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General  objectives :

Logical descriptions of graph polynomials

Application to their computations

Systematic construction of recursive definitions

Here :  the  multivariate  Interlace polynomial

Full article on ArXiv and HAL.



Multivariate  polynomials

Example: Sokal's multivariate version of Tutte's

two-variable polynomial

For a graph G=(V,E)  :

ZG  AE u
kGAeA xe

where  G[A] is the subgraph of G with set of vertices

V  and set of edges A,

k(G[A])  is the number of its connected components,

xe is an indeterminate associated with each e in E,

u is an "ordinary indeterminate".



Multivariate polynomials not only count

configurations (spanning trees, colorings,...) but

they enumerate them (with associated values).

Logical view : typical  form :

PG  A,B xAyBu
fA,B

A,B sets of vertices or edges
satisfying  condition   ϕ(A,B)
f(A,B) nonnegative integer function of A,B,
xA  and  yB  denote

aA xa,   aB ya



Logical expression of Condition  ϕ

Second-order logic (SO) : very (too) powerful

= First-order logic with set and relation

quantifications.

Monadic second-order logic (MS) : quite powerful,

very good algorithmic properties,

=     First-order logic with set  quantifications (only).

Typical  properties :
MS :      X is a set of edges defining a spanning forest, or

X is a set of vertices  inducing a connected component.

SO not MS :      two  sets X and Y   are in  bijection.



Example  of  MS  formula :

The induced subgraph  G[X]  is not connected

Y  x  x  X  x  Y  yy  X  y  Y 

 x,y  x  X  y  X  Ax,y

  x  Y y  Y  x  Y  y  Y.

where  A(x,y)  is the adjacency relation.



Logical  expression of  functions with values in N  in

PG  A,B xAyBu
fA,B

If  f(A,B) = C  for a unique set C satisfying ψ(A,B,C)

then  P  = P' [ uc ←  u ]       (substitution)  where

PG  A,B,C xAyBuC



Example (for Sokal's polynomial) :

k(G[A]) = number of connected components is

defined as C  where :

ψ(A,C) ⇔ C is the set of vertices  which are

minimal in each connected component  of the graph

(V,A) ; "minimal" is with respect to an arbitrary linear

ordering of V. (sets C depend on this order but not  C ).

The polynomial Z(G)  can thus be rewritten as :

ZG  AE xAu
kGA

 
 A,C xAuCuc : u    all  c  V



Why  Monadic  Second-order logic ?

Polynomials and truncations of multivariate MS-

definable polynomials can be computed in

polynomial time for input graphs of bounded tree-

width or clique-width.

This result covers such results for (nonmultivariate) :

1) Tutte polynomial for graphs of bounded tree-width

(Noble, Andrzejak, 1998)

2) Interlace polynomial for distance-hereditary graphs

(of clique-width 3) (Ellis-Monagham,Sarmiento, 2006)



Interlace polynomials
Several (incompatible ) interlace polynomials  by :

Arratia, Bollobas and Sorkin (2 articles in 2004), and

Aigner and van der Holst (2004).

Motivations :

- Counting partitions into k circuits (Las Vergnas, Martin)

- Counting the number of Eulerian trails in 4-regular

graphs

- Related to Kauffman's polynomial of link diagrams.



This communication :
- a common multivariate interlace polynomial,

- generalizing all the existing ones,

- MS-definable  (hence truncations are poly-time

computable for graphs of bounded clique-width),

- with a recursive definition from which the

existing ones can be established.

     Only bounded portions can be evaluated in

polynomial time. The full computation is necessarily

exponential because of the size of the result.



Description of the new animal  (for Janos’s   Zoo).

Configurations :  sets   A of vertices ;

Their values based on the rank of the induced

subgraph.

To generalize the polynomial by Aigner, we put

also in a configuration a set B of vertices for "toggling

loops": if a vertex in B  has no loop, we add one ; if it

has a loop, we delete it, giving  graph     GB

Ranks of adjacency matrices are over GF(2).



The definition

BG  AB xAyBu
rkGBABvnGBAB

where A,B  range over  subsets of  V   (vertices)

rk(H)  denotes  the rank of a  graph H,

n(H)=  V  - rk(H)  denotes the nullity.

The existing interlace polynomials are specializations:

qG,x,y  AEx  1
rkGAy  1nGA

 = σ(B(G))  where  σ is the substitution
u : x  1;v : y  1;xa : 1,ya : 0   all a  V,

QG,x  ABx  2
nGBAB

idem  with σ  = u : 1;v : x  2;xa : ya : 1   all  a  V.



B(G)  is  MS-definable

Because  rk(G[A]) =  C   if  C is a maximal

subset of A  with associated row vectors in the

adjacency matrix of  G[A] that are independent.

This is expressible in MS logic augmented with

the  Even cardinality set predicate : Even(X)

This extension satisfies all good algorithmic properties of

MS  logic.



