Graph operations characterizing rank-width and balanced graph expressions

Mamadou Moustapha Kanté Bruno Courcelle

LaBRI, Université Bordeaux 1, CNRS.

June 212007
WG 2007 (Dornburg)

Introduction

- Graph decompositions parameterized by tree-width, clique-width and rank-width yield Fixed Parameter Tractable algorithms.
- $\operatorname{TWD}(\leq k) \subset C W D(\leq f(k)) \equiv R W D(\leq g(k))$
- Tree-width and clique-width allow FPT algorithms for problems definable in Monadic Second Order logic.
- The "MSOL \Longrightarrow FPT" results use descriptions of graphs by algebraic expressions (twd,cwd).
- Rank-width has good approximation algorithms:
- " $c w d(G) \leq k$ " is NP-complete for given (G, k) and open if k is fixed.
- $O\left(n^{3}\right)$-time approximation algorithm for rank-width.

Main result 1

- Clique-width and Rank-width are equivalent in the sense that

$$
\operatorname{rwd}(G) \leq c w d(G) \leq 2^{\operatorname{rwd}(G)+1}-1 \quad(\text { Oum-Seymour })
$$

- But the translation rank-decomposition \rightarrow clique-width expression may need $k \rightarrow 2^{k+1}$.

Main Theorem 1

There exists a signature (R_{k}, C_{k}) such that

$$
\operatorname{rwd}(G) \leq k \Longleftrightarrow G \text { is defined by a term in } T\left(R_{k}, C_{k}\right) .
$$

Second Main result

The transformation of a decomposition of width k into one of width $f(k)$ and diameter $O(\log (n))$.

Corollary

- tree-width: $f(k)=3 k-1$,
- clique-width: $\quad f(k)=2^{0(k)}$,
- m-clique-width: $f(k)=2 k$,
- rank-width: $\quad f(k)=2 k$.

Plan

(1) Preliminaries
(2) Vectorial Colorings

- Graph Operations
- Main theorem
(3) General Framework for balanced decompositions - Balancing theorems: General ideas
- Tools

Rank-width

- For $X \subseteq V_{G}$, we let $\rho_{G}(X)=r k\left(A_{G}\left[X, V_{G}-X\right]\right)$ where $r k$ is the matrix rank function over $G F(2)$.
- A layout of a graph G is a pair (T, \mathcal{L}) where T is a tree of degree ≤ 3 and $\mathcal{L}: V_{G} \rightarrow L_{T}$ is a bijection of the set of vertices of G onto the set of leaves of T.

Rank-width

$$
r k\left(A_{G}[A, B]\right)=2
$$

$A_{G}[A, B]=$| A^{B} | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 1 | 1 |
| 2 | 0 | 0 | 0 | 1 | 1 |
| 3 | 0 | 0 | 0 | 0 | 0 |
| 4 | 1 | 1 | 0 | 0 | 0 |

Rank-width

Rank-width

- For $X \subseteq V_{G}$, we let $\rho_{G}(X)=r k\left(A_{G}\left[X, V_{G}-X\right]\right)$ where $r k$ is the matrix rank function over $G F(2)$.
- A layout of a graph G is a pair (T, \mathcal{L}) where T is a tree of degree ≤ 3 and $\mathcal{L}: V_{G} \rightarrow L_{T}$ is a bijection of the set of vertices of G onto the set of leaves of T.
- Any edge e of T induces a bipartition $\left(X_{e}, Y_{e}\right)$ of the set L_{T}, thus a bipartition $(X, V-X)$ of $V_{G}: w d(e)=\rho_{G}(X)$.

Rank-width

- For $X \subseteq V_{G}$, we let $\rho_{G}(X)=r k\left(A_{G}\left[X, V_{G}-X\right]\right)$ where $r k$ is the matrix rank function over $G F(2)$.
- A layout of a graph G is a pair (T, \mathcal{L}) where T is a tree of degree ≤ 3 and $\mathcal{L}: V_{G} \rightarrow L_{T}$ is a bijection of the set of vertices of G onto the set of leaves of T.
- Any edge e of T induces a bipartition $\left(X_{e}, Y_{e}\right)$ of the set L_{T}, thus a bipartition $(X, V-X)$ of $V_{G}: w d(e)=\rho_{G}(X)$.
- $w d(T, \mathcal{L})=\max \{w d(e) \mid e$ edge of $T\}$.

