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Introduction

Introduction

Graph decompositions parameterized by tree-width, clique-width and
rank-width yield Fixed Parameter Tractable algorithms.

TWD(≤ k) ⊂ CWD(≤ f (k)) ≡ RWD(≤ g(k))

Tree-width and clique-width allow FPT algorithms for problems definable
in Monadic Second Order logic.

The “MSOL =⇒ FPT” results use descriptions of graphs by algebraic
expressions (twd,cwd).
Rank-width has good approximation algorithms:

◮ “cwd(G) ≤ k ” is NP-complete for given (G,k) and open if k is fixed.
◮ O(n3)-time approximation algorithm for rank-width.
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Introduction

Main result 1

Clique-width and Rank-width are equivalent in the sense that

rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 −1 (Oum-Seymour).

But the translation rank-decomposition → clique-width expression may
need k → 2k+1.

Main Theorem 1
There exists a signature (Rk ,Ck ) such that

rwd(G) ≤ k ⇐⇒ G is defined by a term inT (Rk ,Ck).
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Introduction

Second Main result

The transformation of a decomposition of width k into one of width f (k)
and diameter O(log(n)).

Corollary

tree-width: f (k) = 3k −1,

clique-width: f (k) = 20(k),

m-clique-width: f (k) = 2k ,

rank-width: f (k) = 2k .
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Preliminaries

Rank-width

For X ⊆ VG, we let ρG(X) = rk(AG[X ,VG −X ]) where rk is the matrix rank
function over GF(2).

A layout of a graph G is a pair (T ,L) where T is a tree of degree ≤ 3 and
L : VG → LT is a bijection of the set of vertices of G onto the set of leaves
of T .
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Preliminaries
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Preliminaries

Rank-width

For X ⊆ VG, we let ρG(X) = rk(AG[X ,VG −X ]) where rk is the matrix rank
function over GF(2).

A layout of a graph G is a pair (T ,L) where T is a tree of degree ≤ 3 and
L : VG → LT is a bijection of the set of vertices of G onto the set of leaves
of T .

Any edge e of T induces a bipartition (Xe,Ye) of the set LT , thus a
bipartition (X ,V −X) of VG: wd(e) = ρG(X).
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Preliminaries

Rank-width

For X ⊆ VG, we let ρG(X) = rk(AG[X ,VG −X ]) where rk is the matrix rank
function over GF(2).

A layout of a graph G is a pair (T ,L) where T is a tree of degree ≤ 3 and
L : VG → LT is a bijection of the set of vertices of G onto the set of leaves
of T .

Any edge e of T induces a bipartition (Xe,Ye) of the set LT , thus a
bipartition (X ,V −X) of VG: wd(e) = ρG(X).

wd(T ,L) = max{wd(e) | e edge ofT}.
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Preliminaries

Rank-width

For X ⊆ VG, we let ρG(X) = rk(AG[X ,VG −X ]) where rk is the matrix rank
function over GF(2).

A layout of a graph G is a pair (T ,L) where T is a tree of degree ≤ 3 and
L : VG → LT is a bijection of the set of vertices of G onto the set of leaves
of T .

Any edge e of T induces a bipartition (Xe,Ye) of the set LT , thus a
bipartition (X ,V −X) of VG: wd(e) = ρG(X).

wd(T ,L) = max{wd(e) | e edge ofT}.

rwd(G) = min{wd(T ,L) | (T ,L) layout ofG}
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Preliminaries

Clique-width and rank-width

Clique-width

⊕ = disjoint union, ηi,j = edge-cretation, ρi→j = relabeling.

Fk = {⊕,ηi,j ,ρi→j | i, j ∈ [k ], i 6= j} and Ck = {i | i ∈ [k ]}

cwd(G) = min{k | G = val(t) ∧ t ∈ T (Fk ,Ck )}

Clique-width and Rank-width (Oum and Seymour)

rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 −1.
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Preliminaries

Properties of rank-width

For fixed k , Oum has given an O(n3)-time “approximation” algorithm that
for a graph G either outputs a layout of width at most 3k −1 or outputs
that G has rank-width at least k +1 (advantage over clique-width).

