
Compact Labelings For Efficient First-Order

Model-Checking

Bruno Courcelle 1,2 and Cyril Gavoille 1 and Mamadou Moustapha Kanté 1

Université de Bordeaux, LaBRI, CNRS
351 cours de la Libération

33405 Talence, France

Abstract

We consider graph properties that can be checked from labels, i.e., bit sequences, of
logarithmic length attached to vertices. We prove that there exists such a labeling
for checking a first-order formula with free set variables in the graphs of every class
that is nicely locally clique-width-decomposable. This notion generalizes that of a
nicely locally tree-decomposable class. The graphs of such classes can be covered
by graphs of bounded clique-width with limited overlaps. We also consider such
labelings for bounded first-order formulas on graph classes of bounded expansion.
Some of these results are extended to counting queries.

Key words: First-Order Logic; Labeling Scheme; Local Clique-Width; Local
Tree-Width; Locally Bounded Clique-Width.

1 Introduction

The model-checking problem for a class of structures C and a logical language
L consists in deciding for a given pair (S, ϕ) where S ∈ C and ϕ ∈ L if S |= ϕ,
i.e., if S satisfies the property expressed by ϕ. More generally, if ϕ is a formula
with free variables x1, . . . , xm, one may ask whether S satisfies ϕ(a1, . . . , am)
where a1, . . . , am are values given to x1, . . . , xm. One may also wish to list the
set of m-tuples (a1, . . . , am) that satisfy ϕ in S, or simply count them.

Polynomial time algorithms for these problems (for fixed ϕ) exist for certain
classes of structures and certain logical languages. In this sense, graphs of

1 Supported by the GRAAL project of “Agence Nationale pour la Recherche”.
2 Member of “Institut Universitaire de France”.

Preprint submitted to Elsevier 2 July 2009

bounded degree “fit” with first-order logic [13,30] and graphs of bounded
tree-width or clique-width “fit” with monadic second-order logic. Frick and
Grohe [16,17,19] have defined Fixed-Parameter Tractable algorithms for first-
order model-checking problems on classes of graphs that may have unbounded
degree and tree-width (definitions and examples are given in Section 4), and
our results will concern such classes. We will also use graph classes of bounded
expansion, a notion introduced by Nešetřil and Ossona de Mendez [28].

We will use similar tools for the following labeling problem. Given a class of
graphs C and a property P (x1, . . . , xm, Y1, . . . , Yq) of vertices x1, . . . , xm and of
sets of vertices Y1, . . . , Yq of graphs in C, the aim is to design two algorithms:
an algorithm A that attaches to each vertex x of a given graph of C a label
L(x), defined as a sequence of 0’s and 1’s, and an algorithm B that checks the
property P (x1, . . . , xm, Y1, . . . , Yq) by using the labels and no other information
about the considered graph. This latter algorithm takes as input the labels
L(x1), . . . , L(xm) and the sets of labels 3 L(Y1), . . . , L(Yq) and tells whether
P (x1, . . . , xm, Y1, . . . , Yq) is true. An f -labeling scheme for a class of structures
C is a pair (A,B) of algorithms solving the labeling problem and using labels
of length at most f(n) for the graphs of C with n vertices. Results of this type
have been established for monadic second-order logic by Courcelle and Vanicat
[10], and for particular properties (connectivity queries, that are expressible in
monadic second-order logic) by Courcelle and Twigg in [9] and by Courcelle
et al. in [6].

Let us review the motivations for looking for compact labelings. By compact,
we mean that labels have length of order less than O(n), where n is the number
of vertices of the graph, hence in particular of length logO(1)(n). In distributed
computing over a communication network with underlying graph G, nodes
must act according to their local knowledge only. This knowledge can be up-
dated by message passing. Due to space constraints on the local memory of
each node, and on the sizes of messages, a distributed task cannot be performed
by representing the whole graph G in each node or in each message. It must
rather manipulate compact representations of G, distributed in a balanced
way over the graph. For an example, the routing task may use routing tables
that are sublinear in the size of G (preferably of poly-logarithmic size), and
short addresses transmitted in the headers of messages (of poly-logarithmic
size too). As surveyed in [20] many distributed tasks can be optimized by the
use of labels attached to vertices. Such labels should be usable even when the
network has node or link crashes. They can be constructed by forbidden-set
labeling schemes as defined in [9]. In this framework, the local information
can be updated by transmitting to all surviving nodes the list of (short) labels
of all defected nodes and links, so that the surviving nodes can update their
local information, e.g., their routing tables.

3 Distinct vertices have distinct labels. We let L(Y) be the set {L(x) | x ∈ Y }.

2

Let us comment about using set arguments. The forbidden (or defective) parts
of a network are handled as sets of vertices passed to a query as an argument.
This means that the algorithm A computes the labels once and for all, inde-
pendently of the possible forbidden parts of the network. In other words the
labeling supports node deletions from the given network. (Edge deletions are
supported in the labelings of [6] and [9].) If the network is augmented with
new nodes and links, the labels must be recomputed. We leave this incremental
extension as a topic for future research. Set arguments can be used to handle
deletions, but also constraints or queries like: “what are the nodes that are
at distance at most 3 of X and Y ” where X and Y are two specified sets of
nodes.

This article is organized as follows. In Section 2 we give some definitions
regarding first-order logic and we define the notions of clique-width and of
labeling schemes. Section 3 deals with first-order logic and the locality of first-
order properties. In Section 4 we define the notions of local bounded clique-
width and of nicely locally cwd-decomposable class of graphs (cwd abbreviates
“clique-width”). We give some examples and preliminary results. Section 5 is
devoted to the proofs of the main results. In Section 6 we extend some results
to counting queries.

2 Definitions

Our results concern graph properties expressed by logical formulas, which
assumes that graphs are defined as (or represented by) relational structures.
All graphs and relational structures will be finite. We refer to [12] for our
graph terminology.

A relational signature is a finite set R := {R,R′, . . .} of relation symbols,
each of which given with an arity ar(R) ≥ 1. A finite relational R-structure

S is defined as 〈DS, (RS)R∈R 〉 where RS ⊆ D
ar(R)
S . The set DS is called the

domain of S. A relational signature R is binary if ar(R) ≤ 2 for all R ∈ R. A
relational structure is binary if it is an R-structure for some binary signature
R. We let Ri be the set of symbols of arity i.

We now define first-order logic and monadic second-order logic on relational
structures. Let R be a relational signature. Atomic formulas over R are x = y,
x ∈ X and R(x1, . . . , xar(R)) for all relations R in R. A first-order formula (FO
formula for short) over R is a formula formed from atomic formulas over R
with Boolean connectives ∧,∨,¬,⇒ and first-order quantifications ∃x and
∀x. We may have free set variables. Monadic second-order formulas (MSO
formulas for short) over R are formed as FO formulas over R by using also set
quantifications ∃X, ∀X. By formulas (FO or MSO) we mean formulas written

3

with the signature appropriate for the considered relational structures. If the
free variables of a formula ϕ are among x1, . . . , xm and Y1, . . . , Yq, we will
write this formula ϕ(x1, . . . , xm, Y1, . . . , Yq). A sentence is a formula without
free variables. We write S |= ϕ to mean that the sentence ϕ is satisfied by the
relational structure S.

Our results will only concern binary relational structures because they corre-
spond to colored graphs. We will be able to use notions like clique-width that
do not apply to general relational structures.

Let R be a binary relational signature with R1 := {pa | a ∈ C1}, R2 :=
{edga | a ∈ C2} and C1∩C2 = ∅ (without loss of generality). A (C1, C2)-graph
G (we will say a colored graph if we need not specify (C1, C2)) is a directed
graph such that every vertex has a possibly empty set of colors from C1, every
edge has a color in C2, and no two edges from x to y (for any two vertices x
and y) have the same color. Such a graph is identified with the R-structure
〈VG, (edgaG)a∈C2 , (paG)a∈C1 〉 where VG is the set of vertices, paG(x) holds if and
only if x has color a and edgaG(x, y) holds if and only if an edge from x to y is
colored by a 4 . Every R-structure corresponds in this way to a (C1, C2)-graph.

We will also use undirected graphs as tools to describe properties of (C1, C2)-
graphs. If G is a colored graph, we let und(G) be the simple loop-free undi-
rected graph such that Vund(G) := VG, and two distinct vertices x and y in
Vund(G) are adjacent in und(G) if and only if they are adjacent in G.

The distance of x and y in G, denoted by dG(x, y), is defined as their distance
in und(G), i.e., as the number of edges of a shortest (undirected) path linking
them. If X is a subset of VG and t a positive integer, we denote by N t

G(X)
the set {y ∈ VG | dG(x, y) ≤ t for some x in X}. (Clearly, X ⊆ N t

G(X) for
every t.) We denote by G[X] the induced subgraph of G with vertex set X
and colors inherited from G in the obvious way. We also denote by G−X the
graph G[VG\X] and by G− x the graph G[VG\{x}] when x is a vertex of G.
If m ≥ 1, we denote by und(G)m the simple loop-free undirected graph with
vertex set VG, and two distinct vertices x and y are adjacent if and only if
dG(x, y) ≤ m.

A graph G has arboricity at most k if und(G) is the union of k edge-disjoint
forests. Hence, this notion does not depend on loops, colors and edge direc-
tions. A class of graphs has arboricity at most k if each graph has arboricity
at most k.

The tree-width [4] of a graph G depends only on und(G). Tree-width is a
graph parameter that yields many algorithmic properties surveyed by Grohe
[19] and Kreutzer [25]. The survey [5] by Bodlaender presents tree-width and

4 We allow multiple edges with different colors.

4

recent developments about this notion. Clique-width [8] is another graph pa-
rameter that yields interesting algorithmic results. It is sensitive to colors and
directions of edges. The original definition of clique-width in [8] concerns only
uncolored graphs. However, it can be easily extended to colored graphs [3,15].

Definition 2.1 (Clique-Width of Colored Graphs) We let C be the pair
(C1, C2) of sets of colors for vertices and edges. In order to construct (C1, C2)-
graphs, we will use the set [k] := {1, 2, . . . , k}, for k ≥ 1, to color also vertices,
with one and only one color for each vertex 5 . A k-C-graph (or k-graph if
C1 = ∅, |C2| = 1) G is defined as 〈VG, (edgaG)a∈C2 , (paG)a∈C1 , labG 〉 where
labG : VG → [k] is a total function and the other components are as defined
above. We define several operations on k-C-graphs.

(1) For k-C-graphs G and H such that VG ∩VH = ∅, we define G⊕H as the
k-C-graph K := 〈VG ∪ VH , (edgaK)a∈C2 , (paK)a∈C1 , labK 〉 where

paK(x) :=

paG(x) if x ∈ VG,
paH(x) if x ∈ VH ,

for all a ∈ C1.

edgaK(x, y) :=

edgaG(x, y) if x, y ∈ VG,
edgaH(x, y) if x, y ∈ VH ,

for all a ∈ C2.

labK(x) :=

labG(x) if x ∈ VG,
labH(x) if x ∈ VH .

