

Monadic second-order logic for graphs.

Algorithmic and language theoretical applications
Exercises, open questions, appendix

Bruno Courcelle

Reference : Graph structure and monadic second-order logic,

book to be published by Cambridge University Press, readable on :

http://www.labri.fr/perso/courcell/ActSci.html

 2

 Exercises : 1. Equational sets of graphs

1.1) Prove that {anbncn ⎜ n > 0 } and the set of square words (ww) are HR-equational.

1.2) Construct HR equation systems for outerplanar and Halin graphs.

1.3) Construct an HR equation system for series-parallel graphs having an even number of
vertices.

1.4) Construct a VR equation system for trees having a number of nodes multiple of 3.

1.5) Construct a VR equation system for cographs having an even number of edges.

1.6) Prove that the non-context-free language {an ⎜ n=2p for some p> 0 } is HR-equational for
some appropriate algebra extending the monoid of words.

1.7) Complete the proof of the algebraic characterization of tree-width : transform a tree-

decomposition into a term of the HR algebra defining the same graph.

 3

Exercises : 2. Recognizable sets

2.1) Construct congruences proving that the set of connected graphs is HR- and VR-

recognizable.

2.2) Prove that the image of a recognizable language under an alphabetical homomorphism h

(replacement of letter a by h(a)) is recognizable, by constructing a congruence for the image

from one for the given language.

2.3) Prove the Filtering Theorem.

Hint : Let (L1, …,Ln) be the least solution of a system S in P(M) and h : M → A be a

homomorphism with A finite. Construct a system S’ with unknowns xi,a for all i = 1,…,n

and a in A, such that the component of the least solution of S’ corresponding

to xi,a is Li ∩ h-1(a).

2.4) Prove “inductively” that every series-parallel graph is 3-colorable.

 4

Exercises : 3. Monadic second-order logic

3.1) Write an MS-sentence expressing that the considered graph is a tree.

3.2) Write an MS-formula with free variables x,y,z expressing that, in a tree (undirected

and unrooted), if one takes x as root, then y is an ancestor of z.

3.3) Write an MS2-sentence expressing that a graph has a Hamiltonian cycle.

3.4) A nonempty word over alphabet {a,b} can (also) be considered as a directed path

given with unary relations laba and labb representing the sets of occurrences of letters

a and b. Prove that every regular language over {a,b} is MS-definable.

3.5) A complete bipartite graph Kn,m has a Hamiltonian cycle iff n=m. Construct such

a graph “over” any word in {a,b}+ having at least one a and at least one b. Deduce

from 4) that Hamiltonicty is not MS-expressible.

3.6) Write an MS2-sentence expressing that a graph has a spanning tree of degree

 < 3. Show as in 3.5) that this property is not MS-expressible.

 5

Exercises : 4. Monadic second-order transductions

4.1) Construct an MS-transduction that associates with a directed graph G the
directed acyclic graph D of its strongly connected components. (The vertices of
D are chosen among those of G).

4.2) Let G be undirected. For each k, G(k) is the graph with same vertices and an

edge x—y iff x and y are at distance at most k. Define an MS-transduction
that transforms G into G(k).

4.3) If G has clique-width < d, then G(k) has clique-width < f(k,d) for some function

f. Try to prove this (without looking at the next section). No such function
exists for tree-width.

4.4) Prove that the transformation of a graph G into its incidence graph Inc(G) is a

MS-transduction on trees, and also on graphs of degree < d, for each fixed d.

 6

A few open questions

Question 1 : What should be the clique-width or rank-width of hypergraphs (or relational

structures) ?

Question 2 : Which graph operations, quantifier-free definable or not, yield extensions of

the signatures VR, HR that are equivalent to them, i.e., that define the same

recognizable and equational sets ?

 (some answers already given by A. Blumensath, B.C., P. Weil)

 Or that yield larger classes of equational sets for which MS logic is decidable ?

Question 3 : Is it true that the decidability of the MS (and not of the C2MS) satisfiability

problem for a set of graphs implies bounded clique-width, as conjectured by Seese ?

More important (personal opinion) :

Question 4 : What about Question 3 for sets of hypergraphs or relational structures ?

Other questions (and answers) are in the proceedings of ICALP 2008

 7

Appendix : The “Büchi” style proof of the Recognizability Theorem.

The case of terms in T(F), for F finite signature.

 Logical representation of terms : Nodes of the syntactic tree, son binary

relation, labels saying “my label is f ” and “I am the i-th brother”.

Construction: automaton A(ϕ) for sentence ϕ that defines Models(ϕ)∩T(F)

by induction on sentences (without first-order variables and ∀).