Rank-width

$$
\rho_{G}(X)=r k\left(A_{G}[A, B]\right)=2
$$

$$
B=V-X
$$

Rank-width

- For $X \subseteq V_{G}$, we let $\rho_{G}(X)=r k\left(A_{G}\left[X, V_{G}-X\right]\right)$ where $r k$ is the matrix rank function over $G F(2)$.
- A layout of a graph G is a pair (T, \mathcal{L}) where T is a tree of degree ≤ 3 and $\mathcal{L}: V_{G} \rightarrow L_{T}$ is a bijection of the set of vertices of G onto the set of leaves of T.
- Any edge e of T induces a bipartition $\left(X_{e}, Y_{e}\right)$ of the set L_{T}, thus a bipartition $(X, V-X)$ of $V_{G}: w d(e)=\rho_{G}(X)$.
- $w d(T, \mathcal{L})=\max \{w d(e) \mid e$ edge of $T\}$.
- $\operatorname{rwd}(G)=\min \{w d(T, \mathcal{L}) \mid(T, \mathcal{L})$ layout of $G\}$

Clique-width and rank-width

Clique-width

- $\oplus=$ disjoint union, $\eta_{i, j}=$ edge-cretation, $\rho_{i \rightarrow j}=$ relabeling.
- $F_{k}=\left\{\oplus, \eta_{i, j}, \rho_{i \rightarrow j} \mid i, j \in[k], i \neq j\right\}$ and $C_{k}=\{\mathbf{i} \mid i \in[k]\}$
- $\operatorname{cwd}(G)=\min \left\{k \mid G=\operatorname{val}(t) \wedge t \in T\left(F_{k}, C_{k}\right)\right\}$

Clique-width and Rank-width (Oum and Seymour)

$$
\operatorname{rwd}(G) \leq \operatorname{cwd}(G) \leq 2^{r w d(G)+1}-1
$$

Properties of rank-width

- For fixed k, Oum has given an $O\left(n^{3}\right)$-time "approximation" algorithm that for a graph G either outputs a layout of width at most $3 k-1$ or outputs that G has rank-width at least $k+1$ (advantage over clique-width).
- But we need to transform the layout into a clique-width expression to solve FPT-problems (a disadvantage if it is important that the hidden constants stay as small as possible).
- This is why characterization of rank-width by graph operations is interesting and also from a fundamental point of view.

Plan

(9) Preliminaries

(2) Vectorial Colorings

- Graph Operations
- Main theorem
(3) General Framework for balanced decompositions
- Balancing theorems: General ideas
- Tools

Vectorial colorings

- Let $k \in \mathbb{N}, \mathbb{B}=\{0,1\}$. $A \mathbb{B}^{k}$-coloring of a graph G is a mapping $\gamma: V_{G} \rightarrow \mathbb{B}^{k}$.
- $x \in V_{G}$ has color i (among others) iff $\gamma(x)[i]$ (the i-th component of $\gamma(x)$) is 1.
- Let Γ_{G} be the $\left(V_{G} \times k\right)$-matrix, called the color-matrix, the row vectors of which are the vectors $\gamma_{G}(x) \in \mathbb{B}^{k}$ for $x \in V_{G}$.
- Let us now define the operations ...

Linear recolorings

Linear recolorings of \mathbb{B}^{k}-colored graphs

- Let G be a \mathbb{B}^{k}-colored graph.
- Let N be a $(k \times \ell)$-matrix.
- $H=\operatorname{Recol}_{N}(G) \Longleftrightarrow \gamma_{H}(x)=\gamma_{G}(x) \cdot N$. Then

$$
\Gamma_{H}=\Gamma_{G} \cdot N .
$$

Remark

- $\operatorname{Recol}_{N}\left(\operatorname{Recol}_{N^{\prime}}(G)\right)=\operatorname{Recol}_{N^{\prime} \cdot N}(G)$.
- 2^{k} different colors are handled efficiently via ($k \times \ell$)-matrices.

Edge creation

Bilinear graph products

For G, \mathbb{B}^{k}-colored, H, \mathbb{B}^{ℓ}-colored, and for ($k \times \ell$)-matrices M, N, P the graph $K=G \otimes_{M, N, P} H$ is constructed in 3 steps.

