Graph operations characterizing rank-width and balanced graph expressions

Mamadou Moustapha KANTÉ Bruno COURCELLE

LaBRI, Université Bordeaux 1, CNRS.

June 21 2007 WG 2007 (Dornburg)

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ・注:

Introduction

- Graph decompositions parameterized by tree-width, clique-width and rank-width yield *Fixed Parameter Tractable* algorithms.
- $TWD(\leq k) \subset CWD(\leq f(k)) \equiv RWD(\leq g(k))$
- Tree-width and clique-width allow FPT algorithms for problems definable in Monadic Second Order logic.
- The "MSOL => FPT" results use descriptions of graphs by algebraic expressions (twd,cwd).
- Rank-width has good approximation algorithms:
 - "*cwd*(*G*) \leq *k*" is NP-complete for given (*G*, *k*) and open if *k* is fixed.
 - $O(n^3)$ -time approximation algorithm for rank-width.

Main result 1

Clique-width and Rank-width are equivalent in the sense that

 $rwd(G) \leq cwd(G) \leq 2^{rwd(G)+1} - 1$ (Oum-Seymour).

 But the translation rank-decomposition → clique-width expression may need k → 2^{k+1}.

Main Theorem 1

There exists a signature (R_k, C_k) such that

 $rwd(G) \leq k \iff G$ is defined by a term in $T(R_k, C_k)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Second Main result

The transformation of a decomposition of width k into one of width f(k) and diameter $O(\log(n))$.

Corollary• tree-width:f(k) = 3k - 1,• clique-width: $f(k) = 2^{0(k)}$,• m-clique-width:f(k) = 2k,• rank-width:f(k) = 2k.

イロト 不得 トイヨト イヨト 三連

Plan

Vectorial ColoringsGraph Operations

Main theorem

General Framework for balanced decompositions

- Balancing theorems: General ideas
- Tools

イロト 不得 トイヨト イヨト 三連

- For $X \subseteq V_G$, we let $\rho_G(X) = rk(A_G[X, V_G X])$ where rk is the matrix rank function over GF(2).
- A layout of a graph G is a pair (T, L) where T is a tree of degree ≤ 3 and L: V_G → L_T is a bijection of the set of vertices of G onto the set of leaves of T.

ヘロン 人間 とくほ とくほ とうほう

Preliminaries

Rank-width

 $rk(A_G[A, B]) = 2$

B	5	6	7	8	9
1	0	0	0	1	1
2	0	0	0	1	1
3	0	0	0	0	0
4	1	1	0	0	0

 $A_G[A, B] =$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲■ ● のへ⊙

- For $X \subseteq V_G$, we let $\rho_G(X) = rk(A_G[X, V_G X])$ where rk is the matrix rank function over GF(2).
- A layout of a graph *G* is a pair (T, \mathcal{L}) where *T* is a tree of degree \leq 3 and $\mathcal{L} : V_G \rightarrow L_T$ is a bijection of the set of vertices of *G* onto the set of leaves of *T*.
- Any edge e of T induces a bipartition (X_e, Y_e) of the set L_T, thus a bipartition (X, V X) of V_G: wd(e) = ρ_G(X).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへの

- For $X \subseteq V_G$, we let $\rho_G(X) = rk(A_G[X, V_G X])$ where rk is the matrix rank function over GF(2).
- A layout of a graph G is a pair (T, L) where T is a tree of degree ≤ 3 and L : V_G → L_T is a bijection of the set of vertices of G onto the set of leaves of T.
- Any edge e of T induces a bipartition (X_e, Y_e) of the set L_T, thus a bipartition (X, V X) of V_G: wd(e) = ρ_G(X).
- $wd(T, L) = \max\{wd(e) \mid e \text{ edge of } T\}.$

▲ロト ▲得ト ▲ヨト ▲ヨト 三三 つんの

Preliminaries

Rank-width

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 - 釣�?