If VG ∩ VH 6= ∅, we replace H by an isomorphic copy H ′ such that
VH ∩ VH′ = ∅. The graph G ⊕ H is well-defined up to isomorphism.
We call G⊕H the disjoint union of G and H.

(2) For a k-C-graph G, for a color b in C2, and for distinct i, j ∈ [k], we
define ηbi,j(G) as the k-C-graph K := 〈VG, (edgaK)a∈C2 , (paG)a∈C1 , labG 〉
where

edgaK :=

edgaG if a 6= b,

edgbG ∪ {(x, y) | x, y ∈ VG, x 6= y and labG(x) = i, labG(y) = j} if a = b.

This operation adds b-colored edges from each vertex colored by i to each
vertex colored by j. But, no such edge is added when it already exists.

(3) For a k-C-graph G, and for distinct i, j ∈ [k], we define ρi→j(G) as the
k-C-graph K := 〈VG, (edgaG)a∈C2 , (paG)a∈C1 , labK 〉 where

labK(x) :=

j if labG(x) = i,

labG(x) otherwise.

5 We assume that (C1 ∪ C2) ∩ [k] = ∅.

5

This operation changes each color i into j.

(4) For each i ∈ [k] and each A ⊆ C1 ∪C2, the constant symbol iA denotes a
k-C-graph with a single vertex x with labiA(x) = i and such that paiA(x)
holds if and only if a ∈ A ∩ C1, and edgaiA(x, x) holds if and only if
a ∈ A ∩ C2. We let CC,k be the set {iA | i ∈ [k], A ⊆ C1 ∪ C2}.

We let FC,k be the set {⊕, ηai,j, ρi→j | i, j ∈ [k], a ∈ C2}. Each term t in
T (FC,k, CC,k) has a value val(t): it is the k-C-graph obtained by evaluating t
according to clauses (1)-(4). The clique-width of a (colored) graph G, denoted
by cwd(G), is the minimum k such that G is isomorphic to val(t) for some
term t in T (FC,k, CC,k). We write Fk and Ck if C1 = ∅ and |C2| = 1.

We recall two statements that are easy adaptations of similar results proved
in [8]. We denote by twd(G) the tree-width of a graph G.

Fact 2.2 ([8]) Let (C1, C2) be a pair of sets of colors and let G and H be two
(C1, C2)-graphs.

(i) If H is an induced subgraph of G, then cwd(H) ≤ cwd(G).
(ii) If G and H are disjoint, then cwd(G⊕H) = max{cwd(G), cwd(H)}.

(iii) If twd(G) = k, then cwd(G) ≤ f(k, |C2|) for some function f .

One cannot exchange twd and cwd in Fact 2.2 (iii) because cliques have clique-
width 2 and unbounded tree-width. For fixed k, there exists a cubic-time
algorithm that given an undirected graph G, either outputs that it has clique-
width at least k + 1 or outputs a term t in T (Fk′ , Ck′) that defines G with
k′ = 2k+1 − 1 [22,29]. This algorithm can be adapted to colored graphs with
k′ = g(k) for some function g [24]. Also, every property expressible in MSO
logic can be checked in cubic-time for colored graphs in classes of bounded
clique-width by combining the results of [7] and of [22,24,29]. The survey by
Kamiński et al. [23] presents recent results on clique-width.

We now define the notion of bounded expansion [28]. As tree-width, it is in-
dependent of colors of vertices and/or edges. Graph classes with bounded ex-
pansion have several equivalent characterizations. We will use the following
one.

Definition 2.3 (Bounded Expansion) A class C of colored graphs has bounded
expansion if for every integer p, there exists a constant N such that for every
colored graph in C, one can partition its vertex set in at most N parts such
that any i parts, for i ≤ p, induce a subgraph of tree-width at most i− 1. We
will denote N by N(C, p).

The case i = 1 of Definition 2.3 implies that each part is an independent set
(no two distinct vertices are adjacent), hence the corresponding partition can

6

be seen as a proper vertex-coloring. We finish these preliminary definitions by
introducing the notion of labeling scheme.

Definition 2.4 (Labeling Scheme) Let R be a relational signature and S
an R-structure. A labeling of S is an injective mapping J : DS → {0, 1}∗ (or
into some more convenient set, like Σ∗ where Σ is a finite alphabet). If Y is a
subset of DS, we let J (Y) be the set {J(y) | y ∈ Y }. Hence, J(Y) 6= J(Y ′) if
Y 6= Y ′.

Let ϕ(x̄, Y) be an MSO formula over R where x̄ is an m-tuple of FO variables
and Y a q-tuple of set variables. Let C be a class of R-structures and f : N→ N
an increasing function. An f -labeling scheme supporting the query defined by
ϕ in the R-structures of C is a pair (A,B) of algorithms doing the following:

(1) A constructs for each S in C, a labeling J of S such that |J(a)| = O(f(n))
for every a ∈ DS, where n = |DS|.

(2) B takes as input an (m + q)-tuple (J(a1), . . . , J(am), J(W1), . . . , J(Wq))
and says correctly whether S |= ϕ(ā,W).

If we have constructed f -labelings J1, . . . , Jp for formulas ϕ1, . . . , ϕp, then J(x)
defines as (J1(x), . . . , Jp(x)) is an f -labeling that supports ϕ1, ϕ2, . . . , ϕp, and
clearly, any Boolean combination of these formulas.

Labeling schemes based on logical descriptions of queries by MSO formulas
have been first defined by Courcelle and Vanicat [10] for graphs of bounded
clique-width (whence also of bounded tree-width). We recall this result. If W
is a q-tuple of sets, we let |W | = |W1| + · · · + |Wq| and if ā is an m-tuple of
vertices, we let |ā| = m.

Theorem 2.5 Let k be a positive integer and (C1, C2) a pair of disjoint sets.
For every MSO formula ϕ(x1, . . . , xm, Y1, . . . , Yq) over the binary signature
corresponding to (C1, C2), there exists a log-labeling scheme (A,B) for ϕ on
the class of (C1, C2)-graphs of clique-width at most k. Moreover, if the input
(C1, C2)-graph has n vertices, the algorithm A computes the labels J(x) of all
vertices x in time O(n3) or in time O(n · log(n)) if the clique-width expres-
sion of the graph is given. Given J(a1), . . . , J(am) and J(W1), . . . , J(Wq), the
algorithm B checks whether ϕ(ā,W) holds in time O(log(n) · (|W | + 1)). For
n-vertex (C1, C2)-graphs of tree-width at most k, a variant of algorithm A can
build the labelings in time O(n · log(n)).

The proof of Theorem 2.5 combines the construction of [10] that works for
graphs given with their decompositions, and the parsing results by Bodlaender
[4] for tree-width, and by Hliněný, Oum and Seymour [22,29] and Kanté [24] for
clique-width (discussed above). Labeling schemes for distance and connectivity
queries in graphs of bounded clique-width and in planar graphs have been
given respectively by Courcelle and Twigg in [9] and by Courcelle et al. in [6].

7

In the present article, we consider graph classes of unbounded clique-width,
and in particular, graph classes that are locally decomposable [16,17] and graph
classes of bounded expansion [28]. So, MSO logic is out of reach for such
classes and we will consider FO logic over colored graphs, i.e., binary relational
structures.

3 Bounded and Local First-Order Formulas

The definitions given below concern binary relational structures called, from
now on, graphs since they correspond to colored graphs as explained in Section
2. Formulas are written over fixed binary relational signatures that we do not
specify all the time.

We still call sentence an FO formula without free FO variables but, that can
have free set variables. These set variables will be used in a particular way
and will be called parameters.

We are interested in on-line checking properties of networks in case of (re-
ported) failures of some nodes (nodes are vertices of the associated graphs).
Hence, for each property of interest, defined by a formula ϕ (x1, . . . , xm), we are
not only interested in checking ifG |= ϕ (a1, . . . , am) by using J (a1) , . . . , J (am)
for a1, . . . , am ∈ VG, but also in checking if G−W |= ϕ (a1, . . . , am) by using
J (a1) , . . . , J (am) and J (W) where W is a subset of VG\{a1, . . . , am}. We
handle this formally as follows. We let ⊥ be a new vertex color. If W ⊆ VG,
we let GW be the graph G equipped with an additional vertex-color ⊥, i.e.,
as the structure G expanded with a unary relation p⊥ such that p⊥GW

(z)
holds if and only if z ∈ W . The property G −W |= ϕ (a1, . . . , am), for an
FO formula ϕ(x1, . . . , xm), is equivalent to G |= ϕ′ (a1, . . . , am,W) and to
GW |= ϕ′′ (a1, . . . , am) for FO formulas ϕ′(x1, . . . , xm, Y) and ϕ′′(x1, . . . , xm)
that are easy to write.

Definition 3.1 (Bounded Formulas) An FO formula ϕ (x1, . . . , xm, Y1, . . . , Yq)
is a basic bounded formula if, for some positive integer p, called a bound on
the quantification space, we have the following equivalence for all graphs G,
all a1, . . . , am ∈ VG and all W1, . . . ,Wq ⊆ VG:

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) if and only if

there exists X ⊆ VG with |X| ≤ p such that a1, . . . , am ∈ X and

G[X] |= ϕ(a1, . . . , am,W1 ∩X, . . . ,Wq ∩X).

An FO formula is bounded if it is a Boolean combination of basic bounded

8

formulas.

If ϕ(x1, . . . , xm, Y1, . . . , Yq) is a basic bounded formula andG[Z] |= ϕ(a1, . . . , am,W1∩
Z, . . . ,Wq ∩ Z), then G[Y] |= ϕ(a1, . . . , am,W1 ∩ Y, . . . ,Wq ∩ Y) for every
Y ⊇ Z.

The negation of a basic bounded formula is not (in general) basic bounded,
but it is bounded. The property that a graph has a subgraph isomorphic to a
fixed graph H is expressible by a bounded formula.

Definition 3.2 (Local Formulas) An FO formula ϕ (x1, . . . , xm, Y1, . . . , Yq)
is t-local around (x1, . . . , xm) if for every graph G, for all a1, . . . , am in VG,
and for all subsets W1, . . . ,Wq of VG,

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) if and only if G[N] |= ϕ(a1, . . . , am,W1 ∩N, . . . ,Wq ∩N)

where N := N t
G({a1, . . . , am}).

An FO sentence ϕ(Y1, . . . , Yq) is basic (t, s)-local if it is equivalent to a sen-
tence of the form

∃x1 · · · ∃xs

 ∧
1≤i<j≤s

d (xi, xj) > 2t ∧
∧

1≤i≤s
ψ (xi, Y1, . . . , Yq)

where ψ (x, Y1, . . . , Yq) is t-local around its unique free variable x.

Remark 3.3 The property d (x, y) ≤ r is basic bounded (for p := r + 1) and
t-local for t := br/2c. Its negation d (x, y) > r is t-local and bounded (but not
basic bounded).

We now recall a decomposition of FO formulas into t-local and basic (t′, s)-
local formulas due to Gaifman [18].

