Graph structure and Monadic second-order logic

Bruno Courcelle

Université Bordeaux 1, LaBRI

References :

Chapter 5 in : Handbook of graph grammars vol.1, 1997,

Book in progress,

Articles with J. Makowsky, U. Rotics, P. Weil, S. Oum, A. Blumensath

See : http://www.labri.fr/perso/courcell/ActSci.html

Graph structure : Embedding in a surface Exclusion of minor, vertex-minor, induced subgraph Tree-structuring

Monadic second-order logic : expression of properties, queries, optimization functions, number of configurations.

Mainly useful for tree-structured graphs (Second-order logic useless)

Two types of questions :

Checking G = ϕ for fixed MS formula ϕ , given G

Deciding $\exists G, G \in C, G \models \phi$ for fixed *C*, given MS formula ϕ .

Tools to be presented

Algebraic setting for tree-structuring of graphs

Recognizability = finite congruence = inductive computability

= finite deterministic automaton on terms

Fefermann-Vaught : MS definability \Rightarrow recognizability.

History : Confluence of 4 independent research directions, now intimately related :

- Polynomial algorithms for NP-complete and other hard problems on particular classes of graphs, and especially hierarchically structured ones : series-parallel graphs, cographs, partial k-trees, graphs or hypergraphs of tree-width < k, graphs of clique-width < k.
- 2. Excluded minors and related notions of forbidden configurations (matroid minors, « vertex-minors »).
- 3. Decidability of Monadic Second-Order logic on classes of finite graphs, and on infinite graphs.
- 4. Extension to graphs and hypergraphs of the main concepts of Formal Language Theory : grammars, recognizability, transductions, decidability questions.

Summary

1. Introduction

Extension of Formal Language Theory notions

- 2. Recognizability, an algebraic notion.
- 3. Context-free sets defined by equation systems.
- 4. The graph algebras VR and HR.

Algorithmic applications :

- 5. Inductive computations and recognizability; fixed-parameter tractable algorithms.
- 6. Monadic second-order logic defines inductive properties and functions

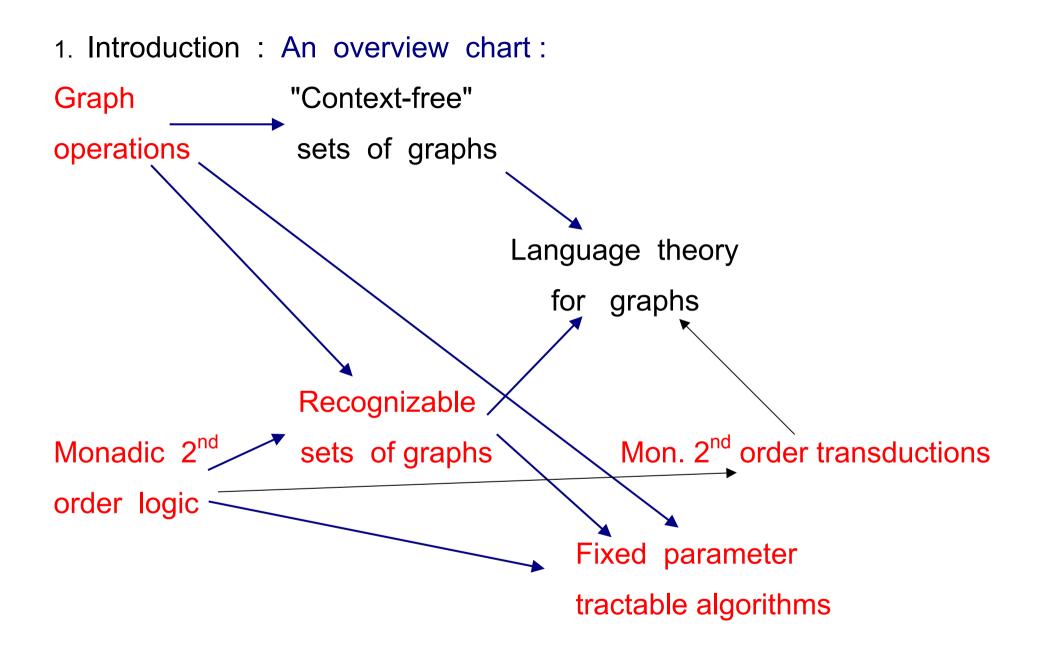
Formal language theory extended to graphs

