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 Exercises :  1. Equational  sets  of graphs  
  
1.1)     Prove that   {anbncn  ⎜  n  > 0 }   and  the  set of  square  words (ww)  are   HR-equational.  
 
1.2)     Construct  HR equation systems  for  outerplanar  and  Halin  graphs. 
 
1.3)     Construct  an  HR equation system  for  series-parallel  graphs  having  an  even  number  of 
vertices. 
 
1.4)     Construct  a  VR equation system  for  trees  having  a  number  of  nodes  multiple  of  3. 

 
1.5)     Construct  a  VR  equation  system  for  cographs  having  an  even number  of  edges. 

 
1.6)     Prove  that  the non-context-free language   {an  ⎜  n=2p for some  p> 0 }  is  HR-equational for 
some  appropriate  algebra  extending   the  monoid  of   words.   
 
1.7)    Complete  the proof  of  the  algebraic  characterization  of  tree-width :  transform  a  tree-

decomposition  into  a  term  of  the  HR  algebra  defining  the  same  graph. 
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Exercises  :  2.  Recognizable  sets  
  
2.1)  Construct  congruences  proving  that  the  set  of  connected  graphs  is   HR- and  VR-

recognizable. 

 

2.2)   Prove  that  the image of  a  recognizable  language  under  an  alphabetical  homomorphism h 

(replacement of letter  a  by h(a) )  is  recognizable, by  constructing  a congruence  for  the image  

from one  for  the  given language. 

 

2.3)    Prove the Filtering Theorem.  

Hint : Let   (L1, …,Ln)   be the  least  solution  of  a system  S  in P(M)  and   h :  M → A   be a 

homomorphism  with  A  finite.   Construct  a  system  S’  with  unknowns  xi,a    for all  i  = 1,…,n  

and  a  in  A, such that  the  component  of   the  least  solution  of   S’   corresponding   

to   xi,a     is    Li ∩ h-1(a). 

2.4)   Prove  “inductively”  that  every  series-parallel  graph is  3-colorable.   
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Exercises  :  3. Monadic second-order  logic 
 

3.1)  Write an MS-sentence expressing   that  the considered  graph is  a tree. 

3.2)  Write an MS-formula  with  free variables  x,y,z  expressing that, in  a  tree (undirected 

and  unrooted), if one takes  x  as  root, then  y  is  an  ancestor  of  z. 

3.3)  Write an  MS2-sentence expressing  that  a graph has  a  Hamiltonian cycle. 

3.4)  A nonempty  word  over alphabet {a,b} can  (also)  be  considered as a directed path 

given with unary relations  laba  and  labb  representing  the sets  of  occurrences  of  letters  

a  and  b.     Prove  that  every  regular language  over  {a,b}  is  MS-definable. 

3.5)  A  complete bipartite  graph  Kn,m  has  a  Hamiltonian  cycle  iff n=m. Construct  such 

a  graph  “over”  any  word  in  {a,b}+  having  at  least  one  a  and  at  least  one b. Deduce 

from 4)  that  Hamiltonicty  is  not  MS-expressible. 

3.6) Write an MS2-sentence expressing that a graph has  a  spanning  tree  of  degree 

 <  3.  Show  as  in   3.5)  that  this  property  is  not  MS-expressible. 
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Exercises : 4.  Monadic  second-order  transductions  
 

4.1) Construct  an  MS-transduction  that  associates with  a  directed  graph  G  the 
directed  acyclic  graph  D  of  its strongly  connected  components. (The vertices of 
D are chosen  among  those  of  G). 

 
4.2) Let  G  be  undirected. For  each  k,  G(k)  is  the  graph with same vertices  and  an 

edge  x—y  iff  x  and  y  are  at  distance  at  most k.  Define  an  MS-transduction  
that  transforms G  into  G(k).   

 
4.3) If  G has  clique-width  <  d, then  G(k)  has clique-width  < f(k,d)  for some function  

f. Try  to  prove  this  (without looking at  the  next  section). No  such  function  
exists for  tree-width. 

