
UNIVERSITY OF KARLSRUHE
Computer Science Department

Thomas Moschny
Institute for Program Structures

 and Data Organization · Prof. Tichy

Transparent Distributed
Threads for Java

Workshop on Java for Parallel
and Distributed Computing
IPDPS 2003
April 22-26, Nice, France

IPD, University of KarlsruheThomas Moschny 2

Context

JavaParty
extends Java:

Keyword remote denotes remote classes.
provides a single system view of a cluster with
multiple VMs.
transforms application code into pure Java with
RMI and JavaParty-runtime calls.

KaRMI
efficient RMI designed for clusters
implements fast object serialization
supports multiple transport technologies
e.g. for Myrinet (GM / ParaStation)

IPD, University of KarlsruheThomas Moschny 3

Distributed Threads

In a remote method call, the point of
execution moves from thread t1 to another
thread t2 in a different VM.
t1 and t2 can be seen as segments of a the
same distributed thread.
However, distributed threads are not fully
transparent:

Locks are not reentrant on recursion.
Monitors of remote objects cannot be acquired.
Signals are not forwarded.

We present solutions for all three problems.

IPD, University of KarlsruheThomas Moschny 4

Synchronization Reentrance (1)

foo()

bar()

foo2()

Object a
in VM 1

Object b
in VM 2

Synchronization

Thread 2

X

Thread 1

Consider this situation:
a.foo() calls b.bar() while holding a lock.
b.bar() calls a.foo2()
a.foo2() tries to obtain the same lock

➔ a deadlock occurs because foo2() is executed
by thread 2

IPD, University of KarlsruheThomas Moschny 5

Synchronization Reentrance (2)

foo()

bar()

foo2()

Thread 1

Object a
in VM 1

Object b
in VM 2

Re-use of originating thread 1 avoids the deadlock.
Strategy: every distributed thread has at most one
local representative that executes all local
segments.

A unique thread ID is needed to identify the distributed
thread.

This solution requires changes in RMI.

IPD, University of KarlsruheThomas Moschny 6

Synchronization on remote objects (1)

In Java, blocks can be synchronized on any
non-null object.
This has undesired effects, if the object is
actually a handle to a remote object:

multiple threads can „lock“ the object
simultaneously using different proxies
inter-thread communication using
wait()/notify() does not work as expected

➔ For regular RMI, synchronized blocks on
remote objects are illegal.

IPD, University of KarlsruheThomas Moschny 7

Synchronization on remote objects (2)

KaRMI extension:
Facility for acquiring remote monitors:

acquireRM() and releaseRM()
Instruct the local representative at the remote
object's home node to obtain the lock
Both methods actually form one remote call with
early return capabilities.

releaseRM()

acquireRM()
synchronized(impl) {
.
.
.
}

early return

Implementation Objectfoo()

"synchronized" (r) {
.
.
.
}

IPD, University of KarlsruheThomas Moschny 8

Synchronization on remote objects (3)

Method does not work
well for local objects,
because there is no early
return in standard Java.
Standard Java
synchronization on the
object itself should be
used instead.
This transformation can
be performed by the
JavaParty compiler.

Resulting code depends
on KaRMI.

Remote obj;
if (isLocatedRemotely(obj)){
 Object rma = aquireRM(obj);
 try {

// code
 } finally {
 releaseRM(rma);
 }
} else {
 Object lock = getImpl(obj);
 synchronized (lock){
 // code
 }
}

IPD, University of KarlsruheThomas Moschny 9

Distributed Thread Control

An interrupt sent to a currently inactive
segment of a distributed thread waits locally
for the return of the pending communication.

The remotely called method may wait(), so the
interrupt gets never delivered.

KaRMI extension:
Forward an interrupt along remote method calls
up to the active segment.
The interrupt request is additionally stored locally,
because the remote method call may return before
the request reaches the foreign node.

IPD, University of KarlsruheThomas Moschny 10

Implementation

During a remote call, a segment of a
distributed thread must perform two tasks:

wait for the completion of the remote call
be attentive for incoming recursive calls of the
same distributed thread and for interruption

In standard java.io, communication
operations are blocking.

➔ In KaRMI, communication is done by a
separate thread.

This causes additional local inter-thread
communication for every remote call.

IPD, University of KarlsruheThomas Moschny 11

KaRMI
/ TCP

KaRMI /
ParaStati
on

RMI /
0

25
50
75

100
125
150
175
200
225
250
275
300

µs

Evaluation

remote call
1.5-3µs for
maintenance of
global unique thread
identifiers
≈36µs on client side
for additional inter-
thread comm.
if there is already
one, delegation to
local representative
takes ≈25µs on
server side

Latency breakdown for
void ping()

IPD, University of KarlsruheThomas Moschny 12

Conclusion and future work

Significant enhancements to Java/RMI
Transparent distributed threads
Synchronization on remote objects

Minimal overhead
only ≈2µs in remote calls for maintenance of
global thread id
30% overhead still yields a latency for remote
ping() that is 40% smaller than that of RMI

Plans
We expect to be able to eliminate client side
thread-thread communication by means of
java.nio instead of java.io.