- disjoint union of G and H.
- $x \in V_{G}$ and $y \in V_{H}$ are linked iff $\gamma_{G}(x) \cdot M \cdot \gamma_{H}(y)^{T}=1$.
- Independent recolorings of G and H by Recol ${ }_{N}$ and Recolp, i.e.,

$$
\Gamma_{K}(z)= \begin{cases}\Gamma_{G}(z) \cdot N & \text { if } z \in V_{G} \\ \Gamma_{H}(z) \cdot P & \text { if } z \in V_{H}\end{cases}
$$

Remark
 We denote by u^{T} the transposition of the row-vector u.

Some remarks

Remark

The operation $\otimes_{M, N, P}$ combines \oplus, η and ρ of clique-width and this is done in linear algebra over $\operatorname{GF}(2)$.

Remark

As in the operations by Wanke, these operations add edges between two disjoint graphs, that are the two arguments. This is a difference with clique-width where the single binary operation \oplus is used, and $\eta_{i, j}$ applied to $G \oplus H$ may add edges to G and to H .

In terms of products of matrices...

$K=G \otimes_{M, N, P} H \quad \Longrightarrow$

$$
\begin{aligned}
& A_{K}=\left(\begin{array}{cc}
A_{G} & \Gamma_{G} \cdot M \cdot \Gamma_{H}^{T} \\
\Gamma_{H} \cdot M^{T} \cdot \Gamma_{G}^{T} & A_{H}
\end{array}\right) \\
& \Gamma_{K}=\binom{\Gamma_{G} \cdot N}{\Gamma_{H} \cdot P}
\end{aligned}
$$

where M^{T} denotes the transposition of the matrix M.

- For $u \in \mathbb{B}^{n}$, we denote by \mathbf{u} the graph with a single vertex colored by u and $C_{n}=\left\{\mathbf{u} \mid u \in \mathbb{B}^{n}\right\}$.
- We let R_{n} be the set of linear recolorings and bilinear products where M, N, P are $(k \times \ell)$-matrices with $k, \ell \leq n$.
- We denote by val(t) the graph defined by a term $t \in T\left(R_{n}, C_{n}\right)$. This graph is the value of the term in the corresponding algebra.

Plan

(9) Preliminaries

(2) Vectorial Colorings

- Graph Operations
- Main theorem
(3) General Framework for balanced decompositions
- Balancing theorems: General ideas
- Tools

Main theorem 1

A graph G has rank-width at most n iff it is the value of a term in $T\left(R_{n}, C_{n}\right)$.

Remark

A context c is a term in $T\left(R_{n}, C_{n} \cup\{u\}\right)$ with a single occurrence of the variable u. The context u is denoted by Id. For $t \in T\left(R_{n}, C_{n}\right)$ we let $c \bullet t=c[t / u]$ (substitution)

Proof of "If direction"(1)

- Let $G=\operatorname{val}(t)$. We let T be the syntactic tree of t. There exists a bijection $\mathcal{L}: V_{G} \rightarrow L_{T}$ where L_{T} is the set of leaves of T.
- We take (T, L) as a layout of G and we prove that the width of T is at most n.

"If direction"(2)

Claim

If $t=c \bullet t^{\prime}, c \neq l d$ a context and $t^{\prime} \in T\left(R_{n}, C_{n}\right)$ then $A_{G}\left[V_{H}, V_{G}-V_{H}\right]=\Gamma_{H} \cdot B$ and $\Gamma_{G\left[V_{H}\right]}=\Gamma_{H} \cdot C$ for some matrices B and $C\left(H=v a l\left(t^{\prime}\right)\right)$.

$$
c=c^{\prime} \otimes_{M, N, P} t^{\prime \prime}
$$

- Then $G=G^{\prime} \otimes_{M, N, P} K$ where $G^{\prime}=\operatorname{val}\left(c^{\prime} \bullet t^{\prime}\right)$ and $K=\operatorname{val}\left(t^{\prime \prime}\right)$.
- $A_{G}\left[V_{H}, V_{G}-V_{H}\right]=$ $\left(A_{G^{\prime}}\left[V_{H}, V_{G^{\prime}}-V_{H} \Gamma_{G^{\prime}\left[V_{H}\right]} \cdot M \cdot \Gamma_{K}^{T}\right)\right.$.
- $A_{G^{\prime}}\left[V_{H}, V_{G^{\prime}}-V_{H}=\Gamma_{H} \cdot B^{\prime}\right.$, $\Gamma_{G^{\prime}\left[V_{H}\right]}=\Gamma_{H} \cdot C^{\prime}$
- $A_{G}\left[V_{H}, V_{G}-V_{H}\right]=$ $\Gamma_{H} \cdot\left(B^{\prime} C^{\prime} \cdot M \cdot \Gamma_{K}^{T}\right)$.
- $\Gamma_{G\left[V_{H}\right]}=\Gamma_{G^{\prime}\left[V_{H}\right]} \cdot N=\Gamma_{H} \cdot C^{\prime} \cdot N$.