Theorem 3.4 ([18,26]) Every FO formula ϕ(x̄, Y) is logically equivalent to

a Boolean combination B
(
ϕ1(u1, Y), . . . , ϕp(up, Y), ψ1(Y), . . . , ψh(Y)

)
where:

• each formula ϕi is a t-local formula around some sub-sequence ui of x̄,
• each sentence ψi is a basic (t′, s)-local sentence.

Moreover, B,ϕ1, . . . , ϕp and ψ1, . . . , ψq can be computed effectively from ϕ, and
the integers t, t′ and s can be bounded in terms of |x̄| and of the quantifier-rank
of ϕ.

This theorem is usually stated and proved for FO formulas without free set
variables. However, in an FO formula a set variable Yi occurs in atomic formu-
las of the form “y ∈ Yi”. This is equivalent to “Ri(y)” if Ri is a unary relation
representing Yi. We denote by ϕ′(x̄) the formula obtained from ϕ(x̄, Y1, . . . , Yq)

9

by replacing every subformula “y ∈ Yi” by “Ri(y)”. In order to prove that two
FO formulas ϕ(x̄, Y1, . . . , Yq) and ψ(x̄, Y1, . . . , Yq) are equivalent in every re-
lational structure of a class C of R-structures, it is enough to prove that the
corresponding formulas ϕ′(x̄) and ψ′(x̄) are equivalent in every structure S ′

that is an expansion of a structure S in C by unary relations R1, . . . , Rq. Hence,
Theorem 3.4 follows from its usual formulation for FO formulas without free
set variables. The same holds for Theorem 3.5 below.

We will use a stronger form of Theorem 3.4 from [16] that decomposes t-local
formulas. Let m, t ≥ 1. The t-distance type of an m-tuple ā of elements of a
structure S is the undirected graph ∆(ā) := ([m], edg∆(ā)) where edg∆(ā)(i, j)
holds if and only if dS(ai, aj) ≤ 2t + 1. For each undirected graph ∆, the
property that an m-tuple ā satisfies ∆(ā) := ∆ can be expressed by a t-local
formula ρt,∆(x1, . . . , xm) equivalent to:

∧
(i,j)∈edg∆

d(xi, xj) ≤ 2t+ 1 ∧
∧

(i,j)/∈edg∆

d(xi, xj) > 2t+ 1.

Theorem 3.5 ([16]) Let ϕ(x̄, Y) be t-local around the m-tuple x̄ (where m ≥
1), and with Y := (Y1, . . . , Yq). For each undirected graph ∆ with vertex set
equal to [m] and connected components ∆1, . . . ,∆p, one can compute a Boolean
combination F t,∆(ϕ1,1, . . . , ϕ1,j1 , . . . , ϕp,1, . . . , ϕp,jp) of formulas ϕi,j with free
variables in x̄ and in Y such that:

• the free FO variables of each ϕi,j belong to x̄ � ∆i
6 ,

• ϕi,j is t-local around x̄ � ∆i,
• for each m-tuple ā and each q-tuple of sets W , G |= ρt,∆(ā) ∧ ϕ(ā,W) if

and only if G |= ρt,∆(ā) ∧ F t,∆(. . . , ϕi,j(ā � ∆i,W), . . .).

A query is defined by a formula ϕ(x1, . . . , xm) without set variables. A parametrized
query is defined by a formula ϕ(x1, . . . , xm, Y1, . . . , Yq) where Y1, . . . , Yq are the
parameters.

4 Locally Decomposable Classes

We generalize notions defined by Frick and Grohe and we will use the same
notations as in [16,17]. Definition 4.1 is analogous to [17, Definition 5.1].

Definition 4.1 (Local Clique-Width)

6 If x̄ := (x1, . . . , xm) and {i1, . . . , ir} is the vertex set of ∆i with i1 < i2 < · · · < ir,
then x̄ � ∆i := (xi1 , . . . , xir).

10

(1) The local clique-width of a graph G is the function lcwdG : N → N
defined by lcwdG(t) := max{cwd(G[N t

G(a)]) | a ∈ VG}.
(2) A class C of graphs has bounded local clique-width if there is a function

f : N→ N such that lcwdG(t) ≤ f(t) for every G ∈ C and t ∈ N.

Examples of Graphs of Bounded Local Clique-Width

(1) Every class of graphs of bounded clique-width has also bounded local
clique-width since cwd(G[A]) ≤ cwd(G) for every A ⊆ VG (Fact 2.2 (i)).

(2) The classes of graphs of bounded local tree-width have bounded local
clique-width since the clique-width of a graph is bounded by a function
of its tree-width (Fact 2.2 (iii)). Bounded degree graph classes and minor-
closed classes of graphs that exclude some apex-graph 7 as a minor are
examples of graph classes of bounded local tree-width (see [16,17]).

(3) Let m be a positive integer and C a class of graphs of bounded local
clique-width. Then Cm := {Gm | G ∈ C} has bounded local clique-width.
Let us sketch the proof. Let G be a graph in C. For every vertex x of
G and every positive integer r, we have N r

Gm(x) = N rm
G (x). Let us ver-

ify that Gm[N r
Gm(x)] = G′[N rm

G (x)] where G′ := (G[N
(r+1)m
G (x)])m. Since

G′ ⊆ Gm, we have Gm[N r
Gm(x)] ⊇ G′[N rm

G (x)]. For the other inclusion,
consider y and z in N r

Gm(x) such that dG(y, z) ≤ m. Any path of length

at most m that links them is in G[N
(r+1)m
G (x)], hence y and z are adjacent

in G′ := (G[N
(r+1)m
G (x)])m, which gives the desired equality. It is proved

in [31] 8 that if a graph H has clique-width k, then Hm has clique-width
at most 4 · (m + 1)k. Hence, for every graph G in C and every positive
integer r, lcwdG

m
(r) ≤ 4 · (m + 1)f(r(m+1)) where f is the function that

bounds the local clique-width of graphs in C.

(4) If G is a graph, we denote by K := Line(G) the line graph of G defined
as the undirected graph with vertex set equal to the set of edges of G and
such that edgK(e, e′) holds if and only if the edges e and e′ are incident
in G. We claim that if a class C of graphs has bounded local tree-width,
then Line(C) := {Line(G) | G ∈ C} has bounded local clique-width. Let
G be a graph in C and let K be its line graph. For every e and e′ in
EG = VK , we have dG(x, y) ≤ dK(e, e′) + 1 if x is any end vertex of e and
y is any end vertex of e′.

Let e be an edge of G with end vertex x and H := Line(G[N r+1
G (x)]).

Since H ⊆ K, we have dK(e, e′) ≤ dH(e, e′) for every e′ ∈ VH , hence
N r
H(e) ⊆ N r

K(e). Conversely, if dK(e, e′) ≤ r and (e, e1, e2, . . . , er′) is a

7 An apex-graph is a graph G such that G\u is planar for some vertex u.
8 The proof is done is terms of the parameter nlcw(G) such that nlcw(G) ≤
cwd(G) ≤ 2 · nlcw(G), see [21].

11

path in G with r′ ≤ r and er′ = e′, then dG(y, z) ≤ r + 1 for any
two distinct vertices y and z on this path. Hence, e1, . . . , er′ are edges
of G[N r+1

G (x)], dH(e, e′) ≤ r and e′ ∈ N r
H(e), hence N r

H(e) = N r
K(e). It

follows that H[N r
H(e)] ⊆ K[N r

K(e)]. Now, if e′ and e′′ belong to N r
K(e)

and share a vertex, then they are edges of G[N r+1
G (x)], hence are adjacent

vertices of H. Hence, H[N r
H(e)] = K[N r

K(e)].
If C has bounded local tree-width, then twd(G[N r+1

G (x)]) ≤ f(r + 1)
where f is the function that bounds the local tree-width of the graphs in
C. It is proved in [21] that if a graph has tree-width k, then its line graph
has clique-width at most g(k) for some function g. Hence, the clique-
width of H is bounded by g(f(r + 1)). Since K[N r

K(e)] is an induced
subgraph of H, its clique-width is bounded by g(f(r + 1)) (Fact 2.2 (i)).
Therefore, Line(C) has bounded local clique-width.

(5) Cliques have clique-width 2. Their line graphs have unbounded clique-
width ([21]) and diameter 2, hence unbounded local clique-width.

(6) An interval graph is a graph that has an intersection model consisting of
intervals on a straight line. The class of interval graphs has not bounded
local clique-width. Otherwise, interval graphs would have bounded clique-
width, because if we add to an interval graph a new vertex adjacent to
all, we obtain an interval graph of diameter 2.

In order to obtain a log-labeling scheme for certain graph classes of bounded lo-
cal clique-width, we will cover their graphs, as in [16,17], by graphs of bounded
clique-width. In [16] a notion of nicely locally tree-decomposable class of struc-
tures was introduced. We will define a slightly more general notion.

Definition 4.2 (Intersection Graph) Let V be a finite set and T a subset
of P(V). The intersection graph of T is the undirected graph I(T) where
VI(T) := T , and U and V in T are adjacent in I(T) if and only if U 6= V and
U ∩ V 6= ∅.

Definition 4.3 (Clique-Width Covers) Let r, ` and g be positive integers.
An (r, `, g)-cwd cover of a graph G is a family T of subsets of VG such that:

(1) for every x ∈ VG, there exists a set U ∈ T such that N r
G (x) ⊆ U ,

(2) the graph I(T) has maximum degree at most `,
(3) for each U ∈ T , we have cwd(G[U]) ≤ g.

Let now g : N → N be a mapping. A nice (r, `, g)-cwd cover is a family T as
above such that Condition (3) is replaced by Condition (3’) below:

12

(3’) for all q ≥ 1 and all U1, . . . , Uq ∈ T , cwd(G[U1 ∪ · · · ∪ Uq]) ≤ g(q).

A class C of graphs is (nicely) locally cwd-decomposable if every graph G in
C has, for each r ≥ 1, a (nice) (r, `, g)-cwd cover for some ` and g depending
on r (but not on G).

The notion of (nicely) locally cwd-decomposable is the same as in [17,16] where
we substitute clique-width to tree-width, except that our definition requires
nothing about the time necessary to compute covers.

Examples of (Nicely) Locally Cwd-Decomposable Graph Classes

(1) Every nicely locally cwd-decomposable class is locally cwd-decomposable
and the converse does not seem to be true. But, we do not have a coun-
terexample.

(2) Each class of nicely locally tree-decomposable graphs is nicely locally
cwd-decomposable.

(3) We do not know if every graph class of bounded local clique-width is
locally cwd-decomposable. We conjecture that there exists a graph class
of bounded local clique-width which is not locally cwd-decomposable.

(4) Figure 1 shows inclusion relations between the many classes defined in
Sections 3 and 4.

Bounded expansion

Bounded arboricityBounded local clique−width

Locally cwd−decomposable
Bounded local tree−width

Nicely locally cwd−decomposable Locally tree−decomposable

Nicely locally tree−decomposable

Bounded degree

Excludes a minor

Planar

Apex minor−free

Fig. 1. Inclusion diagram indicating which results apply to which classes. An arrow
means an inclusion of classes. Bold boxes are used in this paper.