 For the case ∃ X. ϕ(X), we need A(ϕ(X)), and more generally

A(ϕ(X1,..,Xn)) : f in F is replaced by (f, (w1,..,wn)) in F x {0,1}n of

same arity, a term t in T(Fx{0,1}n) encodes pr0(t) in T(F) and an

assignment ν(t) : { X1,..,Xn } P(Nodes(t))

 (if u is an occurrence of (f, (w1,..,wn)), then wi = 1 iff u ∈ Xi)

 8

 We construct A(ϕ(X1,..,Xn)) that defines

 { t ∈ T(Fx{0,1}n) / (pr0(t), ν(t)) ⎜ = ϕ }

 Then : L(A(∃ Xn+1 . ϕ(X1,..,Xn+1))) = pr(L(A(ϕ(X1,..,Xn+1)))

where pr is the projection that eliminates the last Boolean.

 One obtains a nondeterministic automaton ; the case of negation

needs determinization. The case of atomic formulas is easy.

 The number of states is an h-iterated exponential, where

h = maximum nesting of negations. This is not avoidable.

 9

The case of graphs : VRk-recognizability

 We fix k, a bound on clique-width of the considered graphs and

Fk = the binary operation ⊕ and O(k2) unary operations (add-edga,b, relaba,b)

We use a single constant 1 defining one vertex labelled by 1.

 (1 can be changed into another label).

 A term t in T(Fk ∪{1}) defines a graph G(t) with vertex set VG(t) =

the set of occurrences of 1 in t . For representing assignments

 ν: { X1,...,Xn } P(VG(t))

we replace 1 by the constants (1, (w1,…,wn)) where wi ∈ {0,1}.

 A term t in T(Fk ∪({1}x{0,1}n)) encodes the graph G(pr0(t)) and

some assignment ν(t).

 10

As in the case of terms, we can construct for all relevant k, n and ϕ

a finite deterministic automaton A(ϕ(X1,…,Xn)) that defines

 { t ∈ T(Fk ∪({1}x{0,1}n)) / (G(pr0(t)), ν(t)) ⎜ = ϕ }

 Inductive steps :

 ϕ ∧ ψ , ϕ ∨ ψ : product of two automata
 ¬ ϕ : exchange of accepting / non-accepting states of a deterministic
 automaton
 ∃ Xn+1 ϕ : “projection” pr : makes automata non-deterministic

 Basic cases : atomic formulas.

 11

 Example : the automaton A(edg(X1,X2)) with k2+k+3 states

 Graph labels are in [k] = {1,…,k}.

 States : 0, Ok, a(1), a(2), ab, Error, for a,b in [k] , a ≠ b

 Meanings of states (at occurrence u in term t that defines a graph G)

 0 : X1 = ∅ , X2 = ∅

 Ok : X1 = {v} , X2 = {w} , edg(v,w) true in G(t/u) defined by subterm t/u

 a(1) : X1 = {v} , X2 = ∅ , v has label a in G(t/u)

 a(2) : X1 = ∅ , X2 = {w} , w has label a in G(t/u)

 ab : X1 = {v} , X2 = {w} , v has label a, w has label b

 and edg(v,w) not true, all that in G(t/u),

 Error : all other cases.

 Accepting state : Ok

 12

 Transition rules

 For the constant 1 :

 (1,00) 0 ; (1,10) 1(1) ; (1,01) 1(2) , (1,11) Error

 For the binary operation ⊕: r

 p q

 If p = 0 then r = q

 If q = 0 then r = p

 If p = a(1) and q = b(2) , a ≠ b then r = ab

 If p = b(2) and q = a(1) , a ≠ b then r = ab

 Otherwise r = Error

 13

 For unary operations add-edgea,b r

 p

 If p = ab then r = Ok else r = p

 For unary operations relaba b

 If p = a(i) where i = 1 or 2 then r = b(i)

 If p = ac where c ≠ a and c ≠ b then r = bc

 If p = ca where c ≠ a and c ≠ b then r = cb

 If p = 0 or Ok or Error c(i) or cd or dc where c ≠ a

 then r = p

 14

We have only proved that for all k and MS sentence ϕ

 1) { t ∈ T(Fk ∪{1}) / G(t) ⎜= ϕ } is T(Fk ∪{1})-recognizable

 2) The set of models of ϕ of clique-width < k, is VRk-recognizable

 This is NOT the Recognizability Theorem : it needs a type-preserving,

locally finite congruence on ALL graphs (of unbounded clique-width).

 VRk-recognizability for each k does not imply VR-recognizability.

 The set of duplicated square grids Gmxm ⊕ Gmxm is not VR-recognizable

but each of its restrictions to graphs of clique-width at most k is finite hence VRk-
recognizable (by the proved special case).

 However this proof is sufficient for FPT algorithms and for the Filtering

Theorem because in these cases only graphs of clique-width at most some

k are concerned.

