
Performance and Scalability of the 
NAS Parallel Benchmarks in Java

Michael Frumkin, Matthew Schultz
Haoqiang Jin, Jerry Yan

NASA Advanced Supercomputing Division
NASA Ames Research Center

{frumkin,hjin,yan}@nas.nasa.gov

IPG Workshop 03



IPDPS03 Java WS
2

The Problem

• Evaluate Java for use in CFD applications

• Evaluate platforms for CFD-in-Java

• Understand FORTRAN -> Java translation

• Evaluate Java for use in CFD applications

• Evaluate platforms for CFD-in-Java

• Understand FORTRAN -> Java translation



IPDPS03 Java WS
3

The NAS Parallel Benchmarks

• Block Tridiagonal (BT)
• Scalar Pentadiagonal (SP)
• LU Decomposition (LU)

• 3-dimensional FFT (FT)
• Conjugate Gradient (CG)
• V-cycle multigrid (MG)
• Integer Sort (IS)
• Embarrassingly Parallel (EP)

• Block Tridiagonal (BT)
• Scalar Pentadiagonal (SP)
• LU Decomposition (LU)

• 3-dimensional FFT (FT)
• Conjugate Gradient (CG)
• V-cycle multigrid (MG)
• Integer Sort (IS)
• Embarrassingly Parallel (EP)

Classes: S,W,A-D (grid sizes: 12-1024)Classes: S,W,A-D (grid sizes: 12-1024)

Simulated 
applications
Simulated 
applications

Kernel
benchmarks 
Kernel
benchmarks 



IPDPS03 Java WS
4

Applications of the NPB

• Evaluation of the hardware for CFD codes
• Evaluation of the compilers and tools
• Demonstration of the programming paradigms 
(MPI, OpenMP, HPF, Java,…)

• Building blocks for the NAS Grid Benchmarks

• Evaluation of the hardware for CFD codes
• Evaluation of the compilers and tools
• Demonstration of the programming paradigms 
(MPI, OpenMP, HPF, Java,…)

• Building blocks for the NAS Grid Benchmarks

FORTRAN, OpenMP, HPF, and Java 
versions are available from
www.nas.nasa.gov/Research

FORTRAN, OpenMP, HPF, and Java 
versions are available from
www.nas.nasa.gov/Research



IPDPS03 Java WS
5

NPB in Java on 5 architectures

• BT, SP, LU, FT, MG, CG, IS

• Performance results on:

- IBM p690 (POWER 4) 32 procs

- SGI Origin (2000-3000) 32 procs

- SUN Enterprise 10000 16 procs

- Intel P4 (Linux) 2 procs

- Apple Xserv (OS X) 2 procs

• BT, SP, LU, FT, MG, CG, IS

• Performance results on:

- IBM p690 (POWER 4) 32 procs

- SGI Origin (2000-3000) 32 procs

- SUN Enterprise 10000 16 procs

- Intel P4 (Linux) 2 procs

- Apple Xserv (OS X) 2 procs



IPDPS03 Java WS
6

FORTRAN Æ Java translation

• Literal translation

• Array linearization

• Semiautomatic (using regular expressions)

• Multithreading:

- in outermost loops in the nests

- pipelines in LU

• Literal translation

• Array linearization

• Semiautomatic (using regular expressions)

• Multithreading:

- in outermost loops in the nests

- pipelines in LU



IPDPS03 Java WS
7

Baseline for the translation

• Basic CFD array operations set baseline for

the efficiency of the translated code

� Assignment

� First and second order stencil

� Matrix vector multiplication

� Reduction sum

• Basic CFD array operations set baseline for

the efficiency of the translated code

� Assignment

� First and second order stencil

� Matrix vector multiplication

� Reduction sum



IPDPS03 Java WS
8

Performance of the basic CFD operations

SGI Origin 2000
250 MHz
32 proc, 8 GB
SGI Java 1.1.8
81x81x100 mesh



IPDPS03 Java WS
9

IBM p690 (1.3 GHz, 32 procs, 32 GB), Java 1.3.0

serial serial



IPDPS03 Java WS
10

SGI Origin 2000 (250 MHz, 32 procs, 8 GB), Java 1.1.8



IPDPS03 Java WS
11

Sun E-10000 (333 MHz, 16 proc, 8 GB), Java 1.1.3



IPDPS03 Java WS
12

PIII vs. Apple-Xserv (G4), Java 1.3.0 



IPDPS03 Java WS
13

Performance and Scalability Summary



IPDPS03 Java WS
14

J/F Performance Ratio



IPDPS03 Java WS
15

NPB vs. Java Grande Benchmarks

www.epcc.ed.ac.uk/computing/research_activities/java_grandewww.epcc.ed.ac.uk/computing/research_activities/java_grande

35%1-19NPB3.0-jav

--1-2JG Benchmarks

SpeedupJ/F ratio



IPDPS03 Java WS
16

Grande LU Benchmark



IPDPS03 Java WS
17

Java Performance Issues

• Array access overhead (boundary checking)

• Data overhead (moving more data around)

• Instructions overhead (J/F instructions ~ 10)

• Array access overhead (boundary checking)

• Data overhead (moving more data around)

• Instructions overhead (J/F instructions ~ 10)



IPDPS03 Java WS
18

Conclusions

• Compile once – run everywhere

• Acceptable performance

• Expressive language

• Build-in multithreading

• FORTRAN->Java translation is simple

• Compile once – run everywhere

• Acceptable performance

• Expressive language

• Build-in multithreading

• FORTRAN->Java translation is simple

• Median J/F performance is 5-6

• Scalability is 35% on 10-30 processors
• Median J/F performance is 5-6

• Scalability is 35% on 10-30 processors

VS.