But we need to transform the layout into a clique-width expression to
solve FPT-problems (a disadvantage if it is important that the hidden
constants stay as small as possible).

This is why characterization of rank-width by graph operations is
interesting and also from a fundamental point of view.
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Vectorial Colorings Graph Operations

Vectorial colorings

Let k ∈ N, B = {0,1}. A B
k -coloring of a graph G is a mapping γ : VG → B

k .

x ∈ VG has color i (among others) iff γ(x)[i] (the i-th component of γ(x)) is
1.

Let ΓG be the (VG × k)-matrix, called the color-matrix, the row vectors of
which are the vectors γG(x) ∈ B

k for x ∈ VG.

Let us now define the operations ...
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Vectorial Colorings Graph Operations

Linear recolorings

Linear recolorings of B
k -colored graphs

Let G be a B
k -colored graph.

Let N be a (k × ℓ)-matrix.
H = RecolN(G) ⇐⇒ γH(x) = γG(x) ·N. Then

◮ ΓH = ΓG ·N.

Remark
RecolN(RecolN′(G)) = RecolN′·N(G).

2k different colors are handled efficiently via (k × ℓ)-matrices.
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Vectorial Colorings Graph Operations

Edge creation

Bilinear graph products

For G, B
k -colored, H, B

ℓ-colored, and for (k × ℓ)-matrices M,N,P the graph
K = G⊗M,N,P H is constructed in 3 steps.

disjoint union of G and H.

x ∈ VG and y ∈ VH are linked iff γG(x) ·M · γH(y)T = 1.

Independent recolorings of G and H by RecolN and RecolP, i.e.,

ΓK (z) =

{

ΓG(z) ·N if z ∈ VG

ΓH(z) ·P if z ∈ VH .

Remark

We denote by uT the transposition of the row-vector u.
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Vectorial Colorings Graph Operations

Some remarks

Remark
The operation ⊗M,N,P combines ⊕, η and ρ of clique-width and this is done in linear
algebra over GF(2).

Remark
As in the operations by Wanke, these operations add edges between two disjoint
graphs, that are the two arguments. This is a difference with clique-width where the
single binary operation ⊕ is used, and ηi,j applied to G⊕H may add edges to G and
to H.
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Vectorial Colorings Graph Operations

In terms of products of matrices...

K = G⊗M,N,P H =⇒

AK =

(

AG ΓG ·M ·ΓT
H

ΓH ·MT ·ΓT
G AH

)

ΓK =

(

ΓG ·N
ΓH ·P

)

where MT denotes the transposition of the matrix M.

For u ∈ B
n, we denote by u the graph with a single vertex colored by u

and Cn = {u | u ∈ B
n}.

We let Rn be the set of linear recolorings and bilinear products where
M,N,P are (k × ℓ)-matrices with k , ℓ ≤ n.

We denote by val(t) the graph defined by a term t ∈ T (Rn,Cn). This graph
is the value of the term in the corresponding algebra.

(LaBRI, Universite Bordeaux 1, CNRS) Rank-width and Balanced terms 14 / 35



Vectorial Colorings Main theorem
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Vectorial Colorings Main theorem

Main theorem 1

A graph G has rank-width at most n iff it is the value of a term in T (Rn,Cn).

Remark
A context c is a term in T (Rn,Cn ∪{u}) with a single occurrence of the variable u. The
context u is denoted by Id.
For t ∈ T (Rn,Cn) we let c • t = c[t/u] (substitution)
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Vectorial Colorings Main theorem

Proof of “If direction”(1)

Let G = val(t). We let T be the syntactic tree of t . There exists a bijection
L : VG → LT where LT is the set of leaves of T .

