
Profile-Guided Java Program
Partitioning for Power Aware

Computing

Sriraman Tallam

and

Rajiv Gupta

Computer Science Department, The University of Arizona

S. Tallam and R. Gupta April 27, 2004 �

Handhelds are powerful but
power constrained !!

� Mobile Devices are very powerful.
• The iPAQ handheld

� ���������	
��
�����
�����������

� ����������

� ����
���������
������
�������
�����

� Battery Power is a bottleneck.
• Processing and Communication hog the battery

resource, drive handheld at peak power.
• No-op just needs idle power.
• Inability to run power hungry applications.

S. Tallam and R. Gupta April 27, 2004

Remote Wireless Computing
scenario

� Proliferation of Wireless access points.
• Wi-Fi Hotspots are now available widely.

� Scenario
• The handheld can connect wirelessly to remote

servers and use their computing cycles.
• Opportunity to partly compute remotely and save

power.
• Relevant program parts need to be transmitted –

DRAWBACK !!
• Look at overall energy savings.

S. Tallam and R. Gupta April 27, 2004 �

Problem

� Is it possible to execute Java applications
remotely and save power ?

� Execute Java applications partly remotely
and reduce overall power.

• Remote computation runs CPU at idle power.
• Transmission needs additional energy.

� We form a partition of the Java program.
• Distribute objects between local and remote

machines.
• Local objects need peak CPU power.
• Remote objects need idle CPU power.
• Remote object creation needs transmission.

S. Tallam and R. Gupta April 27, 2004 !

Overview of the Talk

� Problem Statement

� What is a Java program partition ?

� Partitioning Algorithm ��� OPTIMAL
• Based on MIN-CUT and OPTIMAL

� Drawbacks of Algorithm �

� Partitioning Algorithm ���� FAST
• Greedy Algorithm and APPROXIMATE.

� Experimental Results

�

S. Tallam and R. Gupta April 27, 2004 "

What is a Java Program Partition ?

HANDHELD SERVER

Object

Communication

S. Tallam and R. Gupta April 27, 2004 #

Executing a Partitioned Java
Application

HANDHELD SERVER

A fn()

B fn()

C fn()

Asynchronous
Function Call

S. Tallam and R. Gupta April 27, 2004 �

Partitioning Algorithms
Overview

� Profiling Step
• Number of objects of each class created.
• The amount of communication involved between

object pairs.
• The CPU time spent in the context of each object.

� Partitioning Step – Graph Representation
• OPTIMAL Method

� $�%���������
���������
�&�%��'��������

�
(������

• FAST Method
�)����
���(�%���*���������������
���������%��'�+����

� Executing the Application as per the
Partition

S. Tallam and R. Gupta April 27, 2004 ,

Profiling Step

� The number of objects of each class
created.

� The amount of communication involved
between object pairs.

• This gives an estimate of the transmission energy
needed if these object pairs were separated.
Energy Spent= Transmission Energy per byte X

Bytes Transmitted

� The CPU time spent in the context of
each object.

• This gives an estimate of the CPU energy saved if
this object was executed remotely.
Energy Saved= (Peak - Idle) X CPU Time taken

S. Tallam and R. Gupta April 27, 2004 ��

MIN-CUT

Partitioning Algorithm �
OPTIMAL

OBJECT
C

OBJECT
B

OBJECT
A

TRANSMISSION
ENERGY

[C- Edge]

PDA

IDLE
ENERGY

[P- Edge]

SERVER

PEAK
ENERGY

[P-Edge]

S. Tallam and R. Gupta April 27, 2004 ��

Using the ratio at run-time

� The partition outputs a ratio a : b of
objects of every class.

� For every ‘a’ objects that are placed in the
server, we place ‘b’ objects in the client.

� This way, a different execution instance
can still use the partition.

S. Tallam and R. Gupta April 27, 2004 ��

OPTIMAL Partitioning

� Graph Representation
• Each node is an object.
• Edges represent communication [C-Edge] and

computation energies [P-Edge].

� Partitioning Algorithm
• MIN-CUT of this graph will give the OPTIMAL

partition – expressed as a ratio.

� Time and Space Complexity
• SPACE : Graph is as large as the number of

objects created in the application, HUGE !!
• TIME : runs in time cubic in the number of objects

created, HUGE !!