7. Closure and decidability properties ; generation of classes of graphs by monadic second-order transductions.

Monadic second-order logic and combinatorics

8 Seese's conjecture

Open questions



Key concepts of FLT and their extensions

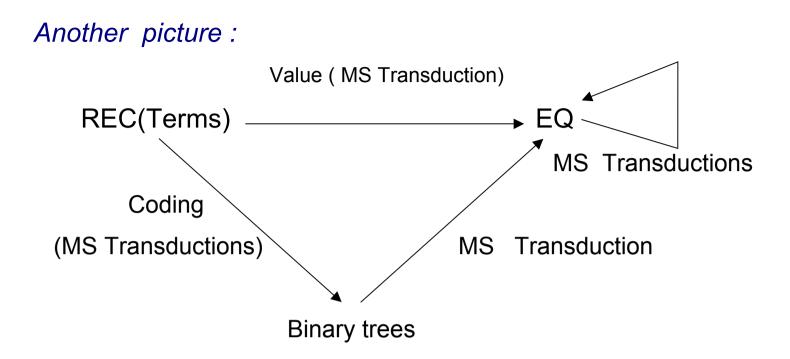
Languages	Graphs
Algebraic structure : monoid (X*,*,ε)	Algebras based on graph operations : ⊕, ⊗, // quantifier-free definable operations Algebras : HR, VR
Context-free languages : Equational subsets of (X*,*,ε)	Equational sets of the algebras HR,VR
Regular languages : Finite automata ≡ Finite congruences ≡ Regular expressions ≡	Recognizable sets of the algebras HR, VR defined by congruences
 Monadic Second-order definable sets of words or terms Rational and other types of transductions 	Monadic Second-order definable sets of graphs Monadic Second-order transductions

Relationships between algebraic and logical notions for sets of graphs (and hypergraphs)

Algebraic notions	Algebraic characterizations	Logical characterizations	Closure properties
			union, $\cap Rec$
EQ	equation systems	MS-trans(Trees)	homo
	Val(REC(Terms))		MS-trans
			Boolean opns
REC	congruences	$MS\text{-}def \subset REC$	homo ⁻¹
			MS-trans ⁻¹

Signatures for graph algebras :

- HR: graphs and hypergraphs with "sources"
- VR: graphs with vertex labels, "ports"
- VR^+ : VR with quantifier-free operations (ex. edge complement)



Equational sets = MS-Trans(Binary Trees) Context-free languages = images of the Dyck language (which encodes trees) under rational transductions Since MS transductions are closed under composition, the class of equational sets is closed under MS transductions

2. Recognizable sets : algebraic definition

F: a finite set of operations with (fixed) arity.

 $\mathbf{M} = \langle M, (f_M)_{f \in F} \rangle$: an F-algebra.

Definition : L ⊆ M is (F-)*recognizable* if it is a union of equivalence classes for a finite congruence \approx on **M** (*finite* means that M / \approx is finite). Equivalently, L = h⁻¹(D) for a homomorphism h : **M** → **A**, where **A** is a finite F-algebra, D ⊆ A. (On terms : *Finite deterministic automata*).

REC(**M**) is the set of recognizable subsets of M, with respect to the algebra **M**. Closure properties : REC(**M**) contains M and \emptyset , and is closed under union, intersection and difference.

The many-sorted case with infinitely many sorts

S : the countable set of sorts.

F : an S-signature : each f in F has a type $s_1s_2...s_k \rightarrow s$, with s, $s_i \in S$

 $\mathbf{M} = \langle (M_s)_{s \in S}, (f_{\mathbf{M}})_{f \in F} \rangle F \text{-algebra}, M_s \cap M_t = \emptyset, \text{ if } s \neq t$

where $f_{\mathbf{M}}$: $M_{s1} \times M_{s2} \times ... \times M_{sk} \rightarrow M_s$

Definition : $L \subseteq M_s$ is (F-) *recognizable* if it is a union of equivalence classes for a congruence \approx on **M** such that equivalent elements are of the *same sort* and there are *finitely many classes of each sort*.

3. Equational (context-free) sets

Equation systems = Context-Free (Graph) Grammars in an algebraic setting

In the case of words, the set of context-free rules

 $S \rightarrow a ST; S \rightarrow b; T \rightarrow cTTT; T \rightarrow a$

is equivalent to the system of two set equations:

 $S = a S T \qquad \cup \qquad \{b\}$ $T = c T T T \qquad \cup \qquad \{a\}$

where S is the language generated by S (idem for T and T).

For graphs (or other objects) we consider systems of equations like:

$$S = f(k(S), T) \cup \{b\}$$

$$T = f(T, f(g(T), m(T))) \cup \{a\}$$

where f is a binary operation, g, k, m are unary operations on graphs,

a, b denote basic graphs (up to isomorphism).

An *equational set* is a component of the least (unique) solution of such an equation system. This is well-defined in any algebra.