Proof of converse direction(1)

Layout (T, \mathcal{L}) of G

- Choose a vertex r of degree 1 in T.
- Direct T with r as root.
- T directed, will be the syntactic tree of a term t that defines G.
- We must show how to label each internal node of T by an operation $\otimes_{M, N, P}$ and how to color each vertex.

Layout (T, \mathcal{L}) of G

Proof of Converse direction (2)

Lemma 1

Let G be a graph with a bipartition $V_{G}=V_{1} \cup V_{2}$. Let $m=r k\left(A_{G}\left[V_{1}, V_{2}\right]\right)$. Then $G=H \otimes_{M} K$ where M is a nonsingular $m \times m$ matrix, for some \mathbb{B}^{m}-colorings H and K of $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ respectively.

Note

- $G\left[V_{1}\right]$ denotes the induced subgraph on V_{1}.
- $\otimes_{M}=\otimes_{M, N, P}$ for some N and P we don't care about.

Idea of proof of Lemma 1 (1)

	5	8	9	6	7
1	0	1	1	0	0
4	1	0	0	1	0
2	0	1	1	0	0
3	0	0	0	0	0

$$
\begin{aligned}
M & =A_{G}[\{1,4\},\{5,8\}] \\
A_{G}[2] & =A_{G}[1] \\
A_{G}^{T}[9] & =A_{G}^{T}[8] \\
A_{G}^{T}[6] & =A_{G}^{T}[5]
\end{aligned}
$$

Idea of Proof of Lemma 1(2)

We let $G[A]=H$ and $G[B]=K$.

- We call $\{1,4\}$ a vertex-basis of H with respect to K
- We call $\{5,8\}$ a vertex-basis of K with respect to H
\mathbb{B}^{3}-coloring of K

5	1	0
6	1	0
7	0	0
8	0	1
9	0	1

Proof of Converse direction (3)

Lemma 2

- (V_{H}, V_{K}, V_{L}) a 3-partition of V_{G},
- $H=G\left[V_{H}\right], K=G\left[V_{K}\right]$ and $L=G\left[V_{L}\right]$,
- $h=\rho_{G}\left(V_{H}\right), k=\rho_{G}\left(V_{K}\right)$, $\ell=\rho_{G}\left(V_{L}\right)$

$$
G=\left(H \otimes_{M, N_{1}, N_{2}} K\right) \otimes_{P} L .
$$

Idea of proof of Lemma 2(1)

Choice of vertex-basis

- Choose B_{H} a vertex-basis of H with respect to $K \cup L$
- Choose B_{K} a vertex-basis of K with respect to $H \cup L$
- Choose B_{L} a vertex-basis of L with respect to $H \cup K$
- Extract from $B_{H} \cup B_{K}$ a vertex-basis of $H \cup K$ with respect to L.

Idea of proof of Lemma 2 (2)

- By Lemma 1, there exist \mathbb{B}^{h}-coloring of H, \mathbb{B}^{k}-coloring of K and a $(h \times k)$-matrix M such that $G[H \cup K]=H \otimes_{M} K$.
- A vertex-basis of $H \cup K$ with respect to L is included in $B_{H} \cup B_{K}$. By Lemma 1, there exists a matrix P such that $G=G^{\prime} \otimes_{p} L$ where G^{\prime} is a \mathbb{B}^{ℓ}-coloring of $G[H \cup K]$.
- We can thus find a recoloring of H by N_{1} and a recoloring of K by N_{2} such that $G^{\prime}=H \otimes_{M, N_{1}, N_{2}} K$.
- We have then $G=\left(H \otimes_{M, N_{1}, N_{2}} K\right) \otimes_{p} L$.

Plan

(9) Preliminaries

(2) Vectorial Colorings

- Graph Operations
- Main theorem
(3) General Framework for balanced decompositions - Balancing theorems: General ideas
- Tools

Balancing Theorems: General ideas

- For algorithmic purposes it is sometimes crucial to use a-balanced terms, i.e., of height at most $a(\log (n)+1)$.
- This is the case for instance of:
- the labeling schemes considered by Courcelle, Vanicat, Twigg (STACS’07).
- the NC-algorithms considered by Bodlaender.
- How to transform a path-decomposition of width k into a tree-decomposition of height $O(\log (n))$ and of width $O(k)$?
- We cut at the "middle" of the path-decomposition and we iterate the process with the smaller paths.

