
��������	
������	�	
���������	���	�

���	����	
������

Dawid Kurzyniec
Vaidy Sunderam

Dept. Of Math and Computer Science
Emory University, Atlanta, GA
{dawidk,vss}@mathcs.emory.edu

JPDC-2004. Santa Fe, New Mexico, Apr 26, 2004

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

�����	�����	���������

One of the most popular remote communication paradigms
– Hides communication complexity behind well-understood

semantics of a method call
– Simplifies development
– Simplifies distributing legacy codes

Performance impact
– Caller blocked until invocation completes
– Even when execution time is negligible (e.g. event

notification), performance limited by network latency

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

�����	����	���	��������������

Solution #1: use multiple threads of execution
– Introduces concurrency explicitly
– However, requires significant changes to the code

Solution #2: non-blocking (asynchronous) RMI
– Concurrency introduced implicitly
– Raises subtle syntactic, semantic, and security issues...

� Completion notification, parameter consistency, execution order,
exception handling, cancellation, thread security contexts

– ... Which are often neglected or not well understood

� Most of existing approaches focus solely on performance

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

�������

This project: analysis of functional aspects of async RMI
– Resulting specifications implemented and tested within the

multiprotocol RMI framework termed RMIX
Overview of RMIX
Analysis

– Invocation syntax
– Semantics

� Data consistency, execution order, exception handling,
cancellation

– Security
Implementation status
Conclusions

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

����	��������

Extensible RMI framework
Client and provider APIs

– uniform access to
communication capabilities

– supplied by pluggable provider
implementations

Multiple protocols supported
– JRMPX, ONC-RPC, SOAP

Configurable and flexible
– Protocol switching
– Invocation interceptors
– ...

ONC-RPCWeb Services

SOAP clients

...

RMIX

RMIX
XSOAP

RMIX
RPCX

...
RMIX

JRMPX

Java

<<Java>>
Service

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

���������	 �����	!���������

Enable but do not mandate
– For providers: optional to implement
– For clients: extension which retains full compatibility

Precise semantics
– If implemented, must adhere to certain constraints

Server transparency
– No changes to the server-side application code

Retain RMI simplicity
Principle of least surprise

– if multiple options are possible, choose safe defaults
Do not impede performance
Avoid security vulnerabilities

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

����	���	�����"

Problem: call result (return value or exception) not available
immediately upon return of control

– Must arrange for completion notification
– Approaches: futures, callbacks, result queues
– Some implementations avoid the issue by limiting support to

one-way calls
Solution: supplementary methods in remote stubs

– Return futures; take callbacks as extra arguments
– Introduced via “asynchronous interfaces”

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

i nt er f ace Hel l o ext ends Remot e {
voi d hel l o(St r i ng gr eet i ng) t hr ows Remot eExcept i on;

}

AsyncHel l o hel l o = (AsyncHel l o) Nami ng. l ookup(. . .) ;
Fut ur e f = hel l o. asyncHel l o(” Wor l d! ”) ;
f . get () ;

i nt er f ace AsyncHel l o ext ends Hel l o {
Fut ur e asyncHel l o (St r i ng gr eet i ng) t hr ows Remot eExcept i on;
Fut ur e cbasyncHel l o(St r i ng gr eet i ng, Cal l back cb) t hr ows Remot eExcept i on;
voi d onewayHel l o (St r i ng gr eet i ng) t hr ows Remot eExcept i on;

}

i nt er f ace Hel l o ext ends Remot e {
voi d hel l o(St r i ng gr eet i ng) t hr ows Remot eExcept i on;

}

i nt er f ace Fut ur e {
bool ean i sDone() ;
Obj ect get () t hr ows I nt er r upt edExcept i on, Execut i onExcept i on;
Obj ect get (l ong t i meout , Ti meUni t gr anul ar i t y)

t hr ows I nt er r upt edExcept i on, Execut i onExcept i on, Ti meout Except i on;
}

i nt er f ace Cal l back {
voi d compl et ed(Obj ect r esul t) ;
voi d f ai l ed(Thr owabl e cause) ;

}

����	���	�����"	#�"�����$

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

Stages of remote call
– call marshalling
– awaiting response
– result unmarshalling

When should async call
return control?

