
�������� ���������	�

�
����
���

�����	�����	���	����	�	����	�

�������	��	���������������

���������	
���
��
��

�����������

�� �	�����
�!��������	��	�����������������	���

"����
�����������	�"������#�$����	 ��������
�
��
�

JPDC Workshop, April 2004

%���������

� Many large-scale (Grande) applications require lots of high-
quality random numbers, e.g. Monte Carlo simulation.

� Grande applications can be performed in parallel on
multiple processors using Java threads (or MPI).

� Random Number Generators (RNGs) in the standard Java
libraries are inadequate for some Grande applications.

� Some work has been done to extend java.util.Random to
address its shortcomings - but no support for concurrency.

� We have added this support in JAPARA.

� Parallelizing standard RNG algorithms is straightforward,
but there are some subtleties involved.

�����
��	����

� Linear Congruential Generator
– X(i) = a * X(i-1) + b mod M

– Period of repetition is M.

� Lagged Fibonacci Generator
– X(i) = X(i-p) op X(i-q) mod M

– Period is product of M and a power of largest lag p

� Multiple Recursive Generator
– X(i) = A1 * X(i-1) + A2 * X(i-2) + … + Ak * X(i-k) mod M

– Period is product of M and a power of k

� Combined Generators
– X(i) = Y(i) op Z(i) mod M, with Y and Z random sequences

– Period is product of the periods of the two sequences

���
��������	�����	���	 ��������

Three RNG APIs in the standard Java libraries:

� java.util.Random
– Main general-purpose RNG interface
– next () method provides 32 random bits (using a 48-bit LCG)
– next Fl oat () , next Doubl e() , next I nt () , next Long() ,

next Bool ean() , etc.

– Nice design, but missing features for large-scale scientific computing

� java.Math provides a Random() method
– Just a simpler interface to next Doubl e() of j ava. ut i l . Random

� java.security.SecureRandom
– Targeted at cryptography applications
– Not suitable for scientific applications - too slow and not reproduceable

&���'���
'���
�����(

Random() ;

Random(l ong seed) ;

publ i c voi d set Seed(l ong seed) ;

pr ot ect ed i nt next (i nt bi t s) ;

publ i c voi d next Byt es(byt e[] byt es) ;

publ i c bool ean next Bool ean() ;

publ i c f l oat next Fl oat () ;

publ i c doubl e next Doubl e() ;

publ i c i nt next I nt () ;

publ i c i nt next I nt (i nt n) ;

publ i c l ong next Long() ;

publ i c doubl e next Gaussi an() ;

�

������
�)����	� ���*��	�

� Simple mechanism for choosing different algorithms.

� Adequate period of repetition for large-scale simulations.

� Excellent default generator.

� Mechanisms for checkpointing the state.

� Arrays of random numbers.

� Support for efficient concurrency (currently uses
synchronized methods).

�	����� �+�	,

� JAPARA builds on previous work by Mathew, Coddington
and Hawick (Proc. HPCN’99).

� Addresses all the inadequacies except concurrency.

� Extends the java.util.Random API, so programmers can use
the standard Java API calls, with some optional extras.

� Uses the approach of java.security.SecureRandom for
choosing from different RNG algorithms

– get I nst ance(St r i ng al gor i t hmName)

– instantiates a RNG object of class algorithmName

– Don’t need to modify program to use different generator

-.��� ��� ����&���'���
'���
�����(
/ / Al l ow a choi ce of gener at or al gor i t hm

publ i c st at i c Random get I nst ance(St r i ng t ype) t hr ows
RandomExcept i on;

publ i c st at i c Random get I nst ance() ;

/ / Enabl e checkpoi nt i ng of gener at or st at e

publ i c Obj ect get St at e() ;

publ i c voi d set St at e(Obj ect seeds) ;

publ i c Obj ect r eadSt at e(St r i ng f i l ename) ;

publ i c voi d wr i t eSt at e(St r i ng f i l ename) ;

/ / Gener at e an ar r ay of r andom number s

publ i c voi d next I nt (i nt [] r andom_i nt s) ;

publ i c voi d next Long(l ong[] r andom_l ongs) ;

publ i c voi d next Fl oat (f l oat [] r andom_f l oat s) ;

publ i c voi d next Doubl e(doubl e[] r andom_doubl es) ;

/���	�-.� �����+�	,

� RngPack and randomX provide Java RNGs with a choice
of algorithms, but

– Use customized API
– Don’t support concurrency

� L’Ecuyer et al. developed a Streams and Substreams
package implemented in Java
– Uses customized API
– Could in principle be used as a parallel RNG
– Doesn’t provide a choice of algorithms

��	�

�
���

� All common RNG algorithms can be parallelized efficiently.