S. Tallam and R. Gupta April 27, 2004 �

Need a Faster Algorithm

� Partitioning is dependent on network
variables and handheld variables.

• Bandwidth.
• Communication Energy per byte.
• Battery Power.

� Change of variables requires partitioning
to be done again.

� TIME – SPACE inefficient algorithm might
in itself need a lot of energy.

S. Tallam and R. Gupta April 27, 2004 ��

So Far

� Problem Statement

� What is a partition ?

� Partitioning Algorithm ��� OPTIMAL
• Based on MIN-CUT and OPTIMAL

� Drawbacks of Algorithm �

� Partitioning Algorithm ���� FAST
• Greedy Algorithm and APPROXIMATE.

� Experimental Results

�

�

�

�

S. Tallam and R. Gupta April 27, 2004 �!

Partition Algorithm ��
FAST

� Graph Representation – Minimize space
• Each node is a class.
• Node weight is the number of objects of that class.
• Edges represent communication [C-Edge] and

computation energies [P-Edge], as before.

� Partitioning Algorithm – Minimize time
• A greedy style algorithm gives a partition that

tends to reduce the energy spent.

S. Tallam and R. Gupta April 27, 2004 �"

Partition Algorithm ��

Class A
nA

Class B
nB

Class A
nA`

Class B
nB`TRANSMISSION

ENERGY

[C- Edge]

SERVER

PEAK
ENERGY

[P-Edge]

CLIENT

IDLE
ENERGY

[P- Edge]

S. Tallam and R. Gupta April 27, 2004 �#

FAST Partitioning Algorithm

� Benefit in moving an object to the server.
Benefit = (Peak Energy – Idle Energy)

� Cost in moving an object to the server.
Cost = Transmission Energy Spent

Cost = ((nA –1) * OAA + nB * OAB) * α,

OAA is the average bytes transferred between
objects of Class A.

� If Benefit > Cost, the object can be moved
to the server side.

S. Tallam and R. Gupta April 27, 2004 ��

FAST Partitioning Algorithm

1. Compute benefit [v] and cost [w] for all objects.

2. While (there exists some object whose v/w > 0) do

3. Choose the class whose object has the maximum v/w ratio.

4. if maximum v/w > 1 then

5. Move all objects of this class.

6. recompute v/w for all objects, CHECKPOINT.

else

repeat

7. move one object to the server.

8. recompute v/w for all objects.

9. Find maximum v/w

10. until v/w >1

end-if.

end-while

S. Tallam and R. Gupta April 27, 2004 �,

Partition Algorithm ��
FAST

� TIME Complexity
• runs in time linear in the number of objects

created in the worst-case.

� SPACE Complexity
• Number of node and edges in the graph is a

function of the number of classes, SMALL !!.

S. Tallam and R. Gupta April 27, 2004 ��

MATRIX Application

� Java Application that finds a sub-matrix
within a Large Matrix

• Image Processing involves similar operations.

33.8844.50.3443246663

32.2243.60.13395.14443

29.2944.60.17218.33111

29.2944.080.18816.73111

29.2943.00.18816.73111

Number of
Objects

Time Taken in secs.

OPTIMAL OPTIMALFAST FAST

Energy Savings %

S. Tallam and R. Gupta April 27, 2004 ��

TEXT Application

� Java Application that finds strings within
large text documents

• Important operation in word-processing
applications.

43.0647.50.172414563

38.5346.020.12836.583063

38.0642.10.068.942043

40.844.250.0032.031043

37.8445.290.0031.62523

Number of
Objects

Time Taken in secs.

OPTIMAL OPTIMALFAST FAST

Energy Savings %

S. Tallam and R. Gupta April 27, 2004 ��

Graphs for Energy Savings

MATRIX APPLICATION

0

10

20

30

40

50

2 3 4 5

Peak Power (Watts)

%
 E

n
er

g
y

S
av

ed

FAST

OPTIMAL

TEXT APPLICATION

34
35
36
37
38
39
40
41
42
43

2 3 4 5

Peak Power (Watts)

%
 E

n
er

g
y

S
av

ed

FAST

OPTIMAL

S. Tallam and R. Gupta April 27, 2004 �

Conclusions

� Energy savings in embedded devices by
running Java programs partly remotely.

� We have presented an optimal algorithm
that generates good partitions.

� We have presented a fast algorithm that
can partition quickly.

� Experiments show that the fast algorithm
is reasonably good in practice.