13

We give an example of a nicely locally cwd-decomposable class of graphs
which is not locally tree-decomposable. A unit-interval graph is an interval
graph that has an intersection model in which every interval has unit length.

Fact 4.4 The class of unit-interval graphs is nicely locally cwd-decomposable.

Proof. We will use a result by Lozin in [27]. We let Hn,m be the graph 〈V1 ∪
· · · ∪ Vn, E1 ∪ E2 〉 with nm vertices such that:

Vi := {vi,1, . . . , vi,m},
E1 :=

⋃
1≤i≤n

{vi,jvi,` | j, ` ≤ m, j 6= `},

E2 :=
⋃

1≤i≤n−1

{vi,jvi+1,` | j ≤ ` ≤ m}.

Each subgraph induced by Vi is a complete graph. Figure 2 shows the graph
H4,4. It is proved in [27] that the clique-width of Hn,m is at most 3n. Moreover,
every unit-interval graph with n vertices is an induced subgraph of Hn,n [27].
These two properties will be used.

We first prove that unit-interval graphs have bounded local clique-width. Let
G be a unit-interval graph with n vertices. Then for every positive integer r
and every vertex x of G, the subgraph G[N r

G(x)] is isomorphic to an induced
subgraph of Hr,n. Thus, for every vertex x of G and every positive integer
r, G[N r

G(x)] has clique-width at most 3r. (Bagan gives in [2] another proof
stating that unit-interval graphs have bounded local clique-width.)

We now prove that the class of unit-interval graphs is nicely locally cwd-
decomposable. Let G be a unit-interval graph with n vertices. Hence, it is a
subgraph of Hn,n := 〈V1 ∪ · · · ∪ Vn, E1, E2 〉. Without loss of generality, we
may assume G connected. We can also assume that VG =

⋃
1≤i≤n V

′
i where

V ′i = {vi,i1 , . . . , vi,i`} with 1 ≤ i1 ≤ i2 ≤ · · · ≤ i` ≤ n. For each 1 ≤ i ≤ n, we
let Ui := N r+1

G (vi,i1). We let g : N → N be defined by g(q) := 3 · q · (r + 1).
We claim that {Ui | 1 ≤ i ≤ n} is a nice (r, 2r+ 3, g)-cwd cover. It is clear by
construction that for every 1 ≤ i ≤ n and every vertex v in V ′i , the set N r

G(v)
is a subset of Ui.

We now prove that for every positive integer q, if we take q subsets Uj1 , . . . , Ujq ,
then the subgraphG[Uj1∪· · ·∪Ujq] has clique-width at most 3·q·(r+1). Assume
that j1 ≤ j2 ≤ · · · ≤ jq and let G1, . . . , Gp be the connected components of
G[Uj1 ∪ · · · ∪ Ujq]. By Fact 2.2 (ii), we need only prove the claim for each
connected component. Let G1 be one of them. It is of the form, without loss of
generality, G[Uj1∪· · ·∪Uj`1] with the property that j1 ≤ · · · ≤ j`1 . Thus, G1 is
an induced subgraph of Hj`1 ·(r+1),n, hence has clique-width at most 3·`1 ·(r+1).
Hence, the clique-width of G[Uj1 ∪ · · · ∪ Ujq] is at most 3 · q · (r + 1).

14

Let v be a vertex in V ′i for 1 ≤ i ≤ n. By construction, v can only be in
Ui, Ui−1, . . . , Ui−(r+1), Ui+1, . . . , Ui+(r+1). Thus, v is in at most 2(r+ 1) + 1 sets
Ui. This concludes the proof. 2

H4,4

V1

V2

V3

V4

v1,4

v2,1

v3,1

v1,1

v4,1v4,4

v3,4

v2,4

Fig. 2. The graph H4,4. Each Vi for 1 ≤ i ≤ 4, induces a clique.

The lemma below is an easy adaptation of the results in [17].

Lemma 4.5 Let C be a class of graphs of bounded local clique-width and let
ϕ be a basic (t, s)-local sentence without set variables. For every graph G in
C, we can check in time O(|VG|4) whether G satisfies ϕ.

Proof Sketch. Let G be in a class C of graphs of bounded local clique-width
and let f be the function that bounds the local clique-width of the graphs in
C. Let ϕ be a basic (t, s)-local sentence, equivalent to

∃x1 · · · ∃xs

 ∧
1≤i<j≤s

d (xi, xj) > 2t ∧
∧

1≤i≤s
ψ(xi)

where ψ(x) is t-local around its unique free variable x.

For each vertex a in G, we can compute the set N t
G(a) of size at most |VG|,

in total time O(|VG|2). Since cwd(G[N t
G(a)]) ≤ f(t), we can verify in time

O(|VG|3) if G satisfies ψ(a) by combining the results of [22] and of [7]. We
can thus compute in time O(|VG|4) the set P := {a ∈ VG | G |= ψ(a)}. The
formula ϕ is valid in G if and only if there exist a1, . . . , as in P such that
d(ai, aj) > 2t for any 1 ≤ i < j ≤ s. It is proved in [19] that we can verify
their existence in time O(|VG|3). 2

15

5 Labeling Schemes for First-Order Queries

Our results concern four types of graph classes (see Figure 1) and five types
of FO queries. We now state the main theorem of the paper. We denote by
n the number of vertices of each input graph, and each query is denoted by
ϕ(x̄, Y). We denote by ā an |x̄|-tuple of vertices and by W a |Y |-tuple of sets
of vertices of the considered graph.

Theorem 5.1 (First Main Theorem) There exist log-labeling schemes (A,B)
for the following queries and graph classes.

(1) Quantifier-free parametrized queries in graphs of bounded arboricity: the
algorithm A constructs a labeling in time O(n), and the algorithm B gives
the answer in time O(log(n) · (|W |+ |ā|+ 1)) for all tuples ā and W ; the
same labeling can be used to check any quantifier-free query 9 .

(2) Bounded parametrized FO queries for each class of graphs of bounded
expansion: the algorithm A constructs a labeling in time O(n · log(n)),
and the algorithm B gives the answer in time O(log(n) · (|W |+ 1)) for all
tuples ā and W .

(3) FO queries in locally cwd-decomposable classes: the algorithm A con-
structs a labeling in time O(f(n) + n4) where f(n) is the time taken to
construct a cwd-cover for given r, and the algorithm B gives the answer
in time O(log(n)) for all tuples ā.

(4) FO parametrized queries in nicely locally cwd-decomposable classes: the
algorithm A constructs a labeling in time O(f(n) +n4) where f(n) is the
time taken to construct a nice cwd-cover for given r, and the algorithm
B gives the answer in time O(log(n) · (|W |+ 1)) for all tuples ā and W .

Each statement is proved separately.

Proof of Theorem 5.1 (1). Let G be a colored graph with n vertices,
represented by the relational structure 〈VG, (edgaG)a∈C2 , (paG)a∈C1 〉 and of ar-
boricity at most k.

Assume first that und(G), the simple loop-free graph obtained from G by
forgetting loops, edge directions, colors of vertices and of edges, and fusing the
parallel undirected edges, is a forest. Let R be a subset of VG that contains
one and only one vertex of each connected component, which is a tree, of G.
For each color c in C2, we let f+

c , f
−
c : VG → VG be partial functions such that:

- f+
c (u) := v if edgcG(u, v) holds and v is on the unique undirected

path between u and some vertex of R,

9 The time bound is valid even if W = (∅, · · · , ∅) because |W |+ 1 6= 0.

16

- f−c (u) := v if edgcG(v, u) holds and v is on the unique undirected
path between u and some vertex of R.

For every two distinct vertices u and v of G,

edgcG(u, v)⇐⇒ v = f+
c (u) ∨ u = f−c (v). (1)

If und(G) is the union of k edge-disjoint forests F1, . . . , Fk, we take the pairs
(f+
i,c, f

−
i,c), for each forest und(Fi). For every two distinct vertices u and v of

G, edgcG(u, v) is defined in a similar way as in (1) with 2k unary functions by
letting

edgcG(u, v)⇐⇒
∨
i∈[k]

(
v = f+

i,c(u) ∨ u = f−i,c(v)
)
. (2)

We let C1 := {d1, . . . , dp} and C2 := {c1, . . . , c`}. For each vertex x of G, we

let
−→
bx be the Boolean vector (b1, . . . , bp, b

′
1, . . . , b

′
`) such that bi := 1 if and only

if pdiG(x) holds, and b′j := 1 if and only if edgcjG(x, x) holds. If vertices are
numbered from 1 to n and pxq is the bit representation of the index of x, then
we let

J(x) :=
(
pxq, pf+

1,c1
(x)q, pf−1,c1(x)q, . . . , pf+

k,c`
(x)q, pf−k,c`(x)q,

−→
bx
)
.

(Since the vertices are numbered from 1 to n, the value 0 can be used for
f+
c (u) if it is undefined.) It is clear that |J(x)| = O(log(n)).

We now explain how to check any quantifier-free formula by using this labeling.
Let ϕ(x1, . . . , xm, Y1, . . . , Yq) be a quantifier-free formula. For all m-tuples ā :=
(a1, . . . , am) of VG and all q-tuples W := (W1, . . . ,Wq) of subsets of VG, we
can determine the induced subgraph G[{a1, . . . , am} ∪ W1 ∪ · · · ∪ Wq] from
J(a1), . . . , J(am) and J(W1), . . . , J(Wq), and check whether ϕ(ā,W) holds,
because G |= ϕ(ā,W) if and only if G[{a1, . . . , am}∪W1∪· · ·∪Wq] |= ϕ(ā,W).

If the input graph has n vertices and n′ edges, then it is clear that our algo-
rithm constructs the labels in time O(n + n′) 10 . But, if G has arboricity at
most k, the number of edges is at most 2k · |C2| · n. Therefore, the labels are
constructed in linear-time. We now examine the time taken to check whether
G satisfies ϕ(a1, . . . , am,W1, . . . ,Wq). For each z ∈ {a1, . . . , am}, it takes con-

stant time to check whether pdiG(z) or edgcjG(z, z) holds by using the
−→
bz part

of J(z). For every z and t in W1 ∪ · · · ∪Wq ∪ {a1, . . . , am} and every c in C2,
it takes time O(log(n)) to check whether edgcG(z, t) holds and it takes time
O(|Wi| · log(n)) to check if z is in Wi. Therefore, we can check the validity of

10 If no covering of G by k forests is known, one can construct a covering by 2k− 1
forests in time O(n + n′) by Eppstein [14].

17

ϕ(a1, . . . , am,W1, . . . ,Wq) in time O(log(n) · (|W |+m+ 1)) since a quantifier-
free formula is a Boolean combination of atomic formulas. Note that m and
q are not fixed because the same labeling can be used for all quantifier-free
formulas. 2

Proof of Theorem 5.1 (2). Let C be a class of graphs of bounded expansion
and let G in C be a graph with n vertices, represented by the relational struc-
ture 〈VG, (edgaG)a∈C2 , (paG)a∈C1 〉. Let ϕ(x1, . . . , xm, Y1, . . . , Yq) with m ≥ 1 be
a basic bounded formula with bound p on the quantification space (see Defi-
nition 3.1). We partition VG into V1] V2] · · ·] VN as in Definition 2.3 with
each Vi nonempty and N ≤ N(C, p). (We denote by] the disjoint union of
sets.)