 
4.4) Prove that  the  transformation of  a  graph  G  into  its  incidence graph  Inc(G)  is  a 

MS-transduction  on  trees, and  also  on  graphs  of  degree  < d, for  each  fixed  d. 
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A  few   open  questions 
 
Question 1 : What  should be the clique-width or rank-width of hypergraphs  (or  relational  

structures) ?  

Question 2 : Which graph  operations, quantifier-free definable or not, yield extensions  of 

the  signatures VR, HR  that  are  equivalent  to  them,  i.e., that  define the  same  

recognizable  and  equational  sets ?  

   (some  answers  already  given  by   A. Blumensath, B.C., P. Weil) 

 Or  that  yield  larger  classes  of  equational  sets  for  which  MS  logic is  decidable ? 

Question 3 : Is  it  true  that  the decidability  of  the  MS (and not of the C2MS)  satisfiability  

problem for a set of graphs implies bounded clique-width, as  conjectured  by  Seese ?    

More  important  (personal opinion) : 

Question 4 :   What  about  Question 3  for  sets of hypergraphs or  relational structures ?  

Other  questions  (and answers)  are  in  the proceedings  of  ICALP  2008 
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Appendix  :   The  “Büchi”  style  proof of the Recognizability  Theorem. 
 

The case  of  terms in  T(F),  for   F   finite   signature. 
 

 Logical  representation of terms  :  Nodes of the syntactic tree,  son  binary 

relation, labels saying  “my label is f ”  and  “I am the i-th brother”. 

Construction: automaton A(ϕ) for sentence ϕ that defines Models(ϕ)∩T(F) 

by induction on  sentences  (without  first-order variables  and  ∀ ). 

 For the case    ∃ X. ϕ(X), we need  A(ϕ(X)), and  more  generally  

A(ϕ(X1,..,Xn))  :    f  in  F  is  replaced  by  (f, (w1,..,wn))  in  F x {0,1}n  of 

same arity,   a  term  t  in  T(Fx{0,1}n)  encodes  pr0(t)  in  T(F)  and  an 

assignment   ν(t) : { X1,..,Xn }       P(Nodes(t))          

 (if  u  is  an  occurrence  of  (f, (w1,..,wn)), then  wi  = 1  iff  u ∈  Xi ) 
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 We   construct    A(ϕ(X1,..,Xn))  that  defines   

    {  t  ∈ T(Fx{0,1}n)   /   ( pr0(t), ν(t) )  ⎜ =  ϕ }  

 

 Then :    L(A( ∃ Xn+1 . ϕ(X1,..,Xn+1)))  =  pr(L(A( ϕ(X1,..,Xn+1))) 

where  pr  is the projection  that  eliminates   the  last  Boolean. 

 

 One  obtains  a  nondeterministic  automaton ;  the  case  of  negation 

needs  determinization.     The  case  of  atomic formulas is easy. 

  
 The number  of  states  is  an  h-iterated  exponential,  where   

h  = maximum  nesting  of  negations.  This  is  not  avoidable. 
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The  case  of  graphs  :   VRk-recognizability 
 
 We  fix  k, a  bound  on  clique-width  of  the  considered  graphs  and 

Fk = the binary operation  ⊕   and   O(k2)  unary  operations  (add-edga,b, relaba,b) 

We   use  a   single   constant  1  defining   one  vertex  labelled  by   1.  

           (1 can be changed into another label). 

 A  term  t   in  T(Fk ∪{1})  defines a  graph  G(t)  with  vertex set  VG(t) =  

the  set  of  occurrences   of  1  in   t .    For   representing   assignments  

    ν: { X1,...,Xn }         P(VG(t)) 

we  replace  1  by  the constants   (1, (w1,…,wn))  where      wi ∈ {0,1}. 

