Evènement pour le groupe Algorithmique Distribuée

Date 2014-03-31  14:00-15:00
TitreAlgebraic Removal Lemma 
RésuméThe removal lemma is a combinatorial result which, in its simpler form, says that a graph with n vertices and o(n^3) triangles can be made triangle free by deleting o(n^2) edges. It was used by Ruzsa and Szemerédi to provide a simple proof of Roth's theorem on 3-term arithmetic progressions in dense sets of integers. An analogous algebraic statement was formulated by Green in terms of solutions of linear equations in abelian groups. In the talk I will report on some contributions made jointly with Dan Král' and Lluís Vena to this algebraic version for linear systems in abelian groups and some consequences in arithmetic Ramsey theory. The latter include a version of Szemerédi theorem on arithmetic progressions in dense sets of finite abelian groups. P.S. : Il s'agit d'un exposé CPU. 
Orateur Oriol Serra  
UrlUPC, Barcelone 

Aucun document lié à cet événement.

Retour à l'index