For every α ⊆ [N] of cardinality p, we let Vα :=
⋃
i∈α Vi so that the tree-width

of G[Vα] is at most p− 1. Each vertex x belongs to less than (N − 1)p−1 sets
Vα. Hence, the basic bounded formula ϕ(ā,W) is true in G if and only if it
is true in some subgraph G[X] with |X| ≤ p, hence in some G[Vα] such that
a1, . . . , am ∈ Vα where ā := (a1, . . . , am). For each α, we construct a labeling
Jα of G[Vα] (this graph has tree-width at most p− 1) supporting query ϕ by

using Theorem 2.5. We let J(x) :=
(
pxq, ((pαq, Jα(x)) | x ∈ Vα)

)
. We have

|J(x)| = O(log(n)).

Given ā ∈ (VG)m and W ∈ P(VG)q, we now explain how to decide the valid-
ity of ϕ(ā,W) by using J(a1), . . . , J(am) and J(W1), . . . , J(Wq). From J(a1),
. . . , J(am), we can determine those sets α such that Vα contains a1, . . . , am. Us-
ing the components Jα(·) of J(a1), . . . , J(am) and the labels in J(W1), . . . , J(Wq),
we can determine whether for some α, we have G[Vα] |= ϕ(a1, . . . , am,W1 ∩
Vα, . . . ,Wq ∩ Vα), hence whether G |= ϕ(a1, . . . , am,W1, . . . ,Wq).

It remains to consider the case of a basic bounded formula of the form ϕ(Y1, . . . , Yq),
i.e., the case where m = 0. We define the labelings Jα from ϕ as in the first
case. For each α, we determine the truth value bα of ϕ(∅, . . . , ∅) in G[Vα]. The
family of pairs (α, bα) is of fixed size (depending on p) and is appended (as a
sequence of bits) to J(x) defined as above.

From J(W1), . . . , J(Wq), we can determine D := {α | Vα∩(W1∪· · ·∪Wq) 6= ∅}.
By using the Jα(·) components of the labels in J(W1) ∪ · · · ∪ J(Wq), we can
determine if for some α ∈ D, we have G[Vα] |= ϕ(W1 ∩ Vα, . . . ,Wq ∩ Vα). If
one is found, we can conclude positively. Otherwise, we look for some β /∈ D
such that bβ = true. The final answer is positive if such β is found.

For a Boolean combination of basic bounded formulas ϕ1, . . . , ϕt with associ-
ated labelings J1, . . . , Jt, we take as label of x the concatenation of the labels
J1(x), J2(x), · · · , Jt(x). This label is of size O(log(n)) and gives the desired

18

result.

In [28] Nešetřil and Ossona de Mendez describe a linear-time algorithm that
computes the partition {V1, . . . , VN}. The number of sets Vα where α is a
subset of [N] of size p is bounded by Np, hence so is the number of graphs
G[Vα]. Then the labeling J is constructed in time O(n · log(n)) since each
labeling Jα is constructed in time O(n · log(n)) by Theorem 2.5.

We now examine the time taken to check whetherG satisfies ϕ(a1, . . . , am,W1, . . . ,Wq).
Each vertex x is in less than (N − 1)p−1 sets Vα. By comparing the sets that
contain all the ai’s with the sets that contain a1, we can determine in time
O(log(n)) the sets Vα that contain a1, . . . , am. For each Vα and each Wi, we
can determine in time O(log(n) · |Wi|) the set Wi ∩ Vα. By Theorem 2.5,
we can verify in time O(log(n) · (|W | + 1)), for each α, whether G[Vα] satis-
fies ϕ(a1, . . . , am,W1 ∩ Vα, . . . ,Wq ∩ Vα). Therefore, B checks the validity of
ϕ(a1, . . . , am,W1, . . . ,Wq) in time O(log(n) · (|W |+ 1)). 2

Before continuing, we prove a lemma necessary for the proofs of Theorem 5.1
(3)-(4), that concerns parametrized local queries.

Lemma 5.2 For every parametrized local query, there exists a log-labeling
scheme (A,B) on locally cwd-decomposable classes of graphs. Moreover, the
algorithm A constructs a labeling in time O(f(n) + n4) where f(n) is the
time taken to construct a cwd-cover for given r, and the algorithm B gives the
answer in time O(log(n) · (|W |+ 1)) for all tuples ā and W .

Proof of Lemma 5.2. Let C be a locally cwd-decomposable class of graphs
and let G = 〈VG, (edgaG)a∈C2 , (paG)a∈C1 〉 in C be a graph with n vertices. Let
ϕ(x̄, Y1, . . . , Yq) be a t-local formula around x̄ := (x1, . . . , xm), m ≥ 1. Then
G |= ϕ(ā,W1, . . . ,Wq) if and only if G[N t

G(ā)] |= ϕ(ā,W1 ∩N t
G(ā), . . . ,Wq ∩

N t
G(ā)). Let ∆ be a t-distance type with connected components ∆1, . . . ,∆p.

By Theorem 3.5, G |= ρt,∆(ā) ∧ ϕ(ā,W1, . . . ,Wq) if and only if G |= ρt,∆(ā) ∧
F t,∆(ϕ1,1(ā � ∆1,W1, . . . ,Wq), . . . , ϕp,jp(ā � ∆p,W1, . . . ,Wq)).

We let T be an (r, `, g)-cwd cover of G where r := m(2t + 1). We use this
value of r to guarantee that if ∆ = ∆(a1, . . . , am) and i1, . . . , ik in [m] belong
to a connected component of ∆, then N t

G({ai1 , . . . , aik}) ⊆ U for some U in
T . This is so because dG(ai1 , aik′) ≤ (m− 1) · (2t+ 1) for every k′ = 2, . . . , k,
hence if a ∈ N t

G({ai1 , . . . , aik}), we have dG(ai1 , a) ≤ t+ (m− 1) · (2t+ 1) < r.
Hence, N t

G({ai1 , . . . , aik}) ⊆ N r
G(ai1) ⊆ U for some U in T . For each vertex x,

there exist less than ` many sets V in T such that x ∈ V . We assume that
each set U in T has an index encoded as a bit string denoted by pUq. There
are at most n · ` sets in T . Hence, pUq has length O(log(n)).

19

For each set U in T , we label each vertex in G[U] by LU(x) of length O(log(n))
in order to decide from LU(x) and LU(y) whether dG[U](x, y) ≤ 2t+1 (Theorem
2.5) 11 . For each vertex x of G, we let

L(x) :=
(
pxq,

{(
pUq, LU(x)

)
| N2t+1

G (x) ⊆ U
}
,
{(
pUq, LU(x)

)
| x ∈ U, N2t+1

G (x) * U
})

.

(Recall that x ∈ N2t+1
G (x).) It is clear that |L(x)| = O(log(n)).

By Theorem 2.5, for each formula ϕi,j(x̄ � ∆i, Y1, . . . , Yq), arising from The-
orem 3.5, and each U ∈ T , we can label each vertex x ∈ U by some label
J∆
i,j,U(x) of length O(log(n)) so that we can decide if ϕi,j(ā � ∆i,W1, . . . ,Wq)

holds in G[U] by using
(
J∆
i,j,U(b)

)
b∈ā |∆i

and J∆
i,j,U(W1∩U), . . . , J∆

i,j,U(Wq ∩U).

For each vertex x of G, we let J∆(x) be the concatenation of the tuples(
pUq, J∆

1,1,U(x), . . . , J∆
1,j1,U

(x), . . . , J∆
p,1,U(x), . . . , J∆

p,jp,U(x)
)

for all U ∈ T such

that N t
G(x) ⊆ U .

It is clear that |J∆(x)| = O(log(n)) since each vertex x is in less than ` many
sets U in T . There exist at most 2m(m−1)/2 t-distance types; we enumerate
them as ∆1, . . . ,∆k′

for some k′ ≤ 2m(m−1)/2. For each vertex x of G, we let
J(x) := (L(x), J∆1(x), . . . , J∆k′ (x)). It is clear that J(x) is of length O(log(n)).

By hypothesis, the cover T is computed in time f(n) for G in C with n vertices.
By Theorem 2.5, the labelings LU and J∆

i,j,U can be constructed in cubic-time.
Therefore, the labeling J can be constructed in total time O(f(n) + n4) since
there are less than ` · n sets U in T .

We now explain how to decide whether G |= ϕ(a1, . . . , am,W1, . . . ,Wq) by
using J(a1), . . . , J(am) and J(W1), . . . , J(Wq).

From the labels L(x), we can determine the set {pUq | U ∈ T , x ∈ U}, hence
the family of sets U ∈ T such that W ∩ U 6= ∅, where W ⊆ VG is a set
argument.

Since for each vertex x of G, there exists a set U in T such that N r
G(x) ⊆ U , for

each pair of vertices {x, y}, we have dG(x, y) ≤ 2t+1 if and only if dG[U](x, y) ≤
2t+ 1. Hence, by using the components L(a1), . . . , L(am) of J(a1), . . . , J(am),
we can construct the t-distance type ∆ of (a1, . . . , am); let ∆1, . . . ,∆p be the
connected components of ∆. From each J(ai), we can recover J∆(ai). For each
tuple ā � ∆i, there exists at least one U ∈ T such that N t

G(ā � ∆i) ⊆ U .
We let Ui be any of them. It can be determined by using the component
L(b) of the label J(b) for each b ∈ ā � ∆i. One can determine (by using
J(W1), . . . , J(Wq)) the sets Wi ∩ Uj. Hence, one can check if G[Ui] |= ϕi,j(ā �
∆i,W1 ∩ Ui, . . .Wq ∩ Up) for each j ∈ [ji]. We can now decide whether G |=

11 For checking if dG(x, y) ≤ 2t+ 1, an (r′, `′, g′)-cwd cover suffices with r′ := 2t+ 1.

20

F t,∆(ϕ1,1(ā � ∆1,W1∩U1, . . . ,Wq∩U1), . . . , ϕp,jp(ā � ∆p,W1∩Up, . . . ,Wq∩Up))
for the chosen (U1, . . . , Up). This is sufficient by Theorem 3.5.

We now examine the time taken to check ϕ(ā,W). For each couple (ai, aj), it
takes time O(log(n)) to check if d(ai, aj) ≤ 2t+ 1. Since there are at most m2

couples, we construct the graph ∆ in time O(log(n)). For each connected com-
ponent ā � ∆, we can determine the sets U that contain it in time O(log(n))
(because there are less than ` such sets). By Theorem 2.5, we can check each
ϕi,j in time O(log(n) · (|W |+ 1)). Therefore, B checks the validity of ϕ(ā,W)
in time O(log(n) · (|W |+ 1)). 2

We can now prove Theorem 5.1(3)-(4).

