Evènement pour le groupe Combinatoire Énumérative et Algébrique

Date 2016-07-08  10:45-11:45
TitreSimplicial rook graphs: algebraic and combinatorial properties 
RésuméA few years ago, Jeremy L. Martin and Jennifer D. Wagner introduced the simplicial rook graphs SR(d,n) as the graph whose vertices are the lattice points in the n-th dilate of the standard simplex in R^d, with two vertices adjacent if they differ in exactly two coordinates. Martin and Wagner proved that SR(3,n) has integral eigenvalues and determined other interesting properties of these graphs. In this talk, I will describe our work proving some conjectures made by Martin and Wagner as well as determining other algebraic and combinatorial facts about these graphs. This is joint work with Andries Brouwer (TU, Eindhoven, The Netherlands), Willem Haemers (Tilburg University, The Netherlands) and Jason Vermette (Missouri Baptist Univ., USA).  
OrateurSebastian Cioaba 
UrlDépartement de Mathématiques, Université de Delaware, États-Unis 

Aucun document lié à cet événement.

Retour à l'index