Balancing Theorems: General ideas

Balancing Theorems: General ideas

Balancing Theorems: General ideas

- For algorithmic purposes it is sometimes crucial to use a-balanced terms, i.e., of height at most $a(\log (n)+1)$.
- This is the case for instance of:
- the labeling schemes considered by Courcelle, Vanicat, Twigg (STACS'07).
- the NC-algorithms considered by Bodlaender.
- How to transform a path-decomposition of width k into a tree-decomposition of height $O(\log (n))$ and of width $O(k)$?
- We cut at the "middle" of the path-decomposition and we iterate the process with the smaller paths.
- We thus have a tree-decomposition of width at most $3 k$ and of height $\log (n)$.

Balancing Theorems: General ideas

- For algorithmic purposes it is sometimes crucial to use a-balanced terms, i.e., of height at most $a(\log (n)+1)$.
- This is the case for instance of:
- the labeling schemes considered by Courcelle, Vanicat, Twigg (STACS'07).
- the NC-algorithms considered by Bodlaender.
- How to transform a path-decomposition of width k into a tree-decomposition of height $O(\log (n))$ and of width $O(k)$?
- We cut at the "middle" of the path-decomposition and we iterate the process with the smaller paths.
- We thus have a tree-decomposition of width at most $3 k$ and of height $\log (n)$.
- How to generalize it to arbitrary tree-decompositions? And what about clique-width, rank-width and other width?

Generalisation

- Each tree has a balanced tree-decomposition of width 2 and of height at most $O(\log (n))$ [Bodlaender, 88].
- Every graph of tree-width k admits a tree-decomposition of width at most $3 k+2$ and of height at most $O(\log (n))$ [Bodlaender, 88].
- Every graph of clique-width k admits a clique-width expression of height at most $3 \log (n)$ and uses $k .2^{k+1}$ colors at most [Courcelle-Vanicat, 03].
- Every graph of m-clique-width [variant of clique-width that uses several colors of each vertex] k has a m-clique-width expression of height at most $3 \log (n)$ and uses $2 k$ colors at most [Courcelle-Twigg, 07].
- Our result unifies all these results and as a corollary we get that every graph of rank-width k admits a layout of height at most $3 \log (n)$ and of width at most $2 k$.

Plan

(9) Preliminaries

(2) Vectorial Colorings

- Graph Operations
- Main theorem
(3) General Framework for balanced decompositions
- Balancing theorems: General ideas
- Tools

Tools - Informal definitions

Terms and Contexts

- We let F_{k} (e.g. $\left\{\oplus, \eta_{i, j}, \rho_{i, j} \mid i, j \in[k], i \neq j\right\}$) be a set of binary operations and C_{k} (e.g. $\left.\{\mathbf{i} \mid i \in[k]\}\right)$ be a set of constants.
- A term is a well-formed expression in $T\left(F_{k}, C_{k}\right)$

Tools - Informal definitions

Tools - Informal definitions

Terms and Contexts

- We let F_{k} (e.g. $\left\{\oplus, \eta_{i, j}, \rho_{i, j} \mid i, j \in[k], i \neq j\right\}$) be a set of binary operations and C_{k} (e.g. $\left.\{\mathbf{i} \mid i \in[k]\}\right)$ be a set of constants.
- A term is a well-formed expression in $T\left(F_{k}, C_{k}\right)$
- A context is a well-formed expression in $T\left(F_{K}, C_{k} \cup\{u\}\right)$ with one and only one occurrence of u.

Tools - Informal definitions

Tools - Informal definitions

Terms and Contexts

- We let F_{k} (e.g. $\left\{\oplus, \eta_{i, j}, \rho_{i, j} \mid i, j \in[k], i \neq j\right\}$) be a set of binary operations and C_{k} (e.g. $\left.\{\mathbf{i} \mid i \in[k]\}\right)$ be a set of constants.
- A term is a well-formed expression in $T\left(F_{k}, C_{k}\right)$
- A context is a well-formed expression in $T\left(F_{K}, C_{k} \cup\{u\}\right)$ with one and only one occurrence of u.