Closure properties and algebraic characterizations

General algebraic properties

Algebraic	Algebraic	Closure	
notions	characterizations	properties	
EQ	equation systems	union, $\cap Rec$	
	Val(REC(Terms))	homomorphisms	
REC	congruences	Boolean operations	
		homomorphisms	

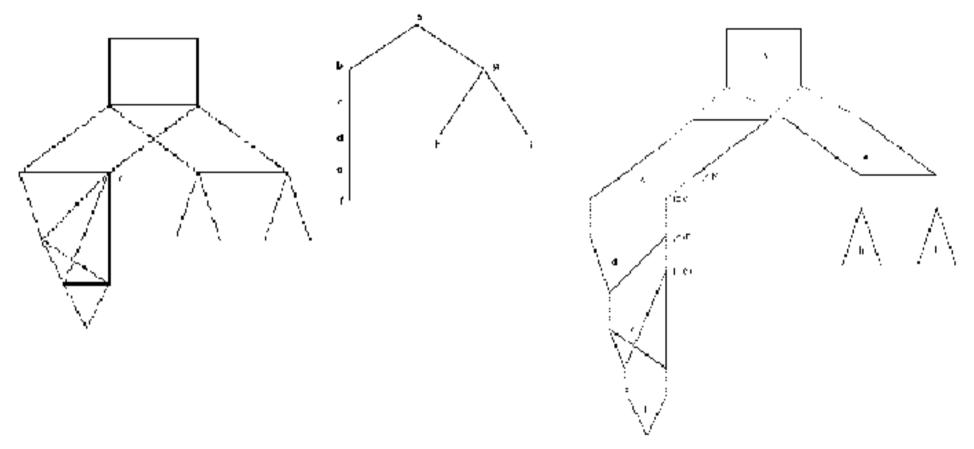
Theorem (Mezei and Wright) :

```
1) In an algebra of terms T(F): EQ(T(F)) = REC(T(F))
```

2) In an F-algebra **M** : $EQ(M) = Val_M(REC(T(F)))$

where $Val_{\mathbf{M}} : \mathbf{T}(F) \longrightarrow \mathbf{M}$ is the evaluation mapping, the unique homomorphism.

4. The graph algebras VR and HR

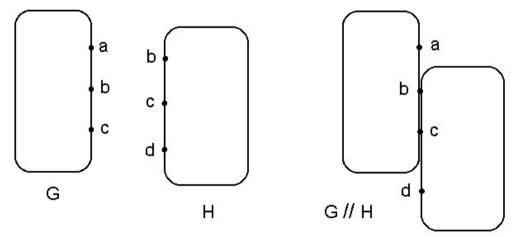


Tree-width : Tree-decomposition of width k : k+1 = maximum size of a box **Tree-width** : twd(G) = minimum width of a tree-decomposition Trees have tree-width 1, K_n has tree-width n-1, the n x n grid has tree-width n Outerplanar graphs have tree-width at most 2. *HR operations :* Origin : Hyperedge Replacement hypergraph grammars ; associated complexity measure : tree-width

Graphs have distinguished vertices called *sources*, pointed to by labels from a set of size k : {*a*, *b*, *c*, ..., *h*}.

Binary operation(s) : Parallel composition

G // H is the disjoint union of G and H and sources with same label are fused. (If G and H are not disjoint, one first makes a copy of H disjoint from G).



Unary operations : Forget a source label

Forgeta(G) is G without *a*-source : the source is no longer distinguished ; it is made "internal".

Source renaming :

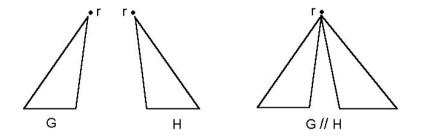
Rena, b(G) exchanges source names a and b

(replaces *a* by *b* if *b* is not the name of a source)

Nullary operations denote *basic graphs* : the connected graphs with at most one edge. For dealing with hypergraphs one takes more nullary symbols for denoting hyperedges.

More precise algebraic framework : a many sorted algebra where each finite set of source labels is a sort. The above operations are overloaded.

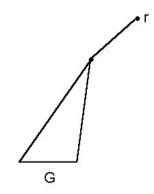
Proposition: A graph has tree-width $\leq k$ if and only if it can be constructed from basic graphs with $\leq k+1$ labels by using the operations *//*, *Rena*,*b* and *Forgeta*. *Example :* Trees are of tree-width 1, constructed with two source labels, *r* (root) and *n* (new root): Fusion of two trees at their roots :



Extension of a tree by parallel composition with a new edge, forgetting the old root, making the "new root" as current root :

$$E = r \bullet n$$

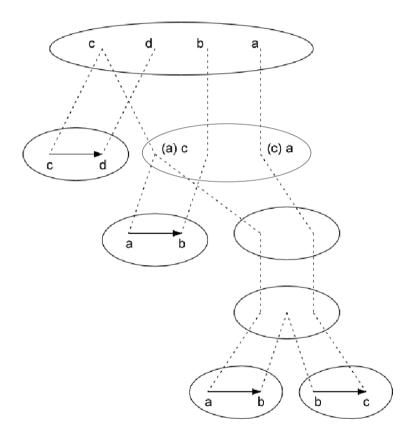
Renn,r (*Forgetr* (G // E))



From an algebraic expression to a tree-decomposition

Example : cd // *Ren*_{a,c} (ab // *Forget*_b(ab // bc))

Constant ab denotes a directed edge from a to b.