– If after marshalling, may become blocking
– If before fully marshalled, parameters are vulnerable to corruption

(unless immutable)
– (A.k.a. synchronization mode, e.g. in CORBA)

RMIX (safe) default: return after marshalling
– more precisely: provider must ensure data consistency
– may employ extra memory buffers and/or immutability detection

Can be overridden on a stub-by-stub basis

:stub

:paramcreate()

asyncCall()

modify()
read()

!��������	����������

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

RMI totally orders calls initiated from a single thread
Obviously, this should be relaxed in asynchronous RMI

– Yet, some ordering semantics are still practical and commonly
expected – consider e.g. event notification:

%"������	����

:stub

“started”

:target

“completed”

Solution in RMIX
– Only calls made by thread via the same stub are ordered
– (Somewhat similar to Microsoft RPC and ANSAware RPC)
– To avoid ordering, client can always use distinct copies of stubs

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

Exceptions in asynchronous RMI are asynchronous
– May arrive after further calls were initiated
– Relying on ordering guarantees, methods may exhibit causality

dependencies

%"������	��������

Solution in RMIX
– Asynchronous exception state is sticky on a thread+stub pair (after

failure, all subsequent calls fail automatically)
– This feature can be disabled in a stub if undesired

:stub

“started”

:target

“completed”

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

Inherently asynchronous
– Requires different actions at

different stages of the call
– Will not always succeed

Must be non-blocking
– May not try to contact server

before returning control
Cancellation In RMIX

– If failed, no side effects (as if it was never attempted)
– Two modes supported: conservative and best effort

� Conservative: successful only if the system can be put in the
state as if the call was never initiated

� Best effort: can report success and continue cancellation efforts
in background

�����������
Client Server

Disregard
At Client-Side

Interrupt
Client I/O

Disregard
At Server-Side

Interrupt
Server Thread

Interrupt
Server I/O

Ignore Result

Result Delivery

Result
Unmarshalling

Parameter
Marshalling Parameter

Unmarshalling

Result
Marshalling

Method Call

Call Initiation

Cancellation at various stages of the call

bool ean cancel (
bool ean mayI nt er r upt I f Runni ng) ;

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

��������	������������

Security control bound to threads of execution
– Privileges depend on current invocation stack
– “Protection Domain” and “AccessController” mechanisms

Threads in asynchronous RMI
– Background (system) threads perform some activities on

behalf of the calling thread
– In fact, they often execute user-level code, e.g. custom

deserializers and callbacks
Access control propagation

– To avoid a vulnerability, RMIX provider must ensure proper
context propagation from the calling thread

– RMIX provides utility classes to facilitate implementations

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

������������� ������

Asynchronous calls supported by all current RMIX
communication providers

– Asynchronous JRMPX, SOAP, ONC-RPC
– Working and stable!

Common, generic base class
– Manages thread pooling, call ordering, exception handling

policies, parameter consistency, and propagation of security
context

– Makes the specification relatively easy to implement (yet not
completely painless)

Yet, better throughput attainable by dedicated implementations
– Depending on the protocol, they may be able maintain order at

the server side rather than client side
– High performance asynchronous ONC-RPC: work in progress

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

�������	&�'

Several Async RMI implementations available
– Employ futures, result queues
– Some do not preserve server transparency
– Some provide only one-way semantics
– Focus on performance; no discussion of ordering, exception

handling, cancellation, security
ProActive: distributed framework with asynchronous calls

– Precise semantics, but thread model somewhat different than
traditional RMI

CORBA Asynchronous Method Invocation
– Callbacks and futures, synchronization modes, server transparency
– No discussion of execution order, cancellation, security

RPC systems
– Selected aspects (ordering, failure handling) addressed by Microsoft

RPC, ANSAware

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

�������

Asynchronous RMI – implicit increase of concurrency
Main motivation: improved throughput
Yet, raises subtle syntactic, semantic, and security issues

– Lack of precisely defined semantics limits applicability
RMIX: multiprotocol RMI framework

– Features asynchronous calls with precise semantics, as
described in this talk

– Stable, publictly available, liberal open-source license
Future work

– High-performance provider implementations
– Feasible for scientific message passing applications

������ � � �	
� � ��
� � �
� � �
� � � �� � �
� � �
� � �
� � � �

(���')�*

