
Java-based Distributed Architectures for
Intensive Computations related to

Electrical Grids

M. Di Santo, N. Ranaldo, A. Vaccaro, E. Zimeo
Department of Engineering - RCOST
University of Sannio, Benevento, Italy

zimeo@unisannio.it

IPDPS 2004
Work. on Java for Parallel and Distributed Computing

Santa Fe, New Mexico, USA
26 April 2004

Introduction 1/4

• On-line power systems security analysis (OPSSA) is
one of the most relevant assessments made to assure
the optimal control and management of electrical
networks

• There are many phenomena (contingencies) that can
compromise power systems operation
– an unexpected variation in the power system structure
– a sudden change of the operational conditions

• OPSSA deals with the assessment of the security and
reliability levels of the system under any possible
contingency

Introduction 2/4

Three main steps:
1. Screening of the most �credible� contingences

2. Predicting their impact on the entire system operation
� the contingencies analysis is performed according to the (n-1)

criterion
� for each credible contingency, the simulation of the system

behaviour and the verification of operational limits violations
� the system behavior is verified finding the solution of the

system state equations (power flow or load flow equations)

3. Preventive and corrective controlling
� identification of proper control actions able to reduce the risk

of system malfunctioning

Introduction 3/4

• Focus: on-line prediction (step 2)
– computation times should be less than few minutes for

information to be useful

• Unfortunately OPSSA is computing and data intensive
– structure of modern power systems
– computational complexity of algorithms
– number of contingencies to analyze

• New methodologies to reduce computational times
– parallel processing on supercomputers and then on cluster

and network of workstations (to reduce costs) has been
employed (i.e. PVM)

Introduction 4/4

� Our proposal:
� A java-based distributed architecture instead of PVM

� Advantages:
� Programming is easier
� Portability is assured on each architecture implementing a JVM
� Better integration with Web technologies
� Object-Oriented programming allows for adopting architectural

and design patterns

� Disadvantages:
� Efficiency is reduced due to Java communication overheads
� Execution time is higher due to interpretation

Contents

� The overall distributed architecture
� Computational engine

� Algorithms
� Design goals
� RMI based implementation
� ProActive based implementation

� Deployment on a testbed
� Conclusions and future work

The overall distributed architecture

In
te

rn
et

 -
H

T
T

P
 in

te
ra

ct
io

n
s Internet - TCP and HTTP interactions

Electrical
Grid

FEM

FEM

FEM

FEM

IED
IED

IED

IED

IED

IED

DBMS

Computational
Engine

Presentation tier Middle tier Storage tier

.

Web Server Application Server

Servlet

JSP

Business
Logic

Business
Logic

Web Browser

Applet

HTML client

Web Browser

Applet

HTML client

..........

scalability
accessibility
manageability

In
te

rn
et

 -
H

T
T

P
 in

te
ra

ct
io

n
s Internet - TCP and HTTP interactions

Electrical
Grid

FEM

FEM

FEM

FEM

IED
IED

IED

IED

IED

IED

DBMS

Computational
Engine

Presentation tier Middle tier Storage tier

.

Web Server Application Server

Servlet

JSP

Business
Logic

Business
Logic

Web Browser

Applet

HTML client

Web Browser

Applet

HTML client

..........

A network of field power meters (FEMs)

- distributed in the most critical sections of the electrical grid

- to provide input field data for power flow equations, such as
active, reactive and apparent energy

- based on ION 7330-7600TM units

- equipped with an on-board web server for their full remote
control

In
te

rn
et

 -
H

T
T

P
 in

te
ra

ct
io

n
s Internet - TCP and HTTP interactions

Electrical
Grid

FEM

FEM

FEM

FEM

IED
IED

IED

IED

IED

IED

DBMS

Computational
Engine

Presentation tier Middle tier Storage tier

.

Web Server Application Server

Servlet

JSP

Business
Logic

Business
Logic

Web Browser

Applet

HTML client

Web Browser

Applet

HTML client

..........

A network of distributed Intelligent Electronic
Devices (IEDs)

- distributed in the most critical sections of the electrical grid

- to monitor continuously the thermal state of critical sections of the
electrical grid

- to analyse system behavior

- to verify limits violations (such as load capability)

- remote controlled by the TCP/IP protocol

In
te

rn
et

 -
H

T
T

P
 in

te
ra

ct
io

n
s Internet - TCP and HTTP interactions

Electrical
Grid

FEM

FEM

FEM

FEM

IED
IED

IED

IED

IED

IED

DBMS

Computational
Engine

Presentation tier Middle tier Storage tier

.

Web Server Application Server

Servlet

JSP

Business
Logic

Business
Logic

Web Browser

Applet

HTML client

Web Browser

Applet

HTML client

..........