The tree-decomposition associated with this term.

VR operations

Origin : Vertex Replacement graph grammars

Associated complexity measure : clique-width, has no combinatorial characterization but is defined in terms of few very simple graph operations (whence easy inductive proofs).

Equivalent notion : rank-width (Oum and Seymour) with better structural and algorithmic properties.

Graphs are simple, directed or not.

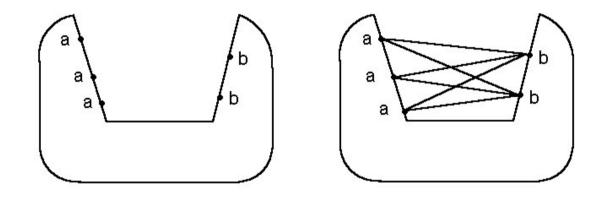
k labels : *a* , *b* , *c* , ..., *h*. Each vertex has one and only one label ;

a label p may label several vertices, called the *p-ports*.

One binary operation: disjoint union : \oplus

Unary operations: Edge addition denoted by Add-edga,b

Add-edga,b(G) is G augmented with (un)directed edges from every *a*-port to every b-port.



Add-edga,b(G)

Vertex relabellings :

Relaba,b(G) is G with every vertex labelled by *a* relabelled into *b*

Basic graphs are those with a single vertex.

Definition: A graph G has clique-width $\leq k \Leftrightarrow$ it can be constructed from basic graphs by means of k labels and the operations \oplus , *Add-edga,b* and *Relaba,b*

Its (exact) clique-width, cwd(G), is the smallest such k.

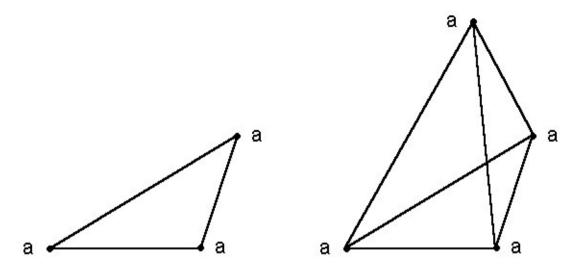
Proposition : (1) If a set of simple graphs has bounded tree-width, it has bounded clique-width, but not *vice-versa*.

(2) Unlike tree-width, clique-width is sensible to edge directions : Cliques have cliquewidth 2, tournaments have unbounded clique-width.

(3) Deciding "Clique-width ≤ 3" is a polynomial problem. (Habib *et al.*) The complexity (polynomial or NP-complete) of "Clique-width = 4" is unknown. It is NP-complete to decide for given k and G if cwd(G) ≤ k. (Fellows *et al.*) There exists a cubic approximation algorithm that for given k and G answers (correctly) : either that cwd(G) >k, or produces a clique-width algebraic term using 2^{24k} labels. (Oum)

This yields Fixed Parameter Tractable algorithms for many hard problems.

Example : Cliques have clique-width 2.



 K_n is defined by t_n where $t_{n+1} = Relab_{b,a}(Add-edg_{a,b}(t_n \oplus b))$ Another example : Cographs

Cographs are generated by \oplus and \otimes defined by :

$$G \otimes H$$
 = $Relab_{b,a}$ (Add - $edg_{a,b}$ ($G \oplus Relab_{a,b}(H)$)

 $= G \oplus H$ with "all edges" between G and H.

5. Algorithmic applications

Fixed parameter tractability results

Theorem (B.C.): A) For graphs of clique-width $\leq k$,

each monadic second-order property, (ex. 3-colorability), each monadic second-order optimization function, (ex. distance), each monadic second-order counting function, (ex. # of paths) is evaluable :

in linear time on graphs given by a term over VR-operations, in time $O(n^3)$ otherwise (by S. Oum, 2005).

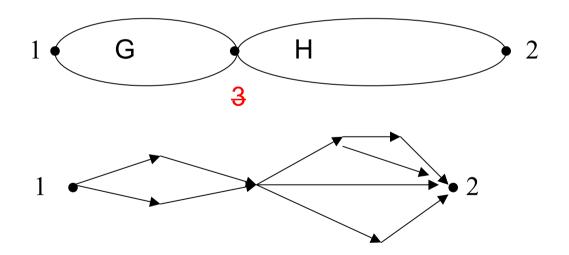
B) All this is possible in linear time on graphs of tree-width \leq k, for each fixed k (by Bodlaender, 1996).