The recursive definition : For every vertex a :

B  1

BG  1  zav  wauBG  a  if  NG,a   ,

BG  zbu2zaBGab  a  b  waBGab  a  b

  wbuBGb  b  BGb  a  b

  BG  a  BG  b  BG  a  b.

if b∈N(G,a) (set of neighbours of a).

We use "metavariables", for each c in V :  

zc  xc   and  wc  yc   if c is not a loop,    

zc  yc   and  wc  xc   if c is a loop.



This definition involves the following graph

transformations :

Ga  :  local complementation at  a : toggles edges

and loops  in the neighbourhood of a ;

Gab :  pivoting edge  ab:  toggles edges between

N(G,a)-N(G,b) , N(G,b)-N(G,a) and N(G,a) ∩N(G,b) ;

G-a :    deletion of vertex a



Its determination is based on the Lemma (ABS+C):

(1) rkG  1  rkGa  a  if  a  LoopsG ;
(2) rkG  2  rkGab  a  b  if  a  b ;
(3) rkG  a  rkGab  a  if  a  b;
(4) rkG  2  rkGab  a  b  1  rkGab  b

 if  a  b  .

We can derive the known recursive definitions,

sometimes with the necessity of proving nontrivial

properties.

Property: For every graph G and vertex a the

polynomial BG  BG  a  has positive coefficients.



Recursive definitions of  q(G,x,y)  and  Q(G,x)

(q1)  qG  yn     if  G = n  isolated non-looped vertices,
(q2)  qG  x  1qGa  a  qG  a  if  a loop, isolated or not,
(q3)  qG  x  12qGab  a  b 
             qG  a  qG  b  qG  a  b       if a-b
It  is not the one of [ABS].;  they replace (q3) by  :
(q'3)  qG  xx  2qGab  a  b 
            qG  a  qGab  b
(Q1)  Q  1

(Q2)  QG  x  QG  a    if  NG,a  
(Q3)  QG  QGab  a  b  QGab  a  b
     QGb  b  QGb  a  b
     QG  a  QG  b  QG  a  b  if  b  NG,a
(Q'3)  QG  QG  b  QG  b  b  QGab  a  if b  NG,a
where   G  b  GbNG,b



Computing  B(G) and multivariate  polynomials
Such polynomials have exponential size.

We may ask for a polynomial time computation

(not an evaluation for particular values) of the

d-truncation of B(G), i.e., of its part limited to the

monomials of quasi-degree at most d (number of

distinct indexed indeterminates; indexed by vertices or

edges).

Because B(G) is MS-definable, this is possible for

graphs of bounded clique-width. This includes

cographs and distance-hereditary graphs.



Theorem : For each k, the following  polynomials  are

computable  for graphs  G  of clique-width  < k :

d-truncation of B(G) in time O(n3d+O(1)),

q(G) in time O(n7),

Q(G) in time O(n3),

n = number of vertices.



The  basic  lemma  (simplified formulation) :

 For every  MS  formula ξ  there exists a finite subset

Φ  of  MS formulas containing  ξ  such that  :

(1) For every ϕ in Φ,  for every unary operation op
there exists a formula ϕop such that, for every graph
G, for every  substitution  σ :
   PopG    PopG.
(2) For every ϕ in Φ, there exists

1 , . . . ,p ,1 , . . . ,p  2p
such that  for every disjoint graphs G  and  H,  for
every  substitution  σ :

  PGH  1ip  PiG    PiH.



Remark :
In case of truncations we also have :

PGH  d  1ipPiG  d  PiH  d  d.

Consequence :  One can compute simultaneously
the finitely many polynomials    PG  d     by
induction on the structure of a term  that  describes
G  by  using  the following  operations  :

ordered disjoint union : 

finitely  many  unary  graph operations
              expressible without quantifiers.

This applies to  graphs  of clique-width at most k.



Clique-width

A  graph complexity measure like tree-width that

yields  many Fixed Parameter Tractable  algorithms,

especially for  problems expressed in Monadic

Second-order  logic.

Graphs  have vertices labelled in {1,2,…,k}.

(1) For each i in  {1,2,…,k},  constants i and iloop

denote isolated vertices labelled by i, the second one
with a loop.
(2) For i,j  in  {1,2,…,k},  the unary function add i,j
adds undirected edges between any two vertices,
one labelled by i, the other by j.
(3) The unary function ren i,j relabels i into j.



(4) The  binary operation  ⊕ makes the union of
disjoint copies of its arguments.

The clique-width of a graph  is the minimal k
such that this graph can be constructed with these
operations.

Cliques  have clique-width 2 and unbounded tree-
width.

The unary operations  are  quantifier-free
definable.

A variant is used where graphs are linearly
ordered and the disjoint union        concatenates
the linear orders.
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