Résumé | This talk is about transductions, which are binary relations on words. We are interested in various models computing transductions (ie, transducers), namely two-way automata with outputs, streaming string transducers and string-to-string MSO transductions. We observe that each of these formalisms provides more than just a set of pairs of words. Indeed, one can also reconstruct origin information, which says how positions of the output string originate from positions of the input string. On the other hand, it is also possible to provide any pair of words in a relation with an origin mapping, indicating an origin input position for each output position, in a similar way. This defines a general object called origin graph. We first show that the origin semantic is natural and corresponds to the intuition we have of the run of a transducer, and is stable from translation from one model to another. We then characterise the families of origin graphs which corresponds to the semantics of streaming string transducers.
This is joint work with Mikolaj Bojanczyk, Laure Daviaud and Bruno Guillon, and has been published to ICALP17. |