- For $X \subseteq V_G$, we let $\rho_G(X) = rk(A_G[X, V_G X])$ where rk is the matrix rank function over GF(2).
- A layout of a graph G is a pair (T, L) where T is a tree of degree ≤ 3 and L : V_G → L_T is a bijection of the set of vertices of G onto the set of leaves of T.
- Any edge e of *T* induces a bipartition (X_e, Y_e) of the set L_T, thus a bipartition (X, V X) of V_G: wd(e) = ρ_G(X).
- $wd(T, L) = \max\{wd(e) \mid e \text{ edge of } T\}.$
- $rwd(G) = min\{wd(T, \mathcal{L}) \mid (T, \mathcal{L}) \text{ layout of } G\}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへの

Clique-width and rank-width

Clique-width

• \oplus = disjoint union, $\eta_{i,j}$ = edge-cretation, $\rho_{i \rightarrow j}$ = relabeling.

•
$$F_k = \{ \oplus, \eta_{i,j}, \rho_{i \to j} \mid i, j \in [k], i \neq j \}$$
 and $C_k = \{ i \mid i \in [k] \}$

•
$$cwd(G) = min\{k \mid G = val(t) \land t \in T(F_k, C_k)\}$$

Clique-width and Rank-width (Oum and Seymour)

$$rwd(G) \leq cwd(G) \leq 2^{rwd(G)+1}-1.$$

(ロ) (個) (E) (E) (E)

Properties of rank-width

- For fixed k, Oum has given an $O(n^3)$ -time "approximation" algorithm that for a graph G either outputs a layout of width at most 3k 1 or outputs that G has rank-width at least k + 1 (advantage over clique-width).
- But we need to transform the layout into a clique-width expression to solve FPT-problems (a disadvantage if it is important that the hidden constants stay as small as possible).
- This is why characterization of rank-width by graph operations is interesting and also from a fundamental point of view.

イロト 不得 トイヨト イヨト 三頭 …

Graph Operations

Plan

Vectorial Colorings • Graph Operations

Main theorem

3

ヘロト 人間 トイヨト 人間トー

Vectorial colorings

- Let $k \in \mathbb{N}$, $\mathbb{B} = \{0, 1\}$. A \mathbb{B}^k -coloring of a graph G is a mapping $\gamma \colon V_G \to \mathbb{B}^k$.
- *x* ∈ *V_G* has color *i* (among others) iff *γ*(*x*)[*i*] (the i-th component of *γ*(*x*)) is
 1.
- Let Γ_G be the (V_G × k)-matrix, called the color-matrix, the row vectors of which are the vectors γ_G(x) ∈ B^k for x ∈ V_G.
- Let us now define the operations ...

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ・注:

Linear recolorings

Linear recolorings of \mathbb{B}^k -colored graphs

- Let G be a \mathbb{B}^k -colored graph.
- Let *N* be a $(k \times \ell)$ -matrix.

•
$$H = Recol_N(G) \iff \gamma_H(x) = \gamma_G(x) \cdot N$$
. Then

 $\Gamma_H = \Gamma_G \cdot N.$

Remark

•
$$\operatorname{Recol}_{N}(\operatorname{Recol}_{N'}(G)) = \operatorname{Recol}_{N' \cdot N}(G).$$

• 2^k different colors are handled efficiently via $(k \times \ell)$ -matrices.

(日)(御)(王)(王)(王)

Graph Operations

Edge creation

Bilinear graph products

For G, \mathbb{B}^k -colored, H, \mathbb{B}^ℓ -colored, and for $(k \times \ell)$ -matrices M, N, P the graph $K = G \otimes_{M,N,P} H$ is constructed in 3 steps.

- disjoint union of G and H.
- $x \in V_G$ and $y \in V_H$ are linked iff $\gamma_G(x) \cdot M \cdot \gamma_H(y)^T = 1$.
- Independent recolorings of G and H by Recol_N and Recol_P, i.e.,

$$\Gamma_{\mathcal{K}}(z) = \begin{cases} \Gamma_{\mathcal{G}}(z) \cdot N & \text{if } z \in V_{\mathcal{G}} \\ \Gamma_{\mathcal{H}}(z) \cdot P & \text{if } z \in V_{\mathcal{H}}. \end{cases}$$

Remark

We denote by u^{T} the transposition of the row-vector u.

