JAPARA - A Java Parallel Random

Number Generator Library for
High-Performance Computing

Paul Coddington and Andrew Newell

Distributed & High Performance Computing Group
School of Computer Science, University of Adelaide

23 THE UNIVERSITY
OF ADELAIDE

AUSTRALIA

JPDC Workshop, April 2004

Motivation

Many large-scale (Grande) applications require lots of high-
guality random numbers, e.g. Monte Carlo simulation.

Grande applications can be performed in parallel on
multiple processors using Java threads (or MPI).

Random Number Generators (RNGS) in the standard Java
libraries are inadequate for some Grande applications.

Some work has been done to extend java.util.Random to
address its shortcomings - but no support for concurrency.

We have added this support in JAPARA.

Parallelizing standard RNG algorithms is straightforward,
but there are some subtleties involved.

RNG Algorithms

Linear Congruential Generator
— X(i)=a*X(i-1)+b modM
— Period of repetition is M.
Lagged Fibonacci Generator
— X(1) = X(i-p) op X(i-q) mod M
— Period is product of M and a power of largest lag p
Multiple Recursive Generator
— X(@) =A1*X(i-1) + A2 * X(i-2) + ... + Ak * X(i-k) mod M
— Period is product of M and a power of k
Combined Generators
— X({)=Y(@{) op Z(i) modM, withY and Z random sequences

— Period is product of the periods of the two sequences

Random Number Generators 1n Java

Three RNG APIs in the standard Java libraries:

m java.util.Random

— Main general-purpose RNG interface
— next () method provides 32 random bits (using a 48-bit LCG)

— next Fl oat (), nextDouble(), nextint(), nextLong(),
next Bool ean(), etc.

— Nice design, but missing features for large-scale scientific computing

m java.Math provides a Random() method
— Just a simpler interface to next Doubl e() of java. util. Random

m java.security.SecureRandom

— Targeted at cryptography applications
— Not suitable for scientific applications - too slow and not reproduceable

java.util.Random API

Randon) ;
Random(| ong seed);

public void setSeed(l ong seed);

protected int next(int bits);
public void nextBytes(byte[] bytes);

publ i c bool ean next Bool ean();
public float nextFl oat();
publ i c doubl e next Doubl e() ;
public int nextlint();

public int nextInt(int n);
public | ong nextLong();
publ i c doubl e next Gaussi an();

Additional Features Required
Simple mechanism for choosing different algorithms.
Adequate period of repetition for large-scale simulations.
Excellent default generator.
Mechanisms for checkpointing the state.
Arrays of random numbers.

Support for efficient concurrency (currently uses
synchronized methods).

Previous Work

JAPARA builds on previous work by Mathew, Coddington
and Hawick (Proc. HPCN’99).

Addresses all the inadequacies except concurrency.

Extends the java.util.Random API, so programmers can use
the standard Java API calls, with some optional extras.

Uses the approach of java.security.SecureRandom for
choosing from different RNG algorithms

— getl nstance(String al gorithnmNane)

— Instantiates a RNG object of class algorithmName

— Don’t need to modify program to use different generator

Extensions to java.util. Random API

/[l Al'low a choice of generator algorithm

public static Random getlnstance(String type) throws
RandonExcepti on;

public static Random getl nstance();

/| Enabl e checkpointing of generator state
public Cbhject getState();

public void setState((Object seeds);

public ohject readState(String fil enane);
public void witeState(String filenane);

I/l CGenerate an array of random nunbers

public void nextInt(int[] random.ints);

public void nextLong(long[] random.| ongs);
public void nextFloat(float[] random floats);
publ i ¢ voi d next Doubl e(doubl e[] random doubl es);

Other Existing Work

m RngPack and randomX provide Java RNGs with a choice
of algorithms, but

— Use customized API
— Don’t support concurrency

m L'Ecuyer et al. developed a Streams and Substreams
package implemented in Java

— Uses customized API
— Could in principle be used as a parallel RNG
— Doesn’t provide a choice of algorithms

Parallel RNGs

All common RNG algorithms can be parallelized efficiently.

Approach is to initiate a new, independent generator instance
on each process.

This way, the only data dependency (communication or
synchronization) is in initialization (constructor) of generator.