Proof of Theorem 5.1 (3). Let C be a locally cwd-decomposable class
of graphs and let G = 〈VG, (edgaG)a∈C2 , (paG)a∈C1 〉 in C be a graph with
n vertices. Let ϕ(x1, . . . , xm) be an FO formula without set arguments. By
Theorem 3.4, this formula is equivalent to a Boolean combinationB(ϕ1(x̄), . . . ,
ϕp(x̄), ψ1, . . . , ψh) where each ϕi is t-local and each ψi is a basic (t′, s)-local
sentence without set variables, for some t, t′ and s depending only on ϕ.

By Lemma 4.5, one can decide in time O(n4) the validity of each sentence

ψi. Let
−→
b := (b1, . . . , bh) where bi := 1 if G satisfies ψi and 0 otherwise. For

each 1 ≤ i ≤ p, we construct a labeling Ji supporting the query ϕi by Lemma
5.2 (G belongs to a locally cwd-decomposable class and ϕi is a t-local formula

around x̄). For each vertex x of G, we let J(x) := (pxq, J1(x), . . . , Jp(x),
−→
b) 12 .

It is clear that |J(x)| = O(log(n)) since |Ji(x)| = O(log(n)). We now explain
how to decide whether G |= ϕ(a1, . . . , am) by using J(a1), . . . , J(am).

From the Boolean vector
−→
b , we can recover the truth value of each sentence ψi.

By using Ji(ā), we can check if ϕi(ā) holds. Then we can check if B(ϕ1(x̄), . . . ,
ϕp(x̄), ψ1, . . . , ψh) holds, hence if ϕ(ā) holds.

By Lemma 4.5, the validity of each sentence ψi is checked in time O(n4). And
by Lemma 5.2, each labeling Ji is constructed in time O(f(n)+n4) where f(n)
is the time taken for constructing an (r, `, g)-cwd cover. Hence, the labeling J
can be constructed in time O(f(n) +n4). The time taken to check the validity
of ϕ(a1, . . . , am) is O(log(n)) by Lemma 5.2. 2

12 We must put
−→
b in each label because the algorithm B (cf. Definition 2.4) does

not know anything about the considered graph G. All informations about it must
be in the vertex labels.

21

Before proving Theorem 5.1 (4), we introduce some definitions and facts. Let
m be a positive integer. A distance-m coloring of a graph H is a proper
coloring of und(H)m (see Section 2 for the definition of und(H)m). Then in
a distance-m coloring, vertices at distance at most m have different colors.
A graph admits a proper (d + 1)-coloring if d is its maximum degree. If T is
an (r, `, g)-cwd cover of a graph G, then I(T) has maximum degree at most
`. Hence, I(T) has a distance-m coloring with `O(m) colors since I(T)m has
maximum degree at most ` · (1 + (`− 1) + · · ·+ (`− 1)m−1). If U is a subset
of VG and t ≥ 1, we let Kt

G(U) be the set {x ∈ U | N t
G(x) ⊆ U}. We call it

the t-kernel of U .

We say that two sets of vertices W and W ′ of a graph G touch if W ∩
W ′ 6= ∅ or there exists an edge between a vertex of W and one of W ′. It
is clear that if W :=

⋃
1≤i≤pWi ⊆ VG and Wi,Wj pairwise do not touch, then

G[W] is the disjoint union of the graphs G[Wi]. It follows that cwd(G[W]) =
max{cwd(G[Wi]) | 1 ≤ i ≤ p}, by Fact 2.2 (ii).

Proof of Theorem 5.1 (4). Let C be a nicely locally cwd-decomposable class
of graphs and let G = 〈VG, (edgaG)a∈C2 , (paG)a∈C1 〉 in C be a graph with n
vertices. We want a labeling for a parametrized FO query. By Theorem 3.4 and
Lemma 5.2, it is sufficient to define a labeling for FO formulas ϕ(Y1, . . . , Yq)
of the form (they are the sentences ψ1, . . . , ψh of Theorem 3.4):

∃x1 · · · ∃xm

 ∧
1≤i<j≤m

d(xi, xj) > 2t ∧
∧

1≤i≤m
ψ(xi, Y1, . . . , Yq)

where ψ(x, Y1, . . . , Yq) is t-local around x. We show how to check such formulas
by means of log-labelings.

We first consider for the sake of clarity the particular case where m = 2. Let
T be a nice (r, `, g)-cwd cover of G where r := 2t+ 1 and let γ be a distance-3
coloring of I(T), the intersection graph of T . For every two colors i and j, we
let Gi,j be the graph induced by the union of the sets U in T that are colored
by i or j (we may have i = j).

Claim 5.3 cwd(Gi,j) ≤ g(2).

Proof of Claim 5.3. Let T 2 := {U∪U ′ | U,U ′ ∈ T , U∩U ′ 6= ∅}. The vertex
set of the graph Gi,j is a union of sets in T ∪ T 2. No two sets of this union
touch: if a set U ∪ U ′ is such that U ∩ U ′ 6= ∅ and meets some U ′′ ∈ T with
U ′′ 6= U and U ′′ 6= U ′, then we have γ(U) = i, γ(U ′) = j 6= i and U ′′ meets U
or U ′. It can have neither color i nor color j because γ is a distance-3 coloring
and U,U ′ and U ′′ are pairwise at distance at most 2. Now, if there exists an

22

edge between a vertex x in U ∪U ′ and a vertex y in U ′′ ∈ T , then there exists
a set W ∈ T such that x and y are in W . Hence, U ′′ and U are at distance at
most 3, similarly for U ′′ and U ′. Thus, U ′′ can have neither color i nor color
j. We can then conclude that Gi,j is a disjoint union of graphs G[U ∪U ′] with
U ∪ U ′ ∈ T 2 and of graphs G[U] for U ∈ T that do not touch pairwise. Since
cwd(G[U ∪ U ′]) ≤ g(2), we are done (by Fact 2.2 (ii)). 2

Claim 5.4 Let x ∈ K2t
G (U) and y ∈ K2t

G (U ′) for some sets U and U ′ in T .
Then dG(x, y) > 2t if and only if dG[U∪U ′](x, y) > 2t.

Proof of Claim 5.4. It is clear that if dG(x, y) > 2t, then dG[U∪U ′](x, y) > 2t
since dG(x, y) ≤ dG[U∪U ′](x, y). For proving the converse direction, assume that
dG(x, y) ≤ 2t. Then there exists in G a path of length at most 2t from x to
y. This path is also in G[U] since x ∈ K2t

G (U). Hence, it is also in G[U ∪ U ′].
Therefore, dG[U∪U ′] ≤ 2t. 2

Let us now give to each vertex x of G the smallest color i such that x ∈ K2t
G (U)

and γ(U) = i. Hence, each vertex has one and only one color. We express this
by the validity of pi(x) where pi is a new unary relation. The number of
relations pi does not depend on the graph G. For each pair (i, j) (possibly
i = j), we consider the formula

ψi,j := ∃x, y
(

d(x, y) > 2t ∧ ψ(x, Y1, . . . , Yq) ∧ ψ(y, Y1, . . . , Yq) ∧ pi(x) ∧ pj(y)
)
.

By Theorem 2.5, we can construct a log-labeling Ji,j for the formula ψi,j in
the graph Gi,j (because vertex colors, i.e., additional unary relations, do not
modify the clique-width). We compute the truth value bi,j of ψi,j(∅, . . . , ∅) in

Gi,j; we get a Boolean vector ~b of fixed length. We also label each vertex x by

its color γ(x). We concatenate that ~b and the labels Ji,j(x), for each x in VGi,j
,

giving J(x). The coloring γ uses O(`3) colors. Then the number of graphs Gi,j

is bounded by O(`6). Therefore, |J(x)| = O(log(n)).

From J(W1), . . . , J(Wq), we can determine those graphs Gi,j such that VGi,j
∩

(W1 ∪ · · · ∪Wq) 6= ∅ and check if for one of them, Gi,j |= ψi,j(W1, . . . ,Wq).
If one is found, we are done. Otherwise, we use the Booleans bi,j to look for
graphs Gi,j such that Gi,j |= ψi,j(∅, . . . , ∅) and (W1 ∪ · · · ∪Wq) ∩ VGi,j

= ∅.
This gives the correct answers because of the following facts:

• If x and y satisfy the formula ϕ, then x ∈ K2t
G (U), y ∈ K2t

G (U ′) (pos-
sibly U = U ′) and dG(x, y) > 2t implies dGi,j

(x, y) > 2t, hence Gi,j |=
ψi,j(W1, . . . ,Wq) where i = γ(U) and j = γ(U ′).

23

• If Gi,j |= ψi,j(W1, . . . ,Wq), then we get G |= ϕ(W1, . . . ,Wq) by a similar
argument (in particular dGi,j

(x, y) > 2t implies dG[U∪U ′](x, y) > 2t which
implies that dG(x, y) > 2t by Claim 5.4).

For m = 1, the proof is similar by using a distance-2 coloring γ and the graphs
Gi,i instead of the graphs Gi,j.

For the case m > 2, the proof is similar. One takes for γ a distance-(m +
1) coloring of the intersection graph I(T) and considers the graphs Gi1,...,im

defined as the unions of pairwise non touching sets U1 ∪ · · · ∪Um′ for m′ ≤ m
and U1, . . . , Um′ in T , of respective colors i1, . . . , im′ . Thus, we have cwd(G[U1∪
· · · ∪ Um′]) ≤ g(m) and cwd(Gi1,...,im) ≤ g(m).

By hypothesis, the cover T is computed in time f(n) for an n-vertex graph G
in C. In each graph Gi1,...,im , the labeling Ji1,...,im is constructed in cubic-time
by Theorem 2.5. The coloring γ uses `O(m) colors. Then the number of graphs
Gi1,...,im is bounded by `O(m2). Hence, the labeling J can be computed in time
O(f(n) + n3).

We now examine the time taken to check the validity of ϕ(W). For eachGi1,...,im

and each Wi, it takes time O(log(n) · |Wi|) to determine Wi ∩ VGi1,...,im
. By

Theorem 2.5, it takes time O(log(n)·(|W |+1)) to check in Gi1,...,im the validity
of ϕ(W). This concludes the proof of Theorem 5.1. 2

Let us ask a very general question: what can be done with labels of size
O(log(n))? Here is a fact that limits the extension of these results.

Let ϕ0(x, y) be the t-local and bounded FO formula telling us whether two
distinct vertices x and y are connected by a path of length 2:

x 6= y ∧ ∃z (z 6= x ∧ z 6= y ∧ edg(x, z) ∧ edg(z, y)) .

The adjacency query is the query defined by edg(x, y) ∨ edg(y, x) for a graph
without edge colors. The following proposition uses a reduction from the case
of adjacency queries in arbitrary graphs. We recall that the adjacency query
has a log-labeling scheme in graphs of bounded arboricity (Theorem 5.1 (1)).

Proposition 5.5 Every labeling scheme supporting ϕ0 on graphs with n ver-
tices and of arboricity at most 2 requires labels of length at least

√
n
2
− 1 for

some graphs.

