Semantic Aspects of Asynchronous RMI —
the RMIX Approach

JPDC-2004. Santa Fe, New Mexico, Apr 26, 2004

Dawid Kurzyniec
Vaidy Sunderam

Dept. Of Math and Computer Science
Emory University, Atlanta, GA
{dawidk,vss}@mathcs.emory.edu

EMORY

UNIVERSITY

UNIVERSITY

I JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT l}ﬁ% J:MUI < Y

I Remote Method Invocations

One of the most popular remote communication paradigms
-~ Hides communication complexity behind well-understood
semantics of a method call
— Simplifies development
— Simplifies distributing legacy codes
Performance impact
— Caller blocked until invocation completes
- Even when execution time is negligible (e.g. event
notification), performance limited by network latency

UNIVERSITY

I JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT l}ﬁ% J:MUI < Y

I Coping with RMI Inefficiencies

. Solution #1: use multiple threads of execution
— Introduces concurrency explicitly
- However, requires significant changes to the code

. Solution #2: non-blocking (asynchronous) RMI
— Concurrency introduced implicitly
— Raises subtle syntactic, semantic, and security issues...

. Completion notification, parameter consistency, execution order,
exception handling, cancellation, thread security contexts

.. Which are often neglected or not well understood
. Most of existing approaches focus solely on performance

UNIVERSITY

I JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT l}ﬁ% J:MUI < Y

I Outline

This project: analysis of functional aspects of async RMI
-~ Resulting specifications implemented and tested within the
multiprotocol RMI framework termed RMIX
Overview of RMIX
Analysis
— Invocation syntax

-~ Semantics
. Data consistency, execution order, exception handling,
cancellation

— Security
Implementation status
Conclusions

UNIVERSITY

I JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT Xw J:MUI < Y

RMIX Overview

Extensible RMI framework

Client and provider APIs
— uniform access to
communication capabilities

— supplied by pluggable provider

I I RMIX RMIX RMIX
|mp|ementat|0ns JRMPX]| [XSOAP|| RPCX

Multiple protocols supported ' \
- JRMPX, ONC-RPC, SOAP

Configurable and flexible Java |Web Services | ONC-RPC
— Protocol switching
— Invocation interceptors

RMIX

SOAP clients

UNIVERSITY

I JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT l}ﬁ% J:MUI < Y

I Async-RMIX Design Principles

Enable but do not mandate
— For providers: optional to implement
— For clients: extension which retains full compatibility
Precise semantics
— If implemented, must adhere to certain constraints
. Server transparency
-~ No changes to the server-side application code
Retain RMI simplicity
. Principle of least surprise
— If multiple options are possible, choose safe defaults
Do not impede performance
. Avoid security vulnerabillities

UNIVERSITY

I JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT l}ﬁ% J:MUI < Y

Async RMI Syntax

. Problem: call result (return value or exception) not available

Immediately upon return of control
— Must arrange for completion notification
— Approaches: futures, callbacks, result queues
-~ Some implementations avoid the issue by limiting support to
one-way calls
. Solution: supplementary methods in remote stubs
- Return futures; take callbacks as extra arguments
— Introduced via “asynchronous interfaces”

JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT Xw J:MUI < Y

UNIVERSITY

Async RMI Syntax (example)

i nterface Hell o extends Renote {
void hello(String greeting) throws RenoteException;

}

i nterface AsyncHell o extends Hello {
Future asyncHello (String greeting) throws RenoteException;
Future cbasyncHell o(String greeting, Callback cb) throws RenoteException;
voi d onewayHel lo (String greeting) throws RenpteException;

}

AsyncHel l o hell o = (AsyncHel | 0) Nam ng. | ookup(...);
Future f = hello.asyncHel |l o("World!”);

f.get();

I nterface Future {
bool ean i sDone();
Qbj ect get() throws InterruptedException, ExecutionException;
Qbj ect get(long tinmeout, TinmeUnit granularity)
throws | nterruptedException, ExecutionException, TinmeoutException;
}

I nterface Call back {
voi d conpl et ed(Obj ect result);
void fail ed(Throwabl e cause);

}

I JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT

I Parameter consistency

Stages of remote call %

:stub

create()

— call marshalling asyncCall()

— awaiting response

.param

¢ EMOKRY

UNIVERSITY

— result unmarshalling

read()

. When should async call
return control?

