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The Problem

• Evaluate Java for use in CFD applications

• Evaluate platforms for CFD-in-Java

• Understand FORTRAN -> Java translation
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The NAS Parallel Benchmarks

• Block Tridiagonal (BT)
• Scalar Pentadiagonal (SP)
• LU Decomposition (LU)

• 3-dimensional FFT (FT)
• Conjugate Gradient (CG)
• V-cycle multigrid (MG)
• Integer Sort (IS)
• Embarrassingly Parallel (EP)
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Classes: S,W,A-D (grid sizes: 12-1024)Classes: S,W,A-D (grid sizes: 12-1024)
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Applications of the NPB

• Evaluation of the hardware for CFD codes
• Evaluation of the compilers and tools
• Demonstration of the programming paradigms 
(MPI, OpenMP, HPF, Java,…)

• Building blocks for the NAS Grid Benchmarks
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FORTRAN, OpenMP, HPF, and Java 
versions are available from
www.nas.nasa.gov/Research
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NPB in Java on 5 architectures

• BT, SP, LU, FT, MG, CG, IS

• Performance results on:

- IBM p690 (POWER 4) 32 procs

- SGI Origin (2000-3000) 32 procs

- SUN Enterprise 10000 16 procs

- Intel P4 (Linux) 2 procs

- Apple Xserv (OS X) 2 procs
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FORTRAN Æ Java translation

• Literal translation

• Array linearization

• Semiautomatic (using regular expressions)

• Multithreading:

- in outermost loops in the nests

- pipelines in LU
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Baseline for the translation

• Basic CFD array operations set baseline for

the efficiency of the translated code

� Assignment

� First and second order stencil

� Matrix vector multiplication

� Reduction sum
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Performance of the basic CFD operations

SGI Origin 2000
250 MHz
32 proc, 8 GB
SGI Java 1.1.8
81x81x100 mesh
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IBM p690 (1.3 GHz, 32 procs, 32 GB), Java 1.3.0

serial serial
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SGI Origin 2000 (250 MHz, 32 procs, 8 GB), Java 1.1.8
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Sun E-10000 (333 MHz, 16 proc, 8 GB), Java 1.1.3
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PIII vs. Apple-Xserv (G4), Java 1.3.0 
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Performance and Scalability Summary
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J/F Performance Ratio
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NPB vs. Java Grande Benchmarks

www.epcc.ed.ac.uk/computing/research_activities/java_grandewww.epcc.ed.ac.uk/computing/research_activities/java_grande

35%1-19NPB3.0-jav

--1-2JG Benchmarks

SpeedupJ/F ratio
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Grande LU Benchmark
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Java Performance Issues

• Array access overhead (boundary checking)

• Data overhead (moving more data around)

• Instructions overhead (J/F instructions ~ 10)
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Conclusions

• Compile once – run everywhere

• Acceptable performance

• Expressive language

• Build-in multithreading

• FORTRAN->Java translation is simple

• Compile once – run everywhere

• Acceptable performance

• Expressive language

• Build-in multithreading

• FORTRAN->Java translation is simple

• Median J/F performance is 5-6

• Scalability is 35% on 10-30 processors
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• Scalability is 35% on 10-30 processors

VS.