▲ロト ▲得ト ▲ヨト ▲ヨト 三三 つんの

Some remarks

Remark

The operation $\otimes_{M,N,P}$ combines \oplus , η and ρ of clique-width and this is done in linear algebra over GF(2).

Remark

As in the operations by Wanke, these operations add edges between two disjoint graphs, that are the two arguments. This is a difference with clique-width where the single binary operation \oplus is used, and $\eta_{i,i}$ applied to $G \oplus H$ may add edges to G and to H.

イロト 不得 トイヨト イヨト 三日

In terms of products of matrices...

 $K = G \otimes_{M,N,P} H \implies$

$$\mathbf{A}_{\mathbf{K}} = \begin{pmatrix} \mathbf{A}_{\mathbf{G}} & \Gamma_{\mathbf{G}} \cdot \mathbf{M} \cdot \Gamma_{\mathbf{H}}^{\mathsf{T}} \\ \Gamma_{\mathbf{H}} \cdot \mathbf{M}^{\mathsf{T}} \cdot \Gamma_{\mathbf{G}}^{\mathsf{T}} & \mathbf{A}_{\mathbf{H}} \end{pmatrix}$$

$$\Gamma_{\mathcal{K}} = \begin{pmatrix} \Gamma_{\mathcal{G}} \cdot \mathcal{N} \\ \Gamma_{\mathcal{H}} \cdot \mathcal{P} \end{pmatrix}$$

where M^{T} denotes the transposition of the matrix *M*.

- For *u* ∈ Bⁿ, we denote by **u** the graph with a single vertex colored by *u* and C_n = {**u** | *u* ∈ Bⁿ}.
- We let *R_n* be the set of linear recolorings and bilinear products where *M*, *N*, *P* are (*k* × ℓ)-matrices with *k*, ℓ ≤ *n*.
- We denote by val(t) the graph defined by a term t ∈ T(R_n, C_n). This graph is the value of the term in the corresponding algebra.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Plan

Vectorial Colorings Graph Operations

Main theorem

<ロ> (四) (四) (三) (三) (三)

Main theorem 1

A graph G has rank-width at most n iff it is the value of a term in $T(R_n, C_n)$.

Remark

A context c is a term in $T(R_n, C_n \cup \{u\})$ with a single occurrence of the variable u. The context u is denoted by Id. For $t \in T(R_n, C_n)$ we let $c \bullet t = c[t/u]$ (substitution)

イロト 不得 トイヨト イヨト 三日

Proof of "If direction"(1)

- Let G = val(t). We let T be the syntactic tree of t. There exists a bijection $\mathcal{L} : V_G \to L_T$ where L_T is the set of leaves of T.
- We take (T, L) as a layout of G and we prove that the width of T is at most n.

イロト 不得 トイヨト イヨト 三日

"If direction"(2)

Claim

If $t = c \bullet t'$, $c \neq Id$ a context and $t' \in T(R_n, C_n)$ then $A_G[V_H, V_G - V_H] = \Gamma_H \cdot B$ and $\Gamma_{G[V_H]} = \Gamma_H \cdot C$ for some matrices *B* and *C* (H = val(t')).

 $c = c' \otimes_{M,N,P} t''$

• Then
$$G = G' \otimes_{M,N,P} K$$
 where $G' = val(c' \bullet t')$ and $K = val(t'')$

•
$$A_G[V_H, V_G - V_H] =$$

 $(A_{G'}[V_H, V_{G'} - V_H \ \Gamma_{G'[V_H]} \cdot M \cdot \Gamma_K^T).$

•
$$A_{G'}[V_H, V_{G'} - V_H = \Gamma_H \cdot B', \Gamma_{G'[V_H]} = \Gamma_H \cdot C'$$

•
$$A_G[V_H, V_G - V_H] = \Gamma_H \cdot (B' \quad C' \cdot M \cdot \Gamma_K^T)$$

•
$$\Gamma_{G[V_H]} = \Gamma_{G'[V_H]} \cdot N = \Gamma_H \cdot C' \cdot N.$$

(日)(御)(王)(王)(王)

Proof of converse direction(1)

Layout (T, L) of G

Layout (T, \mathcal{L}) of G

- Choose a vertex r of degree 1 in T.
- Direct *T* with *r* as root.
- *T* directed, will be the syntactic tree of a term *t* that defines *G*.