Inductive computations

Example : *Series-parallel graphs*, defined as graphs with sources 1 and 2, generated from $e = 1 \longrightarrow 2$ and the operations // (parallel-composition) and *series-composition* defined from other operations by :

 $G \bullet H = Forget_3(Ren_{2,3} (G) // Ren_{1,3} (H))$

Example :



Inductive proofs :

- 1) G, H connected implies : G//H and G H are connected, (induction)
 - e is connected (basis) :
 - \Rightarrow All series-parallel graphs are connected.
- 3) It is not true that :

G and H planar implies : G//H is planar ($K_5 = H//e$).

A stronger property for induction :

G has a planar embedding with the sources in the same "face"

 \Rightarrow All series-parallel graphs are planar.

Inductive computation : Test for 2-colorability

1) Not all series-parallel graphs are 2-colorable (see K_3) 2) G, H 2-colorable does not imply that G//H is 2-colorable (because $K_3=P_3//e$).

3) One can check 2-colorability with 2 auxiliary properties : Same(G) = G is 2-colorable with sources of the same color, Diff(G) = G is 2-colorable with sources of different colors by using rules : Diff(e) = True ; Same(e) = False Same(G//H) ⇔ Same(G) ∧ Same(H) Diff(G//H) ⇔ Diff(G) ∧ Diff(H) Same(G•H) ⇔ (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H)) Diff(G•H) ⇔ (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧ Same(H))

We can compute for every SP-term t, by induction on the structure of t the pair of Boolean values (Same(Val(t)), Diff(Val(t))).

We get the answer for G = Val(t) (the graph that is the *value* of t) regarding 2-colorability.

Important facts :

1) The existence of properties forming an inductive set (w.r.t. operations of F) is equivalent to recognizability in the considered F-algebra.

2) The simultaneous computation of m inductive properties can be implemented by a "tree" automaton with 2^m states working on terms t. This computation takes time O(|t|).

3) An inductive set of properties can be constructed (at least theoretically) from every monadic-second order formula.

4) This result extends to the computation of values (integers) defined by monadic-second order formulas.

Recognizability and inductive properties

Definition : A finite set P of properties on an F-algebra **M** is F-inductive if for every $p \in P$ and $f \in F$, there exists a (known) Boolean formula B such that :

 $p(f_{M}(a,b)) = B[...,q(a),...,q(b),...,q \in P]$

for all a and b in **M**. (where $q(a), \dots, q(b) \in \{True, False\}$).

Proposition : A subset L of **M** is recognizable iff it is the set of elements that satisfy a property belonging to a finite inductive set of properties P.

Proof : Let L = $h^{-1}(C)$ for a homomorphism h : $\mathbf{M} \to \mathbf{A}$, \mathbf{A} a finite F-algebra and C a subset of A (domain of \mathbf{A}).

For each a in A, let \hat{a} be the property : $\hat{a}(m)$ = True \Leftrightarrow h(m) = a. Let p be such that p(m) = True \Leftrightarrow h(m) \in C \Leftrightarrow m \in L.

Properties $\{p, \hat{a} \mid a \in A\}$ form an F-inductive set.

If P is an inductive set of k properties, one can define an F-algebra structure on the set \mathbf{B}^{k} of k-tuples of Booleans, such that the mapping

h : m $| \rightarrow$ the k-tuple of Booleans is a homomorphism.

Inductive properties and automata on terms

If P is an inductive set of k properties, one can define a deterministic automaton on terms of T(F) with set of states the k-tuples of Booleans, that computes in a bottom-up way, for each term t, the truth values :

p(Val(s)) for all $p \in P$ and all subterms s of t.

Membership of an element m of M in a *recognizable set* L can be tested by such an automaton on *any* term t in T(F) defining m.

Application to graphs

Immediate but depends on two things :

Parsing algorithms building terms from the given graphs :

1) results by Bodlaender for constructing tree-decompositions (in linear time), whence terms representing them,

2) results by Oum for constructing (non-optimal) terms for graphs of cliquewidth at most k. (Cubic time algorithm).

Language for expressing inductive properties : Monadic second-order logic.

6. Monadic Second-Order (MS) Logic

A logical language which specifies inductive properties and functions

- = First-order logic on power-set structures
- First-order logic extended with (quantified) variables
 denoting subsets of the domains.

MS properties : transitive closure, properties of paths, connectivity, planarity (via Kuratowski, uses connectivity), k-colorability.

Examples of formulas for $G = \langle V_G, edg_G(.,.) \rangle$, undirected

Non connectivity : $\exists X (\exists x \in X \land \exists y \notin X \& \forall u, v (u \in X \land edg(u, v) \Rightarrow v \in X))$ 2-colorability (i.e. G is bipartite) : $\exists X (\forall u, v (u \in X \land edg(u, v) \Rightarrow v \notin X) \land \forall u, v (u \notin X \land edg(u, v) \Rightarrow v \in X))$

Edge set quantifications

```
Incidence graph of G undirected, Inc(G) = \langle V_G \cup E_G, inc_G(.,.) \rangle.
```

 $inc_G(v,e) \iff v$ is a vertex of edge e.