Proof. We first define a construction to be used in a reduction between prob-
lems. With every simple, loop-free and undirected graph G, we associate the

24

graph G̃ obtained by inserting a vertex zxy on each edge xy.

V
G̃

:= VG ∪ {zx,y | x, y ∈ VG and xy ∈ EG},
E
G̃

:= {xzx,y | xy ∈ EG}.

The following properties hold.

(1) VG ⊆ V
G̃

and |V
G̃
| = |VG|+ |EG|.

(2) For all x and y in VG, the edge xy is in EG if and only if G̃ |= ϕ0(x, y).
(3) G̃ has arboricity at most 2.

The first two points are clear. For the third one, we orient each edge e of G
and we get a directed graph, that we denote by ~G. We let:

F1 := {xzx,y | (x, y) ∈ E ~G},
F2 := {zx,yy | (x, y) ∈ E ~G}.

Neither F1 nor F2 has a cycle in G̃. Then G̃ has arboricity at most 2 since
(F1, F2) is a bipartition of E

G̃
.

Let k : N→ N be a mapping and D a class of undirected graphs. If for every
graph H ∈ D with n vertices, we can label its vertices with a bit sequence of
size k(n) and check the adjacency query by using these bit sequences, then
the number of non isomorphic graphs of size n in D is bounded by 2n·k(n).
Since the number of simple undirected graphs with n vertices is 2n·(n−1)/2, any
labeling scheme supporting the adjacency query in simple undirected graphs
with n vertices requires some labels of size at least (n − 1)/2. Hence, the
adjacency query requires labels of size bn/2c in some graphs. Using (2) above,
we conclude that any labeling scheme for ϕ0 on the graph family Fn := {G̃ |
G has n vertices} requires labels of size at least

⌊
n
2

⌋
. Let G̃ be in Fn and let

ñ := |V
G̃
|. Using (1), we have ñ = n+ |EG| ≤ n(n+1)

2
, i.e., n ≥

√
2ñ−1. Hence,

any labeling scheme for ϕ0 on Fn requires for some graphs with ñ vertices

labels of size at least
⌊√

2ñ−1
2

⌋
>
√

ñ
2
− 1. 2

6 Extension to Counting Queries

By a graph, we still mean a (C1, C2)-graph, i.e., a binary relational structure.
The results do not depend on (C1, C2). We will not specify this pair at each
time. We now consider an extension to counting queries.

Definition 6.1 (Counting Query) Let ϕ(x1, . . . , xm, Y1, . . . , Yq) be an MSO

25

formula and let G be a (colored) graph. For W1, . . . ,Wq ⊆ VG, we let

#Gϕ(W1, . . . ,Wq) :=
∣∣∣∣{(a1, . . . , am) ∈ V m

G | G |= ϕ(a1, . . . , am,W1, . . . ,Wq)
}∣∣∣∣.

The counting query of ϕ consists in determining #Gϕ(W1, . . . ,Wq) for given
(W1, . . . ,Wq)

13 . If s ≥ 2, the counting query of ϕ modulo s consists in deter-
mining #Gϕ(W1, . . . ,Wq) modulo s for given (W1, . . . ,Wq).

The following theorem is an easy extension of Theorem 2.5.

Theorem 6.2 Let k be a positive integer, ϕ(x1, . . . , xm, Y1, . . . , Yq) an MSO
formula over graphs and s ≥ 2. There exists a log2-labeling scheme (resp. a
log-labeling scheme) (A,B) on the class of graphs of clique-width at most k for
the counting query of ϕ (resp. the counting query of ϕ modulo s). Moreover,
if the input graph has n vertices, the algorithm A constructs the labels in time
O(n3) or in time O(n · log(n)) if the clique-width expression is given, and the
algorithm B computes #Gϕ(W1, . . . ,Wq) in time O(log2(n) · (|W |+ 1)) (resp.
O(log(n) · (|W |+ 1))).

Proof Sketch. The proof of Theorem 2.5 given in [10] builds labels that are
sequences of states of an automaton on terms representing graphs, constructed
from the MSO formula ϕ. An extension of this construction, that is given in
[10], makes it possible to compute

max
{
|U | | U ⊆ VG and G |= ϕ(U,W1, . . . ,Wq)

}
where ϕ(X, Y1, . . . , Yq) is an MSO formula and W1, . . . ,Wq are given sets of
vertices. Instead of sequences of states, the labels consist of sequences of map-
pings from the set of states to [|VG|]. It follows that the size of these labels
is O(log2(n)) instead of O(log(n)). For a counting query, a similar technique
can be used, with mappings from the set of states to [|VG|]m. Since m is fixed,
labels have still size O(log2(n)).

If we wish to count answers modulo an integer s, we need only mappings from
the set of states to {0, . . . , s− 1}m and the labels have size O(log(n)). 2

We will prove a similar theorem for nicely locally cwd-decomposable classes
of graphs and FO formulas.

13 In order to simplify the notation, we let Y1, . . . , Yq be set variables. This is not a
loss of generality because a first-order variable y can be replaced by a set variable
Y subject to the condition that its value is a singleton.

26

Theorem 6.3 (Second Main Theorem) Let ϕ(x1, . . . , xm, Y1, . . . , Yq) be an
FO formula and let s ≥ 2. There exists a log2-labeling scheme (resp. a log-
labeling scheme) (A,B) for the counting query of ϕ (resp. the counting query
of ϕ modulo s) on nicely locally cwd-decomposable classes. Moreover, if the
input graph has n vertices, the algorithm A constructs the labels in time
O(f(n) + n3) where f(n) is the time taken to construct a nice cwd-cover, and
the algorithm B computes #Gϕ(W1, . . . ,Wq) in time O(log2(n) · (|W | + 1))
(resp. O(log(n) · (|W |+ 1))).

We will first prove Theorem 6.3 for particular t-local formulas on locally cwd-
decomposable classes.

Definition 6.4 (t-Connected Formulas) A formula ϕ(x1, . . . , xm, Y1, . . . , Yq)
is t-connected if for all graphs G, all a1, . . . , am ∈ VG and all W1, . . . ,Wq ⊆
VG,

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) if and only if

∧

1≤i<j≤m d(ai, aj) ≤ t and

G[N] |= ϕ(a1, . . . , am,W1 ∩N, . . . ,Wq ∩N)

where N := N t
G({a1, . . . , am}).

Remark 6.5 Let ϕ(x1, . . . , xm, Y1, . . . , Yq) be a t-connected formula. Then for
all W ⊇ N t

G({a1, . . . , am}), we have

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) if and only if G[W] |= ϕ(a1, . . . , am,W1 ∩W, . . . ,Wq ∩W)

and, since N t
G({a1, . . . , am}) ⊆ N2t

G (a1) we have

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) if and only if G[N2t
G (a1)] |= ϕ(a1, . . . , am,W1, . . . ,Wq).

Lemma 6.6 Let ϕ(x1, . . . , xm, Y1, . . . , Yq) be a t-connected formula and let
s ≥ 2. There exists a log2-labeling scheme (resp. a log-labeling scheme) (A,B)
for the counting query of ϕ (resp. the counting query of ϕ modulo s) on locally
cwd-decomposable classes of graphs. Moreover, if the input graph has n ver-
tices, the algorithm A constructs the labels in time O(f(n) + n3) where f(n)
is the time taken to construct a cwd-cover, and the algorithm B computes
#Gϕ(W1, . . . ,Wq) in time O(log2(n) · (|W |+ 1)) (resp. O(log(n) · (|W |+ 1))).

Proof. Let C be a class of locally cwd-decomposable graphs and let G in C be
a graph with n vertices. Let T be a (2t, `, g)-cwd cover of G and γ a distance-2
coloring of I(T) with colors in [`2 + 1].

Claim 6.7 Let x ∈ K2t
G (U) and y ∈ K2t

G (U ′) with γ(U) = γ(U ′), U 6= U ′.
Then dG(x, y) > 2t.

27

Proof of Claim 6.7. If this is not the case, then y ∈ U . Hence, U and U ′

are adjacent in I(T). This is impossible since they have the same color. 2

We color each vertex x of G by i, the smallest γ(U) such that x ∈ K2t
G (U).

We represent this by the validity of pi(x) as in the proof of Theorem 5.1 (4).
For each i ∈ [`2 + 1], we let ϕi be the formula:

ϕ(x1, . . . , xm, Y1, . . . , Yq) ∧ pi(x1).

Then the following is clear.

Claim 6.8 #Gϕ(Y1, . . . , Yq) =
∑
i

#Gϕi(Y1, . . . , Yq).

We now show that the counting query of ϕ admits a log2-labeling scheme on
G. We let Vi :=

⋃
γ(U)=i

{U | U ∈ T }.

Claim 6.9 cwd(G[Vi]) ≤ g.

Proof of Claim 6.9. Let U and U ′ in T be subsets of Vi. Since γ is a distance-
2 coloring, the sets U and U ′ are disjoint, otherwise they will have different
colors. They do not touch, otherwise there exist a vertex x ∈ U and a vertex
y ∈ U ′ such that xy ∈ EG. Then by construction of T , there exists a setW in T
such that x ∈ K2t

G (W). Therefore, U and U ′ are at distance at most 2 in I(T)
and thus have different colors. A contradiction because γ(U) = γ(U ′) = i.
Therefore, G[Vi] is a union of graphs that pairwise do not touch and have
clique-width at most g. We can thus conclude that cwd(G[Vi]) ≤ g. 2

Claim 6.10 #Gϕi(Y1, . . . , Yq) = #G[Vi]ϕi(Y1, . . . , Yq).

Proof of Claim 6.10. If ϕ(a1, . . . , am,W1, . . . ,Wq) holds and pi(a1) holds,
then a1 ∈ K2t

G (U) for some U such that γ(U) = i. Hence, a2, . . . , am ∈ N2t
G (a1)

and G[N2t
G (a1)] |= ϕi(a1, . . . , am,W1, . . . ,Wq). Thus, G[Vi] |= ϕi(a1, . . . , am,

W1, . . . ,Wq).

If G[Vi] |= ϕi(a1, . . . , am,W1, . . . ,Wq), then pi(a1) holds and dG[Vi](al, as) ≤ t
for all l and s in [m]. But, dG(al, as) = dG[Vi](al, as) = dG[U](al, as) where
a1 ∈ U and γ(U) = i. And since N t

G({a1, . . . , am}) ⊆ Vi, we have G |=
ϕi(a1, . . . , am,W1, . . . ,Wq). 2

By Theorem 6.2, and Claims 6.9 and 6.10, there exists a log2-labeling Ji for the
counting query of each ϕi. For each x ∈ VG, we let J(x) := (J1(x), . . . , J`2+1(x)).

28

Hence, J is a log2-labeling for the counting query of ϕ by Claim 6.8. By The-
orem 6.2, labels of size O(log(n)) are sufficient for the counting query of each
ϕi modulo s.

