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Handhelds are powerful but 
power constrained !!

� Mobile Devices are very powerful.
• The iPAQ handheld 
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� Battery Power is a bottleneck.
• Processing and Communication hog the battery 

resource, drive handheld at peak power.
• No-op just needs idle power.
• Inability to run power hungry applications.
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Remote Wireless Computing 
scenario

� Proliferation of Wireless access points.
• Wi-Fi Hotspots are now available widely.

� Scenario 
• The handheld can connect wirelessly to remote 

servers and use their computing cycles.
• Opportunity to partly compute remotely and save 

power.
• Relevant program parts need to be transmitted –

DRAWBACK !!
• Look at overall energy savings.
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Problem 

� Is it possible to execute Java applications 
remotely and save power ?

� Execute Java applications partly remotely 
and reduce overall power.

• Remote computation runs CPU at idle power.
• Transmission needs additional energy.

� We form a partition of the Java program.
• Distribute objects between local and remote 

machines.
• Local objects need peak CPU power.
• Remote objects need idle CPU power.
• Remote object creation needs transmission.
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Overview of the Talk

� Problem Statement

� What is a Java program partition ?

� Partitioning Algorithm ��� OPTIMAL
• Based on MIN-CUT and OPTIMAL

� Drawbacks of Algorithm �

� Partitioning Algorithm ���� FAST
• Greedy Algorithm and APPROXIMATE.

� Experimental Results

�
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What is a Java Program Partition ?

HANDHELD SERVER

Object

Communication
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Executing a Partitioned Java 
Application

HANDHELD SERVER

A fn()

B fn()

C fn()

Asynchronous 
Function Call
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Partitioning Algorithms 
Overview

� Profiling Step
• Number of objects of each class created.
• The amount of communication involved between 

object pairs.
• The CPU time spent in the context of each object.

� Partitioning Step – Graph Representation
• OPTIMAL Method
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� Executing the Application as per the 
Partition
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Profiling Step

� The number of objects of each class 
created.

� The amount of communication involved 
between object pairs.

• This gives an estimate of the transmission energy 
needed if these object pairs were separated.
Energy Spent= Transmission Energy per byte X

Bytes Transmitted

� The CPU time spent in the context of 
each object.

• This gives an estimate of the CPU energy saved if 
this object was executed remotely.
Energy  Saved= (Peak - Idle) X CPU Time taken
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MIN-CUT

Partitioning Algorithm �
OPTIMAL
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Using the ratio at run-time

� The partition outputs a ratio a : b of 
objects of every class.

� For every ‘a’ objects that are placed in the 
server, we place ‘b’ objects in the client.

� This way, a different execution instance 
can still use the partition.
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OPTIMAL Partitioning

� Graph Representation
• Each node is an object.
• Edges represent communication [C-Edge] and 

computation energies [P-Edge].

� Partitioning Algorithm
• MIN-CUT of this graph will give the OPTIMAL 

partition – expressed as a ratio.

� Time and Space Complexity
• SPACE : Graph is as large as the number of 

objects created in the application, HUGE !!
• TIME : runs in time cubic in the number of objects 

created, HUGE !!
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Need a Faster Algorithm

� Partitioning is dependent on network 
variables and handheld variables.

• Bandwidth.
• Communication Energy per byte.
• Battery Power.

� Change of variables requires partitioning 
to be done again.

� TIME – SPACE inefficient algorithm might 
in itself need a lot of energy.
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So Far

� Problem Statement

� What is a partition ?

� Partitioning Algorithm ��� OPTIMAL
• Based on MIN-CUT and OPTIMAL

� Drawbacks of Algorithm �

� Partitioning Algorithm ���� FAST
• Greedy Algorithm and APPROXIMATE.

� Experimental Results

�
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Partition Algorithm ��
FAST

� Graph Representation – Minimize space
• Each node is a class. 
• Node weight is the number of objects of that class.
• Edges represent communication [C-Edge] and 

computation energies [P-Edge], as before.

� Partitioning Algorithm – Minimize time
• A greedy style algorithm gives a partition that 

tends to reduce the energy spent.
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Partition Algorithm ��
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FAST Partitioning Algorithm

� Benefit in moving an object to the server.
Benefit = (Peak Energy – Idle Energy)

� Cost in moving an object to the server.
Cost = Transmission Energy Spent

Cost = ((nA –1) * OAA + nB * OAB) * α,

OAA is the average bytes transferred between 
objects of Class A.

� If Benefit > Cost, the object can be moved 
to the server side.
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FAST Partitioning Algorithm

1.  Compute benefit [v] and cost [w] for all objects.

2.  While ( there exists some object whose v/w > 0) do

3.  Choose the class whose object has the maximum v/w ratio.

4. if maximum v/w > 1 then

5. Move all objects of this class.

6. recompute v/w for all objects, CHECKPOINT.

else

repeat

7. move one object to the server.

8. recompute v/w for all objects.

9. Find maximum v/w

10.      until v/w >1

end-if.

end-while
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Partition Algorithm ��
FAST

� TIME Complexity
• runs in time linear in the number of objects 

created in the worst-case.

� SPACE Complexity
• Number of node and edges in the graph is a 

function of the number of classes, SMALL !!.
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MATRIX Application

� Java Application that finds a sub-matrix 
within a Large Matrix

• Image Processing involves similar operations.

33.8844.50.3443246663

32.2243.60.13395.14443

29.2944.60.17218.33111

29.2944.080.18816.73111

29.2943.00.18816.73111

Number of 
Objects

Time Taken in secs.

OPTIMAL OPTIMALFAST FAST

Energy Savings %
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TEXT Application

� Java Application that  finds strings within 
large text documents

• Important operation in word-processing 
applications.

43.0647.50.172414563

38.5346.020.12836.583063

38.0642.10.068.942043
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Graphs for Energy Savings

MATRIX APPLICATION
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Conclusions

� Energy savings in embedded devices by 
running Java programs partly remotely.

� We have presented an optimal algorithm
that generates good partitions.

� We have presented a fast algorithm that 
can partition quickly.

� Experiments show that the fast algorithm 
is reasonably good in practice.