Monadic second-order (MS₂) formulas written with inc can use quantifications on sets of edges.

Existence of Hamiltonian circuit is expressible by an MS₂ formula, but not by an MS formula.

Theorem : MS₂ formulas are no more powerful than MS formulas :

for graphs of degree < d, or of tree-width < k, or for planar graphs, or graphs without some fixed H as a minor, or graphs of average degree < k (uniformly k-sparse). *Definition* : A set L of words, of trees, of graphs or relational structures is Monadic Second-Order (MS) definable iff

L = { S / S | =
$$\phi$$
 } for an MS formula ϕ

Theorem : (1) A language (set of words or *finite terms*) is recognizable ⇔ it is MS definable

(2) A set of finite graphs is VR- or VR⁺-recognizable
 ⇐ it is MS definable

(3) A set of finite graphs is HR-recognizable \leftarrow it is MS₂ definable

Proofs:

- (1) Doner, Thatcher, Wright, see W. Thomas, Handbook formal languages, vol.3.
- (2) (3) There are two possible proofs .

Basic facts for (2):

Let F consist of \oplus and unary quantifier-free definable operations f.

For every MS formula ϕ of quantifier-height k, we have

(a) for every **f** , one can construct a formula $f^{\#}(\phi)$ such that :

$$f(S) \mid = \phi \iff S \mid = f^{\#}(\phi)$$

(b) (Hanf, Fefermann and Vaught, Shelah) one can construct formulas $\psi_1, ..., \psi_n, \theta_1, ..., \theta_n$ such that :

$$S \oplus T \mid = \phi \iff$$
 for some i, $S \mid = \psi_i \land T \mid = \theta_i$

where $f^{\#}(\phi), \psi_1, ..., \psi_n, \theta_1, ..., \theta_n$ have quantifier-height $\leq k$.

(c) Up to equivalence, there are finitely many formulas of quantifier-height $\leq k$ forming a set Φ_k . One builds an automaton with states the subsets of Φ_k : the MS-theories of quantifier-height $\leq k$ of the graphs defined by the subterms of the term to be processed.

Fefermann Vanght for O. $S \oplus T \neq \varphi \iff VV S \neq \psi_i \land T \neq \partial_i$ with $gh(\psi_i), gh(\partial_i) \leq gh(\varphi_i)$ $Th_{h}(S \in T) = \Phi_{\odot,h}(Th_{h}(S), Th_{h}(T))$ We need to handle formulas with free variables $(S \oplus T, \overline{A}) \models \varphi \iff V.V(S, \overline{A}_{PS}) \models \psi_i \land (T, \overline{A}_{PT}) \models \theta_i$ $sat(Sot, \varphi, \overline{X}) = (t) sat(S, \psi_i, \overline{X}) \boxtimes sat(T, \vartheta_i, \overline{X})$ where $B \boxtimes C = \{(B_1 \cup C_1, ..., B_n \cup C_n) \mid \overline{B} \in \overline{B}, \overline{C} \in \overline{B}\}$ MS logic with only set variables: $X \leq Y$, $X = \phi$, Sgl(X), Candp,q(X) $\exists x. \varphi(x,...) \Leftrightarrow \exists x. Sgl(x) \land \widetilde{\varphi}(x,...)$

$$\begin{array}{l} (S \oplus T, \overline{A}) \models \exists X. \varphi(X) \\ \Leftrightarrow (S \oplus T, \overline{A}B) \models \varphi \qquad \textit{fa some B} \\ \Leftrightarrow \forall V_{i} (S, \overline{A}B BnD_{S}) \models \forall i \land (T, \overline{A}PT BnD_{T}) \models O_{i} \\ \Leftrightarrow \forall V_{i} (S, \overline{A}B) \models \exists X. \psi_{i}(X) \land (T, \overline{A}PT) \models \exists X. O_{i}(X) \\ \forall \forall i (S, \overline{A}B) \models \exists X. \psi_{i}(X) \land (T, \overline{A}PT) \models \exists X. O_{i}(X) \\ \forall \text{Hence we get } [\cdots] \exists X. \varphi(X) \qquad \textit{from } [\cdots] \varphi \\ by adding \exists X. to \textit{formulas}. \\ The condition on quantifien - height is satisfied \\ Fon \forall X. \varphi(X) we use $\exists \exists X. \exists \varphi(X). \\ \hline Fon \forall X. \varphi(X) we use \exists \exists X. \exists \varphi(X). \\ \hline Freques : \cdot Candpoint (X) \\ \cdot Beplace U_{i} \quad by \quad \forall i \end{array}$$$

7. Monadic second-order transductions

STR(Σ): the set of finite Σ -relational structures (or finite directed ranked Σ -hypergraphs).