Clients

- used by the power systems operators

- to access OPSSA information for
system monitoring and management

In
te

rn
et

 -
H

T
T

P
 in

te
ra

ct
io

n
s Internet - TCP and HTTP interactions

Electrical
Grid

FEM

FEM

FEM

FEM

IED
IED

IED

IED

IED

IED

DBMS

Computational
Engine

Presentation tier Middle tier Storage tier

.

Web Server Application Server

Servlet

JSP

Business
Logic

Business
Logic

Web Browser

Applet

HTML client

Web Browser

Applet

HTML client

..........

Web components

- handle the presentation at the server-side

In
te

rn
et

 -
H

T
T

P
 in

te
ra

ct
io

n
s Internet - TCP and HTTP interactions

Electrical
Grid

FEM

FEM

FEM

FEM

IED
IED

IED

IED

IED

IED

DBMS

Computational
Engine

Presentation tier Middle tier Storage tier

.

Web Server Application Server

Servlet

JSP

Business
Logic

Business
Logic

Web Browser

Applet

HTML client

Web Browser

Applet

HTML client

..........

Business Logic Components

- access data stored in a DBMS

- continuously monitor the power system,
coordinating the execution of security analysis

In
te

rn
et

 -
H

T
T

P
 in

te
ra

ct
io

n
s Internet - TCP and HTTP interactions

Electrical
Grid

FEM

FEM

FEM

FEM

IED
IED

IED

IED

IED

IED

DBMS

Computational
Engine

Presentation tier Middle tier Storage tier

.

Web Server Application Server

Servlet

JSP

Business
Logic

Business
Logic

Web Browser

Applet

HTML client

Web Browser

Applet

HTML client

..........

A DataBase Management System (DBMS)

- used to permanently store output data

- remote accessed

In
te

rn
et

 -
H

T
T

P
 in

te
ra

ct
io

n
s Internet - TCP and HTTP interactions

Electrical
Grid

FEM

FEM

FEM

FEM

IED
IED

IED

IED

IED

IED

DBMS

Computational
Engine

Presentation tier Middle tier Storage tier

.

Web Server Application Server

Servlet

JSP

Business
Logic

Business
Logic

Web Browser

Applet

HTML client

Web Browser

Applet

HTML client

..........

Computational Engine

- a parallel and distributed
processing system

- to execute power flow equations in
a short time

Computational engine: algorithm

• Sequential algorithm • Concurrent algorithm

���� ��

��

�	

�������������

����������

����������

�����������

�	

��

��

�	

�������������

����

�����������

����������������

�������

����������

�����������

�� ������

��������

����!����������������

�� ��������������

����!����

���������

�����������

������"�#

$����������

�����

�������������

����������

�	

��

�������������

����������

�	

��

�������

�����������

�

�

�

�������������

����

�%����������

&�%

���������

�����������#

�����������

�� ������

��������

����!����

�����������

���������

�����������

�����������

�� ������

��������

����!����

�����������

����!����

������������������

����������#���

�����������#

����!����

������������������

��������������

�����������#

����!����

������������������
����������#���

�����������

����!����

������������������

��������������

�����������

$����������

�����
$����������

�����

�������������

����������

Adopting a concurrent algorithm
based on the domain decomposition

Computational Engine: design goals

� The computational engine is designed as a
framework, whose main goals are:
1. high performance

� The framework is to be able to compute the analysis of
each contingency in parallel with the others

2. flexibility and scalability
� The framework is to be able to exploit all the available

resources to minimize the computation time

3. hierarchy
� The framework is to be able to exploit clusters of

workstations or networks of workstations handled by front-
ends

� Architectural design solution: hierarchical
master/slave model

The hierachical m/s model 1/3

master

sub-master slave slavesub-master

slave

slave

slave slave

slave

slave

input data structure

� hierarchical
master/slave model
� object-level

parallelism
� master and slaves

are transparently
created

The hierachical m/s model 2/3

� Three implementation problems:
� Task allocation in order to minimize the execution

time
� Time minimization algorithm

� Object-oriented design to support a transparent
hierarchical master/slave model
� Hierarchical master/slave pattern

� Object-oriented implementation to support a
distributed and parallel implementation of the
hierarchical master/slave pattern
� RMI based implementation
� ProActive based implementation

Task allocation: time minimization

• This phase is important and complex due to the heterogeneity of
hardware architectures
– to minimize load imbalance, the workload should be distributed

dynamically and adaptively to the changing conditions of resources.