We take (T ,L) as a layout of G and we prove that the width of T is at
most n.
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Vectorial Colorings Main theorem

“If direction”(2)

Claim

If t = c • t ′, c 6= Id a context and t ′ ∈ T (Rn,Cn) then AG[VH ,VG −VH ] = ΓH ·B and
ΓG[VH ] = ΓH ·C for some matrices B and C (H = val(t ′)).

e

2 3 5 6

4

1

t′
c

c = c′⊗M,N,P t ′′

Then G = G′⊗M,N,P K where
G′ = val(c′ • t ′) and K = val(t ′′).

AG[VH ,VG −VH ] =
(AG′ [VH ,VG′ −VH ΓG′[VH ] ·M ·ΓT

K ).

AG′ [VH ,VG′ −VH = ΓH ·B′,
ΓG′[VH ] = ΓH ·C′

AG[VH ,VG −VH ] =
ΓH · (B′ C′ ·M ·ΓT

K ).

ΓG[VH ] = ΓG′[VH ] ·N = ΓH ·C′ ·N.
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Vectorial Colorings Main theorem

Proof of converse direction(1)
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Layout (T ,L) of G

Choose a vertex r of degree 1 in T .

Direct T with r as root.

T directed, will be the syntactic tree of a
term t that defines G.

We must show how to label each
internal node of T by an operation
⊗M,N,P and how to color each vertex.
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Vectorial Colorings Main theorem

Proof of Converse direction (2)

Lemma 1
Let G be a graph with a bipartition VG = V1 ∪V2. Let m = rk(AG[V1,V2]). Then
G = H ⊗M K where M is a nonsingular m×m matrix, for some B

m-colorings H
and K of G[V1] and G[V2] respectively.

Note
G[V1] denotes the induced subgraph on V1.

⊗M = ⊗M,N,P for some N and P we don’t care about.
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Vectorial Colorings Main theorem

Idea of proof of Lemma 1 (1)

5 8 9 6 7
1 0 1 1 0 0
4 1 0 0 1 0
2 0 1 1 0 0
3 0 0 0 0 0

M = AG[{1,4},{5,8}]
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Vectorial Colorings Main theorem

Idea of Proof of Lemma 1(2)

We let G[A] = H and G[B] = K .

We call {1,4} a
vertex-basis of H with
respect to K

B
3-coloring of H

1 1 0
2 1 0
3 0 0
4 0 1

We call {5,8} a
vertex-basis of K with
respect to H

B
3-coloring of K

5 1 0
6 1 0
7 0 0
8 0 1
9 0 1

(LaBRI, Universite Bordeaux 1, CNRS) Rank-width and Balanced terms 22 / 35



Vectorial Colorings Main theorem

Proof of Converse direction (3)

H

K

L

BH

BK

BL

Lemma 2
(VH ,VK ,VL) a 3-partition of
VG,

H = G[VH ],K = G[VK ] and
L = G[VL],

h = ρG(VH), k = ρG(VK ),
ℓ = ρG(VL)

G = (H ⊗M,N1,N2 K )⊗P L.
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Vectorial Colorings Main theorem

Idea of proof of Lemma 2(1)

H

K

L

BH

BK

BL

Choice of vertex-basis
Choose BH a vertex-basis of H with respect to
K ∪L

Choose BK a vertex-basis of K with respect to
H ∪L

Choose BL a vertex-basis of L with respect to
H ∪K

Extract from BH ∪BK a vertex-basis of H ∪K
with respect to L.
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Vectorial Colorings Main theorem

Idea of proof of Lemma 2 (2)

By Lemma 1, there exist B
h-coloring of H, B

k -coloring of K and a
(h× k)-matrix M such that G[H ∪K ] = H ⊗M K .

A vertex-basis of H ∪K with respect to L is included in BH ∪BK . By
Lemma 1, there exists a matrix P such that G = G′⊗P L where G′ is a
B

ℓ-coloring of G[H ∪K ].

We can thus find a recoloring of H by N1 and a recoloring of K by N2 such
that G′ = H ⊗M,N1,N2 K .