MS transductions are multivalued mappings : τ : STR(Σ) \rightarrow STR(Γ)

 $S \longrightarrow T = \tau(S)$

where T is :

a) defined by MS formulas

b) inside the structure: $S \oplus S \oplus ... \oplus S$ (fixed number of disjoint "marked" copies of S)

c) in terms of "parameters", subsets $X_1, ..., X_p$ of the domain of S.

Proposition : The composition of two MS transductions is an MS transduction.

Remark : For each tuple of parameters $X_1, ..., X_p$ satisfying an MS property, T is uniquely defined. τ is multivalued by the different choices of parameters.

Examples : (G,{x}) \mid the connected component containing x.

 $(G,X,Y) \mapsto$ the minor of G resulting from contraction of edges in X and deletion of edges and vertices in Y.

Example of an MS transduction (without parameters) : The square mapping δ on words: $u \mid \rightarrow uu$

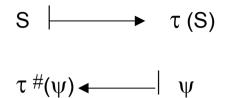
For	u = aac, we have			;	S		$\bullet ightarrow \bullet ightarrow \bullet$			
							а	а	С	
	5	$S \oplus S$	•	\rightarrow	• —	▶ •		$\bullet \rightarrow$	• •	▶•
			а	l	а	С		а	а	С
			р	1	р ₁	p ₁		р ₂	р ₂	р ₂
δ(S)			$\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet$							
			а		а	С	а	а	С	
				-						

In $\delta(S)$ we redefine Suc (i.e., \rightarrow) as follows :

Suc(x,y): \Leftrightarrow p₁ (x) & p₁ (y) & Suc(x,y) v p₂ (x) & p₂ (y) & Suc(x,y) v p₁ (x) & p₂ (y) & "x has no successor" & "y has no predecessor"

We also remove the "marker" predicates p1, p2.

The fundamental property of MS transductions :



Every MS formula ψ has an effectively computable *backwards translation* $\tau^{\#}(\psi)$, an MS formula, such that :

S
$$\mid$$
 = $\tau \#(\psi)$ iff τ (S) \mid = ψ

The verification of ψ in the object structure $\tau(S)$ reduces to the verification of $\tau \#(\psi)$ in the given structure S.

Intuition : S contain all necessary information to describe $\tau(S)$; the MS properties of $\tau(S)$ are expressible by MS formulas in S

Consequence : If $L \subseteq STR(\Sigma)$ has a decidable MS satisfiability problem, so has its image under an MS transduction.

Theorem : The mapping $G \rightarrow Inc(G)$ is an MS-transduction on each of the following classes of simple graphs :

degree < d, tree-width < k, planar graphs, graphs without some fixed H as a minor, graphs of average degree < k (uniformly k-sparse).</pre>

Other results

1) A set of graphs is VR -equational iff it is the image of (all) binary trees under an MS transduction. VR-equational sets are stable under MS-transductions.

A set of graphs has bounded clique-width iff it is the image of a set of binary trees under an MS transduction.

2) A set of graphs is HR-equational iff it is the image of (all) binary trees under an MS₂ transduction.

HR-equational sets are stable under MS₂-transductions.

A set of graphs has bounded tree-width iff it is the image of a set of binary trees under an MS_2 transduction.

3) A set of hypergraphs is QF-equational iff it is the image of (all) binary trees under an MS-transduction.

QF-equational sets are stable under MS-transductions.

4) (A.Blumensath, B.C., 2004) : QF-recognizable sets are preserved under *inverse* MS transductions.

Relationships between algebraic and logical notions

Algebraic notions	Algebraic characterizations	Logical characterizations	Closure properties	
100013	Characterizations	characterizations	properties	
			union, $\cap Rec$	
EQ	equation systems	MS-trans(Trees)	homo	
	Val(REC(Terms))		MS-trans	
			Boolean opns	
REC	congruences	$MS\text{-}def \subset REC$	homo ⁻¹	
			MS-trans ⁻¹	

Signatures for graphs and hypergraphs :

- *HR* : graphs and hypergraphs with "sources"
- *VR* : graphs with vertex labels ("ports")
- VR^+ : VR with quantifier-free operations (ex. edge complement)
- QF : hypergraphs, i.e., relational structures (disjoint union ⊕ and quantifier-free definable unary operations)

8. Links between MS logic and combinatorics: Seese's Theorem and Conjecture

Theorem (Seese 1991): If a set of graphs has a decidable MS_2 satisfiability problem, it has bounded tree-width.

Conjecture (Seese 1991): If a set of graphs has a decidable MS satisfiability problem, it is the image of a set of trees under an MS transduction, equivalently, has bounded clique-width.

Theorem (B.C., S. Oum 2004): If a set of graphs has a decidable C_2MS satisfiability problem, it has bounded clique-width.