• We consider only static information
– Defined N as the number of independent sub-tasks in which the

overall task is divided;
– n as the number of available resources at a certain level;
– and ti as the elapsed time that the resource i needs to complete a

single sub-task;
– ni the number of sub-tasks assigned to the resource i
– the problem to minimize the execution time using assigned resources

can be formulated as follows:

�
�

�
�

�

=

⋅==⋅=⋅

�
=

��

������

�

�

�

��

#

''## (((

The hierachical m/s pattern
• M/S pattern:

– splitWork() is used to create
slave objects, to allocate them
onto the available resources, and
to partition a task into sub-tasks.

– callSlaves() is used to call
the method service() on all the
slave objects, which perform the
same computation with different
inputs.

– combineResults() is used to
combine the partial results in
order to produce the final result.

• Hierarchical M/S pattern:
– An additional class (Server) is

introduced
– service()is used to hide the

difference between master and
slave objects

)�����

"�������*�%+���,-�%+���

"�����.��!*,

"����
�����*,

"���%���/������*,

������

	
�������������������

����

"�������*�%+���,-�%+���

������

"���0�������0�12*,

HM/S pattern implementation

• To support distributed and parallel implementation of
HM/S pattern
– service() has to be asynchronously invoked
– Each service() method has to be executed by a different

computational resources

• Solutions: an object-oriented middleware based on
remote method invocations
– RMI – the well known middleware provided by SUN
– ProActive - Java library for seamless sequential, concurrent

and distributed programming
• It is based on the active object pattern and allows for invoking a method of

an active object respecting the same syntax of local invocations
• the invocation mechanism is asynchronous, and implemented through

future objects
• It does not require manually stub generation

RMI implementation of HM/S pattern

• Each Server
– is defined as a remote object
– is allocated onto a different computational resource
– its method service() has to be asynchronously and remotely

invoked by the client
– the asynchronous invocation is implemented by invoking
service() within a dedicated thread of control

-)�����

-3����� -)�����

/)2

/)2

/)2

-�����������

���������

������	�
��	����
��

�������*,

�������*,

�������*,

�������*, -3�����

-3�����

��������44

��������44

��������44

���������

5��� 5���

5���

-
����/)2

/)2

/)2

5���

5���

5���

-&)��6��!

�-
���� -&)���6��!

-
���� -&)���6��!

-
����
/)2

/)2

5���

5���

-&)���6��!

-
���� -&)���6��!

����
���*
,

-3�����

-3�����

-)�����

-3�����

-3�����

5���

-)����� -3�����

������

/78)

7������
��������������
�������������
����

ProActive implementation of HM/S p.

• Each Server
– is defined as an active object (that can be dynamically created)
– is allocated on a different computational resource (dynamically)
– its method service() has to be asynchronously and remotely

invoked by the client.
– the asynchronous invocation is directly supported by ProActive

-)�����

-)�����

-�����������

���������

������	�
��	����
��

�������*,

�������*,

�������*,

���������

5���

5���

5���

-
����

5���

5���

�-
����

������
�*,

-)�����

5���

9-)�����

�������*,

��
��
���
*,

-
����

5���

5���

-
����

-
����

5���

5���

-
����

�������*,

�������*,

�������*,

�������*,

�������

/78)

7���������
����������
�������������
����

-&)���6��!

-&)���6��!

-&)���6��!

-&)���6��!

-&)���6��!

-&)���6��!

Software platform evaluation on a testbed 1/2

• RMI - ProActive
• Tomcat 4.1
• Java SDK 1.4.1
• MATLAB 6.5

• Standard IEEE 118-nodes
test network

• electrical network description
is local to each computational
resource

• The experiments refer to
186 contingencies

• A COW with P1 proc.
• P1 = Pentium II 350 MHz

• A NOW with P2 proc.
• P2 = Pentium IV 2 GHz

2�������

������

����������������

1#

1#

1#

1#

1#

1#

1#

1#

1'

1'

1'

1'

)�����#)�����'

)�����

������:

� �����#

� �����'

1# 1'

�
�
�

====
====

';'#

#<'#

=>(((

?(((

����

����

Software platform evaluation on a testbed 2/2

• The framework shows good results
• RMI vs ProActive:

– Exibhit almost the same results (ProActive is based on RMI)
– ProActive simplifies parallel and distributed programming
– ProActive enables group communication (not used in this work)

Execution times Speed up

Conclusions and Future Work

• A distributed Web-based architecture for the OPSSA implemented
by using RMI and ProActive middleware, has been presented

• Experimental results demonstrate the validity of the framework and
its applicability to obtain results in more and more realistic and
useful times

• In a parallel work we are:
– using ProActive atop HiMM in a Grid Environment
– adopting a broker-based architecture to automatically acquire

resources and split the workload

• In the future we intend:
– to include the solution of the power flow equations in the dynamic

scenario
– to extend our mapping algorithms in order to consider also

communication tasks
– to employ group communication in order to reduce communication

overheads

