Transparent Distributed
Threads for Java

Workshop on Java for Parallel

and Distributed Computing
IPDPS 2003

April 22-26, Nice, France

.ﬁj UNIVERSITY OF KARLSRUHE

Computer Science Department

Thomas Moschny
Institute for Program Structures
and Data Organization - Prof. Tichy



Context

» JavaParty

» extends Java:
» Keyword remote denotes remote classes.

» provides a single system view of a cluster with
multiple VMSs.

» transforms application code into pure Java with
RMI and JavaParty-runtime calls.

» KaRMI

» efficient RMI designed for clusters
» implements fast object serialization

» supports multiple transport technologies
e.q. for Myrinet (GM / ParaStation)



Distributed Threads

b

In a remote method call, the point of
execution moves from thread t, to another

thread t, in a different VM.

t, and t, can be seen as segments of a the
same distributed thread.

However, distributed threads are not fully
transparent:
» Locks are not reentrant on recursion.
> Monitors of remote objects cannot be acquired.
» Signals are not forwarded.
We present solutions for all three problems.

b

v

v



Synchronization Reentrance (1)

Object a Object b
in VM 1 in VM 2
—>
foo() I .
Thread 1 E T bar()
Thread 2 \j'\

B ¢
I foo2()
Synchronization

> Consider this situation:
» a.foo () callsb.bar () while holding a lock.
*» b.bar () calls a.foo2 ()
» a.foo2 () tries to obtain the same lock

a deadlock occurs because foo2 () Is executed
by thread 2

Thomas Moschny IPD, University of Karlsruhe



Synchronization Reentrance (2)

Object a
in VM 1

_>

foo()

Thread 1

-

-

foo2()

|

Object b
in VM 2

bar()

» Re-use of originating thread 1 avoids the deadlock.

» Strategy: every distributed thread has at most one
local representative that executes all local

segments.

» A unique thread ID is needed to identify the distributed

thread.

» This solution requires changes in RMI.



Synchronization on remote objects (1)

> In Java, blocks can be synchronized on any
non-null object.
> This has undesired effects, if the object is

actually a handle to a remote object:

» multiple threads can ,lock” the object
simultaneously using different proxies

» Inter-thread communication using
wait ()/notify () does not work as expected

For regular RMI, synchronized blocks on
remote objects are illegal.




Synchronization on remote objects (2)

» KaRMI extension:
» Facility for acquiring remote monitors:
acquireRM() and releaseRM()
» Instruct the local representative at the remote
object's home node to obtain the lock
» Both methods actually form one remote call with
early return capabilities.

—»
foo() I acquireRM() _ Implementation Object
synchronized(impl) {

"synchronized"” (r) { -
early return

releaseRM()

-




Synchronization on remote objects (3)

Remote obj;

» Method does nqt work if (isLocatedRemotely(obj)){
well for local OpJeCtS’ Object rma = aquireRM(obj);
because there is no early .«
return in standard Java. 1/ code

» Standard Java ) finally {
synchronization on the releaseRM(rma);
object itself should be }
used instead. } else {

> This transformation can Object lock = getimpl(obj);
be performed by the synchronized (lock){
JavaParty compiler. /| code

» Resulting code depends ;
on KaRMI. h




Distributed Thread Control

» An Interrupt sent to a currently inactive
segment of a distributed thread waits locally
for the return of the pending communication.

» The remotely called method may wait (), so the
interrupt gets never delivered.

» KaRMI extension:
» Forward an interrupt along remote method calls

up to the active segment.

> The interrupt request is additionally stored locally,
because the remote method call may return before

the request reaches the foreign node.



Implementation

> During a remote call, a segment of a
distributed thread must perform two tasks:
» wait for the completion of the remote call

» be attentive for incoming recursive calls of the
same distributed thread and for interruption

> |In standard java.io, communication
operations are blocking.
In KaRMI, communication is done by a

separate thread.

» This causes additional local inter-thread
communication for every remote call.



Evaluation

M. remote call

M- 1.5-3us for
maintenance of
global unique thread
identifiers

B © =36yus on client side
for additional inter-
thread comm.

M - if there is already
one, delegation to
local representative
takes =25us on
server side

Latency breakdown for
void ping()

300

275
250
225
200~
175
150~
125-
100~

75-

50 -

25-

VIS

KaRMI KaRMI / RMI /
/| TCP ParaStati
on



Conclusion and future work

> Significant enhancements to Java/RMI
» Transparent distributed threads
» Synchronization on remote objects

> Minimal overhead

> only =2us in remote calls for maintenance of
global thread id

» 30% overhead still yields a latency for remote
ping () that is 40% smaller than that of RMI

> Plans

> We expect to be able to eliminate client side
thread-thread communication by means of
java.nio instead of java.io.