MS = (Basic) MS logic without edge quantifications, $MS_2 = MS$ logic with edge quantifications $C_2MS = MS$ logic with even cardinality set predicates. A set *C* has a decidable *L* satisfiability problem if one can decide for every formula in *L* whether it is satisfied by some graph in *C*

Proof of Seese's Theorem :

- A) If a set of graphs *C* has unbounded tree-width, the set of its minors includes all k x k-grids (Robertson, Seymour)
- B) If a set of graphs contains all kxk-grids, its MS₂ satisfiability problem is undecidable
- C) If C has decidable MS_2 satisfiability problem, so has Minors(C),
- because $C \longrightarrow Minors(C)$ is an MS_2 transduction.
- Hence, if *C* has unbounded tree-width and a decidable MS_2 satisfiability problem, we have a contradiction for the decidability of the MS_2 satisfiability problem of Minors(*C*).

Proof of Courcelle-Oum's Theorem :

 D) Equivalence between the cases of all (directed and undirected) graphs and bipartite undirected graphs.

A') If a set of bipartite graphs C has unbounded clique-width, the set of its <u>vertex-</u> <u>minors</u> contains all " S_k " graphs

C') If C has decidable $\underline{C_2MS}$ satisfiability problem, so has Vertex-Minors(C), because C \longrightarrow Vertex-Minors(C) is a $\underline{C_2MS}$ transduction.

E) An MS transduction transforms S_k into the kxk-grid.

Hence A' + B + C' + E gives the result for bipartite undirected graphs. Result with D.

Definitions and facts

Local complementation of G at vertex v

G * v = G with edge complementation of $G[n_G(v)]$,

the subgraph induced by the neighbours of v

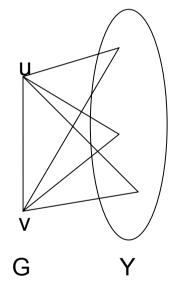
Local equivalence (\approx_{loc}) = transitive closure of local complementation (at all vertices)

<u>Vertex-minor</u> relation :

 $H \leq_{VM} G : \Leftrightarrow H$ is an induced subgraph of some G' $\approx_{loc} G$.

Proposition (Courcelle and Oum 2007) : The mapping that associates with G its locally equivalent graphs is a C_2MS transduction.

Why is the even cardinality set predicate necessary?

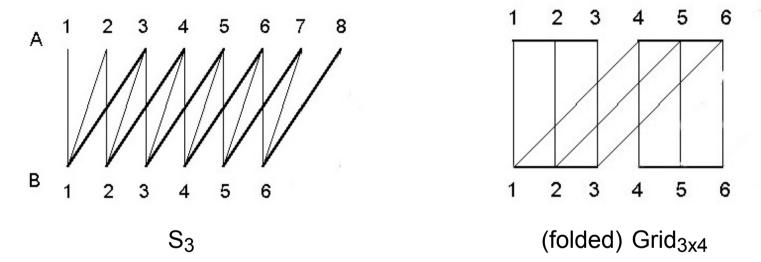


Consider G * X for $X \subseteq Y$:

u is linked to v in G * X

 \Leftrightarrow Card(X) is even

From S_k to Grid_{kxk} by an MS transduction



1) One can define the orderings of A and B :

x, y are consecutive \Leftrightarrow Card($n_G(x) \Delta n_G(y)$) = 2

2) One can identify the edges from $i \in B$ to $i \in A$, and

from $i \in B$ to $i+k-1 \in A$ (thick edges on the left drawing)

3) One can create edges (e.g. from $1 \in A$ to $2 \in A$, from $2 \in A$ to $3 \in A$ etc...and similarly for B, and from $1 \in B$ to $4 \in A$, etc...) and delete others (from $4 \in B$ to $6 \in A$ etc...), and vertices like 7,8 in A, to get a grid containing $Grid_{kxk}$

Corollary : If a set of directed acyclic graphs having Hamiltonian directed paths has a decidable MS satisfiability problem, then :

it has bounded clique-width,

it is the image of a set of trees under an MS transduction.

Proof : Since on these graphs a linear order is MS definable, MS and C_2MS are equivalent.

The previously known techniques for similar results (in particular for line graphs or interval graphs, B.C. 2004) do not work in this case.

9. A few open questions

Question 1 (A. Blumensath, P. Weil, B.C.): Which operations, quantifier-free definable or not, yield extensions of VR, HR, QF that are equivalent ?

Question 2 : Under which operations, quantifier-free definable or not, are REC(VR) and REC(HR) closed ?

The case of REC(HR) is considered in B.C.: (*HR-*)*Recognizable sets of graphs, equivalent definitions and closure properties,* 1994. It is not hard to see that REC(VR) is closed under \oplus (disjoint union) but not under the operations Add-edg_{a,b}. *Answer : unary operations with inverse defined by an MS-transduction.*

Question 3 : Is it true that the decidability of the MS (and not of the C₂MS) satisfiability problem for a set of graphs implies bounded clique-width, as conjectured by D. Seese? What about sets of hypergraphs or relational structures?