Straightforward, but non-trivial. Need to ensure that:

— there is no overlap or correlation between sequences on different
processes (or threads).

— does not create correlations in subsequences on each process

Has been done for MPI (e.g. SPRNG) and HPF.

Parallelizing RNGs

Leapfrog
— Each process p of N gets X(p), X(p+N), X(p+2N), ...

Sequence splitting or Boosting

— Choose boost large enough so provide long subsequences on each
process, but small enough to allow lots of processes.

Independent sequences
— Choosing seeds correctly in LFGs gives non-overlapping sequences.

— But need to ensure seeds are not correlated, otherwise sequences will
be correlated.

Parameterization

— Mechanism for choosing different generator parameters for each
process, i.e. a different generator for each process

Design for Introducing Concurrency

Want to conform as closely as possible to existing API.
User instantiates a separate RNG instance for each thread.

How to specify that after the first generator object is instantiated,
all new instances should have seeds set automatically?

Use a new ParallelRandom class extending existing sequential
RNG class (which extends java.util.Random)?

Don’t override existing constructor syntax - maybe the
programmer really does want to set the seeds on each thread.
— Random() - initialize using seed set from the clock

— Random(seed) - initialize using specified seed

Add an additional constructor? But what parameter to pass?

API Extensions for Concurrency

Require the concept of two different types of seeds:

— a class seed (static variable in Java)
— a seed for each different RNG object (instance variable in Java)

Need a new method to specify that the parallel RNG

algorithm should seed the generator

— setSequenceSeed() Is specified in the paper
— setSeed() Is perhaps a better way of indicating what is happening

An (internal) synchronized method needed to update class
seed and set the seed for each new RNG instance.

Better approach is to just store and update an instance

counter rather than a class seed as the static variable

— Increment counter for every new RNG instance
— This enables parallel initialization of RNG instances on each thread

JAPARA

JAva PArallel RAndom Number Generator (JAPARA) .

Keeps same functionality as our previous work, so can just
be used as an improved sequential RNG for Java.

Provides a choice of several well-known RNG algorithms
— Combined Multiple Recursive Generator (new default)
— 64-bit LCG

— Lagged Fibonacci using multiplication

— Two combined generators (RANECU, RANMAR)

Provides efficient concurrent implementation of all these
algorithms.

Parallelization Used in JAPARA

m Use boosting for LCG-type generators
— CMRG, 64-bit LCG, RANECU, all with period > 2763

— Choose boost large enough so that subsequences on each thread are
long enough, e.g. 252
— But small enough to allow lots of threads, e.g. > 2*11

m Use independent sequences for LFG-type generators
— LFG with multiplication, RANMAR
— Choose seeds so non-overlapping subseguences on each thread

— Need to be sure seeds for each generator instance are not correlated,
so use a RNG (simple LFG or 32-bit LCG) to generate the array of
seeds required for the LFG.

Using JAPARA

Main thread initializes generator in the usual way, either

Random nyRNG = new Randon(seed);

Random nyRNG = get | nst ance(gener at or Nane) ;
mMyRNG. set Seed(seed) ;

Other threads get the generator to set the seed

Random nyRNG = new Random();
nMyRNG. set Seed() ;

Random nyRNG = get | nst ance(gener at or Nane) ;
My RNG. set Seed() ;

Testing the RNG Implementations

All the RNG algorithms used in JAPARA have previously
been subjected to many (sequential) statistical and
application tests, so are known to be very high quality.

We have developed a few simple tests in Java (histogram,
average) as a sanity check on our implementation.

Need to do some more rigorous tests.

Very little research has been done on testing the quality of
parallel RNGs

— Sequential tests on subsequences on each thread

— Parallel applications (e.g. Monte Carlo simulations of Ising model)

We have implemented a program to check correlations
between parallel sequences - preliminary results look OK.

Conclusions and Future Work

JAPARA is an improved random number generator library
for Java, aimed primarily at high-end applications.

JAPARA extends the standard java.util.Random generator
to overcome some problems and add useful features,
particularly concurrency.

More thorough testing of randomness properties of
JAPARA generators is needed.

Also test it with a few different parallel Java applications.
Then release JAPARA code.
Develop version of JAPARA for Java MPI programs.