� Approach is to initiate a new, independent generator instance

on each process.

� This way, the only data dependency (communication or

synchronization) is in initialization (constructor) of generator.

� Straightforward, but non-trivial. Need to ensure that:

– there is no overlap or correlation between sequences on different

processes (or threads).

– does not create correlations in subsequences on each process

� Has been done for MPI (e.g. SPRNG) and HPF.

��	�

�
�0�������

� Leapfrog
– Each process p of N gets X(p), X(p+N), X(p+2N), …

� Sequence splitting or Boosting
– Choose boost large enough so provide long subsequences on each

process, but small enough to allow lots of processes.

� Independent sequences

– Choosing seeds correctly in LFGs gives non-overlapping sequences.

– But need to ensure seeds are not correlated, otherwise sequences will
be correlated.

� Parameterization

– Mechanism for choosing different generator parameters for each
process, i.e. a different generator for each process

�� ������	�(��	�
�����������		����
� Want to conform as closely as possible to existing API.

� User instantiates a separate RNG instance for each thread.

� How to specify that after the first generator object is instantiated,
all new instances should have seeds set automatically?

� Use a new ParallelRandom class extending existing sequential
RNG class (which extends java.util.Random)?

� Don’t override existing constructor syntax - maybe the
programmer really does want to set the seeds on each thread.
– Random() - initialize using seed set from the clock

– Random(seed) - initialize using specified seed

� Add an additional constructor? But what parameter to pass?

��(�-.��� ��� ���	������		����
� Require the concept of two different types of seeds:

– a class seed (static variable in Java)
– a seed for each different RNG object (instance variable in Java)

� Need a new method to specify that the parallel RNG
algorithm should seed the generator
– setSequenceSeed() is specified in the paper
– setSeed() is perhaps a better way of indicating what is happening

� An (internal) synchronized method needed to update class
seed and set the seed for each new RNG instance.

� Better approach is to just store and update an instance
counter rather than a class seed as the static variable
– Increment counter for every new RNG instance
– This enables parallel initialization of RNG instances on each thread

������

� JAva PArallel RAndom Number Generator (JAPARA) .

� Keeps same functionality as our previous work, so can just
be used as an improved sequential RNG for Java.

� Provides a choice of several well-known RNG algorithms

– Combined Multiple Recursive Generator (new default)

– 64-bit LCG

– Lagged Fibonacci using multiplication

– Two combined generators (RANECU, RANMAR)

� Provides efficient concurrent implementation of all these
algorithms.

��	�

�
�0������$ �
����������

� Use boosting for LCG-type generators
– CMRG, 64-bit LCG, RANECU, all with period > 2^63

– Choose boost large enough so that subsequences on each thread are
long enough, e.g. 2^52

– But small enough to allow lots of threads, e.g. > 2^11

� Use independent sequences for LFG-type generators
– LFG with multiplication, RANMAR

– Choose seeds so non-overlapping subsequences on each thread

– Need to be sure seeds for each generator instance are not correlated,
so use a RNG (simple LFG or 32-bit LCG) to generate the array of
seeds required for the LFG.

$ ����������

Main thread initializes generator in the usual way, either

Random myRNG = new Random(seed) ;

Random myRNG = get I nst ance(gener at or Name) ;

myRNG. set Seed(seed) ;

Other threads get the generator to set the seed

Random myRNG = new Random() ;

myRNG. set Seed() ;

Random myRNG = get I nst ance(gener at or Name) ;

myRNG. set Seed() ;

1� �������������(��
����������

� All the RNG algorithms used in JAPARA have previously
been subjected to many (sequential) statistical and
application tests, so are known to be very high quality.

� We have developed a few simple tests in Java (histogram,
average) as a sanity check on our implementation.

� Need to do some more rigorous tests.

� Very little research has been done on testing the quality of
parallel RNGs
– Sequential tests on subsequences on each thread

– Parallel applications (e.g. Monte Carlo simulations of Ising model)

� We have implemented a program to check correlations
between parallel sequences - preliminary results look OK.

����
� ��� ���
�)���	��+�	,

� JAPARA is an improved random number generator library
for Java, aimed primarily at high-end applications.

� JAPARA extends the standard java.util.Random generator
to overcome some problems and add useful features,
particularly concurrency.

� More thorough testing of randomness properties of
JAPARA generators is needed.

� Also test it with a few different parallel Java applications.

� Then release JAPARA code.

� Develop version of JAPARA for Java MPI programs.

