
Evènement pour le groupe Algorithmique Distribuée
Date  20140331 14:0015:00 
Titre  Algebraic Removal Lemma 
Résumé  The removal lemma is a combinatorial result which, in its simpler form,
says that a graph with n vertices and o(n^3) triangles can be made
triangle free by deleting o(n^2) edges. It was used by Ruzsa and Szemerédi
to provide a simple proof of Roth's theorem on 3term arithmetic
progressions in dense sets of integers. An analogous algebraic statement
was formulated by Green in terms of solutions of linear equations in
abelian groups. In the talk I will report on some contributions made
jointly with Dan Král' and Lluís Vena to this algebraic version for
linear systems in abelian groups and some consequences in arithmetic
Ramsey theory. The latter include a version of Szemerédi theorem on
arithmetic progressions in dense sets of finite abelian groups.
P.S. : Il s'agit d'un exposé CPU. 
Lieu  178 
Orateur  Oriol Serra 
Url  UPC, Barcelone 
Aucun document lié à cet événement. RetourRetour à l'index
 