 A   term  t  in  T(Fk ∪({1}x{0,1}n))  encodes  the  graph  G(pr0(t))  and  

some  assignment  ν( t). 
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As  in  the case of  terms,  we can construct  for  all relevant   k, n  and  ϕ    

a  finite  deterministic   automaton    A(ϕ(X1,…,Xn))   that  defines   

   {  t ∈ T(Fk ∪({1}x{0,1}n) )    /  ( G(pr0(t)), ν( t ) )   ⎜ =  ϕ  }  

 

 Inductive   steps : 

  ϕ ∧ ψ , ϕ ∨ ψ  :  product  of   two   automata  
   ¬ ϕ : exchange  of  accepting / non-accepting  states  of  a  deterministic  
                 automaton 
 ∃ Xn+1 ϕ  :  “projection”  pr  :  makes  automata  non-deterministic 
 

   Basic   cases :  atomic formulas. 
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 Example :  the automaton  A(edg(X1,X2))  with    k2+k+3   states  

 Graph  labels  are   in   [k]  =  {1,…,k}. 

 States  :  0, Ok, a(1), a(2), ab, Error,      for a,b  in   [k]  , a  ≠  b 

 Meanings of states   (at  occurrence  u  in  term  t  that  defines  a  graph  G) 

 0   : X1 = ∅  , X2 = ∅   

 Ok   : X1 = {v}  , X2 = {w}  ,  edg(v,w)  true in  G(t/u)  defined  by subterm  t/u 

 a(1) : X1 = {v}  , X2 = ∅  ,  v  has  label  a  in  G(t/u)   

 a(2)  : X1 = ∅  , X2 = {w}  ,  w  has  label  a  in  G(t/u)   

 ab  : X1 = {v}  , X2 = {w}  , v  has  label  a, w  has  label  b   

        and  edg(v,w)  not  true,  all   that   in  G(t/u),    

 Error   :  all  other  cases. 

 Accepting   state  :  Ok
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 Transition  rules  

 For  the  constant   1 : 

 (1,00)   0  ;  (1,10)   1(1)  ;  (1,01)    1(2) , (1,11)    Error 
 

 For   the   binary  operation  ⊕:      r 

            p             q  

 

  If  p = 0  then  r = q  

  If  q = 0  then  r = p 

  If  p = a(1)  and  q =  b(2) , a  ≠  b   then   r  = ab 

  If  p = b(2)  and  q =  a(1) , a  ≠  b   then   r  = ab 

  Otherwise  r  =  Error 
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 For  unary  operations   add-edgea,b        r 
 

                 p  

  If  p = ab   then  r  =  Ok   else  r  =  p 

 

 For  unary  operations   relaba            b  

 
  If   p = a(i)     where   i = 1 or 2       then     r  = b(i)  

  If   p =  ac   where  c ≠ a  and  c  ≠  b    then     r  =  bc      

  If   p =  ca   where  c ≠ a  and  c  ≠  b   then     r  =  cb       

  If   p =  0    or  Ok  or  Error  c(i)  or  cd  or dc  where  c ≠ a   

            then     r  = p  
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We  have  only  proved   that   for  all  k   and  MS  sentence  ϕ 

 1)  {  t ∈ T(Fk ∪{1})     /  G(t)   ⎜=  ϕ }   is   T(Fk ∪{1})-recognizable  

 2)  The set  of  models  of  ϕ  of clique-width < k,  is  VRk-recognizable   

 This  is   NOT  the  Recognizability  Theorem  : it  needs  a   type-preserving,  

locally  finite  congruence   on  ALL  graphs  (of  unbounded  clique-width).  

 VRk-recognizability  for  each   k   does not   imply VR-recognizability. 

 The set  of  duplicated square grids   Gmxm ⊕ Gmxm  is   not   VR-recognizable  

but  each  of  its  restrictions  to  graphs  of  clique-width at most  k  is  finite  hence  VRk-
recognizable          (by  the  proved  special  case). 

 However  this  proof   is  sufficient  for   FPT  algorithms  and  for  the  Filtering 

Theorem  because  in  these  cases  only  graphs  of  clique-width  at  most  some  

k are concerned. 
 