We have then G = (H ⊗M,N1,N2 K )⊗P L.
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General Framework for balanced decompositions Balancing theorems: General ideas
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General Framework for balanced decompositions Balancing theorems: General ideas

Balancing Theorems: General ideas

For algorithmic purposes it is sometimes crucial to use a-balanced terms,
i.e., of height at most a(log(n)+1).
This is the case for instance of:

◮ the labeling schemes considered by Courcelle, Vanicat, Twigg (STACS’07).
◮ the NC-algorithms considered by Bodlaender.

How to transform a path-decomposition of width k into a
tree-decomposition of height O(log(n)) and of width O(k)?

We cut at the “middle” of the path-decomposition and we iterate the
process with the smaller paths.
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Balancing Theorems: General ideas

For algorithmic purposes it is sometimes crucial to use a-balanced terms,
i.e., of height at most a(log(n)+1).
This is the case for instance of:

◮ the labeling schemes considered by Courcelle, Vanicat, Twigg (STACS’07).
◮ the NC-algorithms considered by Bodlaender.

How to transform a path-decomposition of width k into a
tree-decomposition of height O(log(n)) and of width O(k)?

We cut at the “middle” of the path-decomposition and we iterate the
process with the smaller paths.

We thus have a tree-decomposition of width at most 3k and of height
log(n).
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General Framework for balanced decompositions Balancing theorems: General ideas

Balancing Theorems: General ideas

For algorithmic purposes it is sometimes crucial to use a-balanced terms,
i.e., of height at most a(log(n)+1).
This is the case for instance of:

◮ the labeling schemes considered by Courcelle, Vanicat, Twigg (STACS’07).
◮ the NC-algorithms considered by Bodlaender.

How to transform a path-decomposition of width k into a
tree-decomposition of height O(log(n)) and of width O(k)?

We cut at the “middle” of the path-decomposition and we iterate the
process with the smaller paths.

We thus have a tree-decomposition of width at most 3k and of height
log(n).

How to generalize it to arbitrary tree-decompositions? And what about
clique-width, rank-width and other width?
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General Framework for balanced decompositions Balancing theorems: General ideas

Generalisation

Each tree has a balanced tree-decomposition of width 2 and of height at
most O(log(n)) [Bodlaender, 88].

Every graph of tree-width k admits a tree-decomposition of width at most
3k +2 and of height at most O(log(n)) [Bodlaender, 88].

Every graph of clique-width k admits a clique-width expression of height
at most 3 log(n) and uses k .2k+1 colors at most [Courcelle-Vanicat, 03].

Every graph of m-clique-width [variant of clique-width that uses several
colors of each vertex] k has a m-clique-width expression of height at most
3 log(n) and uses 2k colors at most [Courcelle-Twigg, 07].

Our result unifies all these results and as a corollary we get that every
graph of rank-width k admits a layout of height at most 3 log(n) and of
width at most 2k .
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General Framework for balanced decompositions Tools

Tools - Informal definitions

Terms and Contexts
We let Fk (e.g. {⊕,ηi,j ,ρi,j | i, j ∈ [k ], i 6= j}) be a set of binary operations
and Ck (e.g. {i | i ∈ [k ]}) be a set of constants.

A term is a well-formed expression in T (Fk ,Ck)
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General Framework for balanced decompositions Tools

Tools - Informal definitions

Terms and Contexts
We let Fk (e.g. {⊕,ηi,j ,ρi,j | i, j ∈ [k ], i 6= j}) be a set of binary operations
and Ck (e.g. {i | i ∈ [k ]}) be a set of constants.

A term is a well-formed expression in T (Fk ,Ck)

A context is a well-formed expression in T (FK ,Ck ∪{u}) with one and only
one occurrence of u.
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General Framework for balanced decompositions Tools

Tools - Informal definitions

Terms and Contexts
We let Fk (e.g. {⊕,ηi,j ,ρi,j | i, j ∈ [k ], i 6= j}) be a set of binary operations
and Ck (e.g. {i | i ∈ [k ]}) be a set of constants.

A term is a well-formed expression in T (Fk ,Ck)

A context is a well-formed expression in T (FK ,Ck ∪{u}) with one and only
one occurrence of u.