Substitution of a term to u

$c \bullet t=c[t / u] \in T\left(F_{k}, C_{k}\right)$ for c a context and t a term

Tools - Informal definitions

$c \bullet t$

Tools - Informal definitions

Terms and Contexts

- We let F_{k} (e.g. $\left\{\oplus, \eta_{i, j}, \rho_{i, j} \mid i, j \in[k], i \neq j\right\}$) be a set of binary operations and C_{k} (e.g. $\left.\{\mathbf{i} \mid i \in[k]\}\right)$ be a set of constants.
- A term is a well-formed expression in $T\left(F_{k}, C_{k}\right)$
- A context is a well-formed expression in $T\left(F_{K}, C_{k} \cup\{u\}\right)$ with one and only one occurrence of u.

Substitution of a term to u

$c \bullet t=c[t / u] \in T\left(F_{k}, C_{k}\right)$ for c a context and t a term

Substitution of a context to u
 $c \circ c^{\prime}=c\left[c^{\prime} / u\right] \in T\left(F_{K}, C_{k} \cup\{u\}\right)$ for c, c^{\prime} contexts.

Tools - Informal definitions

Intuition of the framework

We transform a term t into a 3-balanced term in 2 steps:

Step 1: Iterated splitting

Transform the term t into a term t^{b} of height at most $3 \log (n)$ written with symbols in $F_{k} \cup C_{k} \cup\{\bullet, \circ\}$.

Step 2: Elimination of \bullet and \circ by operations

We replace the operations \cdot and \circ in t^{b} by operations that uses more colors, but not so much.

Iterated splitting

- We split a term t into a context c and a term t^{\prime} such that c and t^{\prime} are as equal as possible $\Longrightarrow t=c \bullet t^{\prime}$.

Iterated splitting

- We split a term t into a context c and a term t^{\prime} such that c and t^{\prime} are as equal as possible $\Longrightarrow t=c \bullet t^{\prime}$.

Iterated splitting

- A context c is written $c=f\left(c^{\prime}, t\right)$ if $|t| \simeq\left|c^{\prime}\right|$ or splitted (next slide).

Iterated splitting

- A context c is written $c=f\left(c^{\prime}, t\right)$ if $|t| \simeq\left|c^{\prime}\right|$ or splitted (next slide).

Iterated splitting

- A context c can be splitted into contexts $c^{\prime}, c^{\prime \prime}$ with c^{\prime} and $c^{\prime \prime}$ as "equal" as possible and $c=c^{\prime} \circ c^{\prime \prime}$.

Iterated splitting

- A context c can be splitted into contexts $c^{\prime}, c^{\prime \prime}$ with c^{\prime} and $c^{\prime \prime}$ as "equal" as possible and $c=c^{\prime} \circ c^{\prime \prime}$.

Elimination of \bullet and \circ

For terms and contexts over graph operations, we use the following rules to transform a term written with symbols in $F_{k} \cup C_{k} \cup\{\bullet, \circ\}$ into a term in $T\left(F_{k^{\prime}}, C_{k^{\prime}}\right)$ with $k^{\prime} \geq k$:

- A term t is replaced by $\operatorname{val}(t)$.
- $c \bullet t_{H}$ is replaced by $f^{\prime}\left(G_{c}, H\right)$ where $H=v a l\left(t_{H}\right)$ and G_{C} is a colored graph that represents the context c.
- $c \circ c^{\prime}$ is replaced by $f^{\prime \prime}\left(G_{c}, G_{c^{\prime}}\right)$ (inductivity of the construction)

With the rules above, one can eliminate \bullet and \circ and replace them by operations using more colors.

Conclusion

- Rank-width is an interesting complexity measure because it is equivalent to clique-width, and also because it is increasing for the vertex-minor inclusion and has a polynomial approximation algorithm.
- We give an algebraic characterization of rank-width by means of operations based on linear transformations of the $G F(2)$-vector space.
- The Algebraic characterization allows us to define the notion of rank-width for directed graphs.
- Using approximations of Oum, we can extend the approximation algorithms to "directed" clique-width.
- In some applications, balanced decompositions are crucial. We give a general framework that handles many graph decompositions (tree-decomposition, branch-decomposition, clique-width, NLC-width, m-clique-width, Boolean-width and rank-width.)

Perspectives

- The tightness of the bound of the balanced terms.
- Generalize the general framework of balanced terms to arbitrary signatures (not only binary ones)
- Can we do the balancing in linear time instead of $O(n \log (n))$?