By Theorem 6.2, each labeling Ji is constructed in cubic-time. Therefore, the
labeling J is constructed in time O(f(n)+n3) where f(n) is the time taken for
constructing the (2t, `, g)-cwd cover T of G. By Claim 6.8 and Theorem 6.2,
B computes #Gϕ(W1, . . . ,Wq) in time O(log2(n) · (|W |+ 1)) (resp. O(log(n) ·
(|W |+ 1))). 2

We now prove Theorem 6.3.

Proof of Theorem 6.3. Let ϕ(x̄, Y) be an FO formula with x̄ := (x1, . . . , xm)
and Y := (Y1, . . . , Yq). By Theorem 3.4, ϕ is logically equivalent to a Boolean
combination B of t-local formulas around x̄ and of basic (t′, s)-local formulas.
The Boolean combination B can be written as a disjunction of mutually ex-
clusive conjunctions of formulas. Hence, we can reduce the counting query of
ϕ to that of finitely many formulas of the form:

ϕ′(x̄, Y) ∧ ψ(Y)

where ϕ′(x̄, Y) is a t-local formula around x̄, and ψ(Y) is a conjunction of
basic (t′, s)-local formulas and of negations of basic (t′, s)-local formulas. We
have proved that each basic (t′, s)-local formula admits a log-labeling scheme
on each nicely locally cwd-decomposable class of graphs (Theorem 5.1 (4)). It
remains then to prove that the counting query of a t-local formula admits a
log2-labeling scheme on each nicely locally cwd-decomposable class of graphs
C.

Let ψ(x̄, Y1, . . . , Yq) be a t-local formula around x̄ := (x1, . . . , xm). By Theorem
3.5, we can reduce the counting query of ψ to the counting query of finitely
many formulas of the form ρt,∆(x̄) ∧ ϕ′(x̄, Y1, . . . , Yq) that can be expressed
as

ϕ′(x̄, Y1, . . . , Yq) :=
∧

1≤i<j≤p
d(x̄ � ∆i, x̄ � ∆j) > 2t+ 1 ∧

∧
1≤i≤p

ϕi(x̄ � ∆i, Y1, . . . , Yq)

where each ϕi is t-local and (m · (2t+ 1))-connected. To simplify the writing,
we will assume that ψ is of the form ϕ′(x̄, Y1, . . . , Yq).

Let G with n vertices be in C. Let T be a nice (r, `, g)-cwd cover of G where
r := m·(2t+1) and let γ be a distance-(m+1) coloring of I(T), the intersection
graph of T . For every m-tuple of colors (i1, . . . , im), we let Gi1,...,im be the graph
G[V] where V is the union of all sets U ∈ T such that γ(U) ∈ {i1, . . . , im}.
We have cwd(G[V]) ≤ g(m) (by the same arguments as in Claim 5.3 and the

29

proof of Theorem 5.1 (4)). We color each vertex with the smallest color i such
that x ∈ Kr

G(U) and γ(U) = i and we express this by the validity of pi(x).
We let ϕ′i1,...,im be

∧
1≤i<j≤p

d(x̄ � ∆i, x̄ � ∆j) > 2t+ 1 ∧
∧

1≤`≤p
(ϕ`(x̄ � ∆`, Y1, . . . , Yq) ∧ pi`(z`))

where z` is the first variable of each tuple x̄ � ∆`. We have:

Claim 6.11 #Gψ(Y1, . . . , Yq) =
∑

(i1,...,im)
#Gϕ

′
i1,...,im

(Y1, . . . , Ym).

We let H := Gi1,...,im . By the same arguments as in the proof of Claim 5.4 we
have:

Claim 6.12 dG(x̄ � ∆i, x̄ � ∆j) > 2t + 1 if and only if dH(x̄ � ∆i, x̄ � ∆j) >
2t+ 1.

It follows that:

Claim 6.13 #Gϕ
′
i1,...,im

(Y1, . . . , Yq) = #Hϕ
′
i1,...,im

(Y1, . . . , Yq).

By Theorem 6.2 and Claims 6.11, 6.12 and 6.13, there exists a log2-labeling
scheme for the counting query of each t-local formula, and a log-labeling
scheme is enough for modulo counting.

By hypothesis, a nice (r, `, g)-cwd cover T of G can be constructed in time
f(n). For each formula ϕi1,...,im , the associated labeling Ji1,...,im is constructed
in time O(n3) by Theorem 6.2. The coloring γ uses `O(m) colors. The number
of graphs Gi1,...,im is bounded by `O(m2). Hence, the labeling J is computed in
time O(f(n)+n3). By Claim 6.11 and Theorem 6.2, the algorithm B computes
#Gϕ(W1, . . . ,Wq) in time O(log2(n) · (|W |+ 1)) (resp. O(log(n) · (|W |+ 1))).
This finishes the proof. 2

The constructions of Theorems 6.2 and 6.3 can be adapted so as to produce,
for given sets W1, . . . ,Wq (given as sets of labels) an m-tuple (pa1q, . . . , pamq)
for one answer ā to the parametrized query ϕ, and paq is the coding of vertex
a. Labels of length O(log(n)) suffice for that.

7 Conclusion

We conjecture that the results of Theorem 5.1 (3-5) extend to classes of graphs
that exclude, or locally exclude a minor (definitions are in [11,19]).

30

Question 1 Does there exist a log-labeling scheme for parametrized FO queries
on locally cwd or tree-decomposable classes?

Acknowledgements

We thank the referees for many helpful comments.

References

[1] S. Arnborg, J. Lagergren and D. Seese. Easy Problems for Tree-Decomposable
Graphs. Journal of Algorithms 12(2):308-340, 1991.

[2] G. Bagan. Algorithmes et Complexité des Problèmes d’Énumération pour
l’Évaluation de Requêtes Logiques. PhD Thesis, Université de Caen/Basse
Normandie, Caen, 2009.

[3] A. Blumensath and B. Courcelle. Recognizability, Hypergraph Operations and
Logical Types. Information and Computation 204(6):853-919, 2006.

[4] H.L. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions
of Small Tree-width. SIAM Journal on Computing 25(6):1305-1317, 1996.

[5] H.L. Bodlaender. Tree-Width: Structure and Algorithms. In G. Principe
and S. Zaks eds., Structural Information and Communication Complexity
(SIROCCO), volume 4474 of LNCS, pages 11-25. Springer, 2007.

[6] B. Courcelle, C. Gavoille, M.M. Kanté and A. Twigg. Optimal Labeling
for Connectivity Checking in Planar Networks with Obstacles. Manuscript,
2008. An extended abstract about 3-connected planar graphs is published in
Electronic Notes in Discrete Mathematics 31:151-155, 2008, the proceedings of
the first Conference Topological and Geometric Graph Theory (TGGT), Paris,
2008.

[7] B. Courcelle, J.A. Makowsky and U. Rotics. Linear-Time Solvable Optimization
Problems on Graphs of Bounded Clique-Width. Theory of Computing Systems
33(2):125-150, 2000.

[8] B. Courcelle and S. Olariu. Upper Bounds to the Clique-Width of Graphs.
Discrete Applied Mathematics 101(1-3):77-114, 2000.

[9] B. Courcelle and A. Twigg. Constraint-Path Labelings on Graphs of Bounded
Clique-Width. To appear in Theory of Computing Systems, 2009.

[10] B. Courcelle and R. Vanicat. Query Efficient Implementation of Graphs of
Bounded Clique-Width. Discrete Applied Mathematics 131(1):129-150, 2003.

31

[11] A. Dawar, M. Grohe and S. Kreutzer. Locally Excluding a Minor. In 22nd

IEEE Symposium on Logic in Computer Science (LICS), pages 270-279. IEEE
Computer Society, 2007.

[12] R. Diestel. Graph Theory. Springer, 3rd edition, 2005.

[13] A. Durand and E. Grandjean. First-Order Queries on Structures of
Bounded Degree are Computable with Constant Delay. ACM Transactions on
Computational Logic 8(4), 2007.

[14] D. Eppstein. Arboricity and Bipartite Subgraph Listing Algorithms.
Information Processing Letters 51(4):207-211, 1994.

[15] E. Fisher, J.A. Makowsky and E.V. Ravve. Counting Truth Assignments
of Formulas of Bounded Tree-Width or Clique-Width. Discrete Applied
Mathematics 156(4):511-529, 2008.

[16] M. Frick. Generalized Model-Checking over Locally Tree-Decomposable Classes.
Theory of Computing Systems 37(1):157-191, 2004.

[17] M. Frick and M. Grohe. Deciding First-Order Properties of Locally Tree-
Decomposable Structures. Journal of the ACM 48(1):1184-1206, 2001.

[18] H. Gaifman. On Local and Non-Local Properties. In J. Stern ed, Proceedings of
the Herbrand Symposium, Logic Colloquium’81, pages 105-135. North-Holland
Publishing Company, 1982.

[19] M. Grohe. Logic, Graphs and Algorithms. In Flum, Grädel and Wilke
eds., Logic, Automata, History and Perspectives, pages 357-422. Amsterdam
University Press, 2007.

[20] C. Gavoille and D. Peleg. Compact and Localized Distributed Data Structures.
Distributed Computing 16(2-3):111-120, 2003.

[21] F. Gurski and E. Wanke. Line Graphs of Bounded Clique-Width. Discrete
Mathematics 307(22):2734-2754, 2007.

[22] P. Hliněný and S. Oum. Finding Branch-Decompositions and Rank-
Decompositions. SIAM Journal on Computing 38(3):1012-1032, 2008.

[23] M. Kamiński, V. Lozin and M. Milanič. Recent Developments on Graphs of
Bounded Clique-Width. Discrete Applied Mathematics, in press, 2008.

[24] M. M. Kanté. Graph Structurings: Some Algorithmic Applications. PhD thesis,
Université Bordeaux 1, Bordeaux, 2008.

[25] S. Kreutzer. Algorithmic Meta-Theorems. In M. Grohe and R. Neidermeier eds,
International Workshop on Parameterized and Exact Computation (IWPEC),
volume 5018 of LNCS, pages 10-12. Springer, 2008. A full version is available
at http://arxiv.org/abs/0902.3616.

[26] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

32

[27] V. Lozin. From Tree-Width to Clique-Width: Excluding a Unit-Interval Graph.
In S. Hong, H. Nagamochi and T. Fukunaga eds, International Symposium on
Algorithms and Computation (ISAAC), volume 5369 of LNCS, pages 871-882.
Springer, 2008.

[28] J. Nešetřil and P. Ossona de Mendez. Linear Time Low Tree-Width Partitions
and Algorithmic Consequences. In J.M. Kleinberg ed., 38th Annual ACM
Symposium on Theory of Computing (STOC), pages 391-400. ACM, 2006.

[29] S. Oum and P. Seymour. Approximating Clique-Width and Branch-Width,
Journal of Combinatorial Theory, Series B, 96(4):514-528, 2006.

[30] D. Seese. Linear Time Computable Problems and First-Order Descriptions.
Mathematical Structures in Computer Science 6(6):505-526, 1996.

[31] K. Suchan and I. Todinca. On powers of graphs of bounded NLC-Width (Clique-
Width). Discrete Applied Mathematics 155(14):1885-1893, 2007.

33