Substitution of a term to u
c • t = c[t/u] ∈ T (Fk ,Ck ) for c a context and t a term
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Tools - Informal definitions
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c

t

c • t
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General Framework for balanced decompositions Tools

Tools - Informal definitions

Terms and Contexts
We let Fk (e.g. {⊕,ηi,j ,ρi,j | i, j ∈ [k ], i 6= j}) be a set of binary operations
and Ck (e.g. {i | i ∈ [k ]}) be a set of constants.

A term is a well-formed expression in T (Fk ,Ck)

A context is a well-formed expression in T (FK ,Ck ∪{u}) with one and only
one occurrence of u.

Substitution of a term to u
c • t = c[t/u] ∈ T (Fk ,Ck ) for c a context and t a term

Substitution of a context to u

c ◦ c′ = c[c′/u] ∈ T (FK ,Ck ∪{u}) for c,c′ contexts.
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General Framework for balanced decompositions Tools

Tools - Informal definitions

t c

c

t

c • t

c

c′

c ◦ c′
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General Framework for balanced decompositions Tools

Intuition of the framework

We transform a term t into a 3-balanced term in 2 steps:

Step 1: Iterated splitting

Transform the term t into a term tb of height at most 3 log(n) written with
symbols in Fk ∪Ck ∪{•,◦}.

Step 2: Elimination of • and ◦ by operations

We replace the operations • and ◦ in tb by operations that uses more colors,
but not so much.
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General Framework for balanced decompositions Tools

Iterated splitting

We split a term t into a context c and a term t ′ such that c and t ′ are as
equal as possible =⇒ t = c • t ′.
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General Framework for balanced decompositions Tools

Iterated splitting

We split a term t into a context c and a term t ′ such that c and t ′ are as
equal as possible =⇒ t = c • t ′.

t

t ′

c

c • t

t ′
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General Framework for balanced decompositions Tools

Iterated splitting

A context c is written c = f (c′, t) if |t | ≃ |c′| or splitted (next slide).
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General Framework for balanced decompositions Tools

Iterated splitting

A context c is written c = f (c′, t) if |t | ≃ |c′| or splitted (next slide).

f

c

c′
t

f (c′, t)

c′ t
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General Framework for balanced decompositions Tools

Iterated splitting

A context c can be splitted into contexts c′,c′′ with c′ and c′′ as “equal” as
possible and c = c′ ◦ c′′.
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c

c′′

c′

c′ ◦ c′′

c′ c′′
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General Framework for balanced decompositions Tools

Elimination of • and ◦

For terms and contexts over graph operations, we use the following rules to
transform a term written with symbols in Fk ∪Ck ∪{•,◦} into a term in
T (Fk ′ ,Ck ′) with k ′ ≥ k :

A term t is replaced by val(t).

c • tH is replaced by f ′(Gc ,H) where H = val(tH) and Gc is a colored graph
that represents the context c.

c ◦ c′ is replaced by f ′′(Gc ,Gc′) (inductivity of the construction)

=⇒

With the rules above, one can eliminate • and ◦ and replace them by
operations using more colors.
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Conclusion and Perspectives

Conclusion

Rank-width is an interesting complexity measure because it is equivalent
to clique-width, and also because it is increasing for the vertex-minor
inclusion and has a polynomial approximation algorithm.

We give an algebraic characterization of rank-width by means of
operations based on linear transformations of the GF(2)-vector space.

The Algebraic characterization allows us to define the notion of
rank-width for directed graphs.

Using approximations of Oum, we can extend the approximation
algorithms to “directed” clique-width.

In some applications, balanced decompositions are crucial. We give a
general framework that handles many graph decompositions
(tree-decomposition, branch-decomposition, clique-width, NLC-width,
m-clique-width, Boolean-width and rank-width.)
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Conclusion and Perspectives

Perspectives

The tightness of the bound of the balanced terms.

Generalize the general framework of balanced terms to arbitrary
signatures (not only binary ones)

Can we do the balancing in linear time instead of O(n log(n))?
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