states that are structurally bounded but with Ackermannian large sets of reachable configurations. It follows that the reachability problem for that class is between exponential space and Ackermannian. In this paper we introduce the class of polynomial vector addition systems with states, defined as the class of vector addition systems with states with size of reachable configurations bounded polynomially in the size of the initial ones. We prove that the reachability problem for polynomial vector addition systems is exponential-space complete. Additionally, we show that we can decide in polynomial time if a vector addition system with states is polynomial. This characterization introduces the notion of iteration scheme with potential applications to the reachability problem for general vector addition systems. 
Lieu178 
OrateurJérôme Leroux 
Emailhttp://www.labri.fr/perso/leroux/ 
UrlLaBRI 



Aucun document lié à cet événement.

Retour
Retour à l'index