Résumé | We study the classical problem of conjunctive query evaluation, here restricted according to the set of permissible queries. In this work, this problem is formulated as the relational homomorphism problem over a set of structures A, wherein each instance must be a pair of structures such that the first structure is an element of A. This problem generalizes the graph homomorphism problem of deciding, given a pair of graphs, whether or not there is a homomorphism from the first to the second.
We present a comprehensive complexity classification of these problems, which strongly links graph-theoretic properties of A to the complexity of the corresponding homomorphism problem.
- In particular, we define a binary relation on graph classes and completely describe the resulting hierarchy given by this relation; this description involves defining a new graph-theoretic measure called stack depth which may be of independent interest.
The binary relation is defined in terms of a notion which we call graph deconstruction and which is a variant of the well-known notion of tree decomposition. The hierarchy that results is reminiscent of that identified by Blumensath and Courcelle (LMCS 2010).
- We then use this graph hierarchy to infer a complexity hierarchy of homomorphism problems which is comprehensive up to a computationally very weak notion of reduction, namely, a parameterized form of quantifier-free reductions. We obtain a significantly refined complexity classification of left-hand side restricted homomorphism problems, as well as a unifying, modular, and conceptually clean treatment of existing complexity classifications, such as the classifications by Grohe-Schwentick-Segoufin (STOC 2001) and Grohe (FOCS 2003, JACM 2007).
In this talk, we will also briefly discuss parameterized complexity classes that we introduced/studied which capture some of the complexity degrees identified by our classification.
This talk is based on joint work with Moritz M"uller that appeared in PODS ’13 and CSL-LICS ’14. |