(日)(御)(王)(王)(王)

 We must show how to label each internal node of *T* by an operation ⊗_{*M*,*N*,*P*} and how to color each vertex.

Proof of Converse direction (2)

Lemma 1

Let *G* be a graph with a bipartition $V_G = V_1 \cup V_2$. Let $m = rk(A_G[V_1, V_2])$. Then $G = H \otimes_M K$ where *M* is a nonsingular $m \times m$ matrix, for some \mathbb{B}^m -colorings *H* and *K* of $G[V_1]$ and $G[V_2]$ respectively.

Note

- $G[V_1]$ denotes the induced subgraph on V_1 .
- $\otimes_M = \otimes_{M,N,P}$ for some N and P we don't care about.

イロト 不得 トイヨト イヨト 三連

Idea of proof of Lemma 1 (1)

	5	8	9	6	7
1	0	1	1	0	0
4	1	0	0	1	0
2	0	1	1	0	0
3	0	0	0	0	0

$$\begin{split} &M = A_G[\{1,4\},\{5,8\} \\ &A_G[2] = A_G[1] \\ &A_G^T[9] = A_G^T[8] \\ &A_G^T[6] = A_G^T[5] \end{split}$$

Idea of Proof of Lemma 1(2)

We let G[A] = H and G[B] = K.

• We call {1,4} a vertex-basis of *H* with respect to *K*

• We call {5,8} a vertex-basis of *K* with respect to *H*

(日) (個) (注) (注) (三)

Proof of Converse direction (3)

Lemma 2

- (V_H, V_K, V_L) a 3-partition of V_G,
- $H = G[V_H], K = G[V_K]$ and $L = G[V_L],$

•
$$h = \rho_G(V_H), \ k = \rho_G(V_K), \ \ell = \rho_G(V_L)$$

$$G = (H \otimes_{M,N_1,N_2} K) \otimes_P L.$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 「臣」

Idea of proof of Lemma 2(1)

Choice of vertex-basis

- Choose B_H a vertex-basis of H with respect to $K \cup L$
- Choose B_K a vertex-basis of K with respect to $H \cup L$
- Choose B_L a vertex-basis of L with respect to H∪K
- Extract from $B_H \cup B_K$ a vertex-basis of $H \cup K$ with respect to *L*.

イロト 不得 トイヨト イヨト 三日

Idea of proof of Lemma 2 (2)

- By Lemma 1, there exist \mathbb{B}^{h} -coloring of H, \mathbb{B}^{k} -coloring of K and a $(h \times k)$ -matrix M such that $G[H \cup K] = H \otimes_{M} K$.
- A vertex-basis of $H \cup K$ with respect to *L* is included in $B_H \cup B_K$. By Lemma 1, there exists a matrix *P* such that $G = G' \otimes_P L$ where *G'* is a \mathbb{B}^{ℓ} -coloring of $G[H \cup K]$.
- We can thus find a recoloring of *H* by N_1 and a recoloring of *K* by N_2 such that $G' = H \otimes_{M,N_1,N_2} K$.
- We have then $G = (H \otimes_{M,N_1,N_2} K) \otimes_P L$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへの

Plan

- Vectorial ColoringsGraph Operations
 - Main theorem

General Framework for balanced decompositions
 Balancing theorems: General ideas
 Tools

ヘロト 人間 とくほ とくほとう

- For algorithmic purposes it is sometimes crucial to use *a*-balanced terms, i.e., of height at most $a(\log(n) + 1)$.
- This is the case for instance of:
 - ▶ the labeling schemes considered by Courcelle, Vanicat, Twigg (STACS'07).
 - the NC-algorithms considered by Bodlaender.
- How to transform a path-decomposition of width k into a tree-decomposition of height O(log(n)) and of width O(k)?
- We cut at the "middle" of the path-decomposition and we iterate the process with the smaller paths.