— If after marshalling, may become blocking
— If before fully marshalled, parameters are vulnerable to corruption

(unless immutable)

- (A.k.a. synchronization mode, e.g. in CORBA)

. RMIX (safe) default: return after marshalling
— more precisely: provider must ensure data consistency
- may employ extra memory buffers and/or immutability detection
Can be overridden on a stub-by-stub basis

1

UNIVERSITY

I JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT l}ﬁ% J:MUI < Y

I Execution order

RMI totally orders calls initiated from a single thread

. Obviously, this should be relaxed in asynchronous RMI
— Yet, some ordering semantics are still practical and commonly
expected — consider e.g. event notification:

% :stub Q D ‘target
“started”
=

—

“completed” .
< L

(B]

SN
C 1
Solution in RMIX

— Only calls made by thread via the same stub are ordered
— (Somewhat similar to Microsoft RPC and ANSAware RPC)
- To avoid ordering, client can always use distinct copies of stubs

I JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT

I Exception handling

¢ EMOKRY

UNIVERSITY

Exceptions in asynchronous RMI are asynchronous

-~ Relying on ordering guarantees, methods may exhibit causality

I — May arrive after further calls were initiated

dependencies

X

:Stub

C

“completed”

—

<

“started”
1=

—

@

. Solution in RMIX
— Asynchronous exception state is sticky on a thread+stub pair (after
failure, all subsequent calls fail automatically)
— This feature can be disabled in a stub if undesired

(]

target

v

UNIVERSITY

I JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT Xw J:MUI < Y

* Client | |Server
Cancellation ' B g
Call Initiation At Client-Side
Ll [] Interrupt
Parameter Parameter Client 1/0
Marshalling Unmarshalling D Disregard
At Server-Side
. Inherently asynchronous MetodlCaIlE] W e e
- Requires different actions at —— Result [nterrupt
. _ arshalling
different stages of the call i 1 [ignore Result
-~ Will not always succeed Result Delivery
. Must be non_blocklng Cancellation at various stages of the call
~ May not try to contact server e P —
before returning COntrOI bool ean mayl nterrupt|fRunni ng) ;

. Cancellation In RMIX
— If failed, no side effects (as if it was never attempted)
— Two modes supported: conservative and best effort
. Conservative: successful only if the system can be put in the
state as if the call was never initiated

. Best effort: can report success and continue cancellation efforts
iIn background

UNIVERSITY

I JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT l}ﬁ% J:MUI < Y

I Security considerations

. Security control bound to threads of execution
— Privileges depend on current invocation stack
— “Protection Domain” and “AccessController” mechanisms

. Threads in asynchronous RMI
— Background (system) threads perform some activities on
behalf of the calling thread
— In fact, they often execute user-level code, e.g. custom
deserializers and callbacks
. Access control propagation
— To avoid a vulnerability, RMIX provider must ensure proper
context propagation from the calling thread
-~ RMIX provides utility classes to facilitate implementations

UNIVERSITY

I JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT l}ﬁ% J:MUI < Y

I Implementation status

Asynchronous calls supported by all current RMIX

communication providers
— Asynchronous JRMPX, SOAP, ONC-RPC
-~ Working and stable!

. Common, generic base class

-~ Manages thread pooling, call ordering, exception handling
policies, parameter consistency, and propagation of security
context

- Makes the specification relatively easy to implement (yet not
completely painless)

Yet, better throughput attainable by dedicated implementations

- Depending on the protocol, they may be able maintain order at
the server side rather than client side

— High performance asynchronous ONC-RPC: work in progress

UNIVERSITY

I JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT l}ﬁ% J:MUI < Y

Related Work

Several Async RMI implementations available
- Employ futures, result queues
-~ Some do not preserve server transparency
— Some provide only one-way semantics
— Focus on performance; no discussion of ordering, exception
handling, cancellation, security
ProActive: distributed framework with asynchronous calls
— Precise semantics, but thread model somewhat different than
traditional RMI
CORBA Asynchronous Method Invocation
— Callbacks and futures, synchronization modes, server transparency
— No discussion of execution order, cancellation, security

RPC systems

— Selected aspects (ordering, failure handling) addressed by Microsoft
RPC, ANSAware

UNIVERSITY

I JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT l}ﬁ% J:MUI < Y

Summary

Asynchronous RMI — implicit increase of concurrency
Main motivation: improved throughput

Yet, raises subtle syntactic, semantic, and security issues
— Lack of precisely defined semantics limits applicability

RMIX: multiprotocol RMI framework

— Features asynchronous calls with precise semantics, as
described in this talk

— Stable, publictly available, liberal open-source license
Future work

— High-performance provider implementations

— Feasible for scientific message passing applications

UNIVERSITY

I JIruuwt4auv4s. valila | ©, INTW IVITAILU, APl £V, LUVUT Xw J:MUI < Y

Thank You!