(ロ) (個) (E) (E) (E)

<ロ> (四) (四) (三) (三) (三)

- For algorithmic purposes it is sometimes crucial to use *a*-balanced terms, i.e., of height at most $a(\log(n) + 1)$.
- This is the case for instance of:
 - the labeling schemes considered by Courcelle, Vanicat, Twigg (STACS'07).
 - the NC-algorithms considered by Bodlaender.
- How to transform a path-decomposition of width k into a tree-decomposition of height O(log(n)) and of width O(k)?
- We cut at the "middle" of the path-decomposition and we iterate the process with the smaller paths.
- We thus have a tree-decomposition of width at most 3*k* and of height log(*n*).

- For algorithmic purposes it is sometimes crucial to use *a*-balanced terms, i.e., of height at most $a(\log(n) + 1)$.
- This is the case for instance of:
 - the labeling schemes considered by Courcelle, Vanicat, Twigg (STACS'07).
 - the NC-algorithms considered by Bodlaender.
- How to transform a path-decomposition of width k into a tree-decomposition of height O(log(n)) and of width O(k)?
- We cut at the "middle" of the path-decomposition and we iterate the process with the smaller paths.
- We thus have a tree-decomposition of width at most 3*k* and of height log(*n*).
- How to generalize it to arbitrary tree-decompositions? And what about clique-width, rank-width and other width?

Generalisation

- Each tree has a balanced tree-decomposition of width 2 and of height at most O(log(n)) [Bodlaender, 88].
- Every graph of tree-width k admits a tree-decomposition of width at most 3k+2 and of height at most $O(\log(n))$ [Bodlaender, 88].
- Every graph of clique-width k admits a clique-width expression of height at most 3log(n) and uses k.2^{k+1} colors at most [Courcelle-Vanicat, 03].
- Every graph of m-clique-width [variant of clique-width that uses several colors of each vertex] *k* has a m-clique-width expression of height at most $3\log(n)$ and uses 2*k* colors at most [Courcelle-Twigg, 07].
- Our result unifies all these results and as a corollary we get that every graph of rank-width *k* admits a layout of height at most $3\log(n)$ and of width at most 2k.

Plan

Preliminaries

- Vectorial ColoringsGraph Operations
 - Main theorem

General Framework for balanced decompositions
 Balancing theorems: General ideas

Tools

Terms and Contexts

- We let F_k (e.g. {⊕, η_{i,j}, ρ_{i,j} | i, j ∈ [k], i ≠ j}) be a set of binary operations and C_k (e.g. {i | i ∈ [k]}) be a set of constants.
- A term is a well-formed expression in $T(F_k, C_k)$

イロト 不得 トイヨト イヨト 三連

(日)(御)(王)(王)(王)

Terms and Contexts

- We let F_k (e.g. {⊕, η_{i,j}, ρ_{i,j} | i, j ∈ [k], i ≠ j}) be a set of binary operations and C_k (e.g. {i | i ∈ [k]}) be a set of constants.
- A term is a well-formed expression in $T(F_k, C_k)$
- A context is a well-formed expression in *T*(*F_K*, *C_k*∪{*u*}) with one and only one occurrence of *u*.

イロト 不得 トイヨト イヨト 三連

◆□ > ◆檀 > ◆臣 > ◆臣 > 「臣」

Terms and Contexts

- We let F_k (e.g. {⊕, η_{i,j}, ρ_{i,j} | i, j ∈ [k], i ≠ j}) be a set of binary operations and C_k (e.g. {i | i ∈ [k]}) be a set of constants.
- A term is a well-formed expression in $T(F_k, C_k)$
- A context is a well-formed expression in *T*(*F_K*, *C_k*∪{*u*}) with one and only one occurrence of *u*.

Substitution of a term to u

 $c \bullet t = c[t/u] \in T(F_k, C_k)$ for c a context and t a term

イロト 不得 トイヨト イヨト 三連

< ロ > < 図 > < 注 > < 注 > 二 注 …

Terms and Contexts

- We let F_k (e.g. {⊕, η_{i,j}, ρ_{i,j} | i, j ∈ [k], i ≠ j}) be a set of binary operations and C_k (e.g. {i | i ∈ [k]}) be a set of constants.
- A term is a well-formed expression in $T(F_k, C_k)$
- A context is a well-formed expression in *T*(*F_K*, *C_k* ∪ {*u*}) with one and only one occurrence of *u*.

Substitution of a term to u

 $c \bullet t = c[t/u] \in T(F_k, C_k)$ for c a context and t a term

Substitution of a context to u

$$c \circ c' = c[c'/u] \in T(F_K, C_k \cup \{u\})$$
 for c, c' contexts.

イロト 不得 トイヨト イヨト 三頭 …

< ロ > < 図 > < 注 > < 注 > 二 注 …

С

Intuition of the framework

We transform a term *t* into a 3-balanced term in 2 steps:

Step 1: Iterated splitting

Transform the term *t* into a term t^b of height at most $3\log(n)$ written with symbols in $F_k \cup C_k \cup \{\bullet, \circ\}$.

Step 2: Elimination of and by operations

We replace the operations • and \circ in t^b by operations that uses more colors, but not so much.

We split a term *t* into a context *c* and a term *t'* such that *c* and *t'* are as equal as possible ⇒ *t* = *c* • *t'*.

・ロン ・ (目) ・ (目) ・ (目)

• We split a term *t* into a context *c* and a term *t'* such that *c* and *t'* are as equal as possible $\implies t = c \bullet t'$.

イロト 不得 トイヨト イヨト 三連

• A context *c* is written c = f(c', t) if $|t| \simeq |c'|$ or splitted (next slide).

< ロ > < 図 > < 注 > < 注 > 二 注 …

• A context *c* is written c = f(c', t) if $|t| \simeq |c'|$ or splitted (next slide).

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ○臣

A context c can be splitted into contexts c', c'' with c' and c'' as "equal" as possible and c = c' ∘ c''.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

A context *c* can be splitted into contexts *c'*, *c''* with *c'* and *c''* as "equal" as possible and *c* = *c'* ∘ *c''*.

< ロ > < 図 > < 注 > < 注 > 二 注 …

Elimination of \bullet and \circ

For terms and contexts over graph operations, we use the following rules to transform a term written with symbols in $F_k \cup C_k \cup \{\bullet, \circ\}$ into a term in $T(F_{k'}, C_{k'})$ with $k' \ge k$:

- A term *t* is replaced by *val*(*t*).
- $c \bullet t_H$ is replaced by $f'(G_c, H)$ where $H = val(t_H)$ and G_c is a colored graph that represents the context c.
- $c \circ c'$ is replaced by $f''(G_c, G_{c'})$ (inductivity of the construction)

 \Longrightarrow

With the rules above, one can eliminate \bullet and \circ and replace them by operations using more colors.

▲□▶▲□▶▲□▶▲□▶ □ のQの

Conclusion

- Rank-width is an interesting complexity measure because it is equivalent to clique-width, and also because it is increasing for the vertex-minor inclusion and has a polynomial approximation algorithm.
- We give an algebraic characterization of rank-width by means of operations based on linear transformations of the GF(2)-vector space.
- The Algebraic characterization allows us to define the notion of rank-width for directed graphs.
- Using approximations of Oum, we can extend the approximation algorithms to "directed" clique-width.
- In some applications, balanced decompositions are crucial. We give a general framework that handles many graph decompositions (tree-decomposition, branch-decomposition, clique-width, NLC-width, m-clique-width, Boolean-width and rank-width.)

▲□▶▲□▶▲□▶▲□▶ □ のQの

Perspectives

- The tightness of the bound of the balanced terms.
- Generalize the general framework of balanced terms to arbitrary signatures (not only binary ones)
- Can we do the balancing in linear time instead of $O(n\log(n))$?

イロト 不得 トイヨト イヨト 三連