
Graph  structure  and

Monadic  second-order  logic

Bruno  Courcelle

Université Bordeaux 1, LaBRI

References :
Chapter 5  in : Handbook of graph grammars vol.1, 1997,

Book in progress,

Articles with J. Makowsky, U. Rotics, P. Weil, S. Oum, A. Blumensath

See : http://www.labri.fr/perso/courcell/ActSci.html



2

Graph structure : Embedding  in a  surface

Exclusion of minor, vertex-minor, induced subgraph

Tree-structuring

Monadic second-order logic : expression of properties, queries, optimization

   functions, number of configurations.

Mainly useful for tree-structured graphs  (Second-order  logic  useless)

Two  types of questions :

Checking  G  =  ϕ  for fixed MS formula  ϕ, given G

Deciding  ∃ G, G ∈ C, G  = ϕ  for fixed C, given MS  formula  ϕ.

Tools  to  be presented

Algebraic setting for tree-structuring of graphs

Recognizability =  finite congruence ≡  inductive computability

≡  finite  deterministic  automaton  on terms

Fefermann-Vaught : MS definability  ⇒  recognizability.
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History : Confluence of 4 independent research directions,  now  intimately

related :

1. Polynomial  algorithms for NP-complete and other hard problems on particular

classes of graphs, and especially hierarchically structured ones : series-parallel

graphs, cographs, partial k-trees, graphs or hypergraphs of tree-width < k, graphs of

clique-width < k.

2. Excluded minors and related notions of forbidden configurations (matroid

minors, « vertex-minors »).

3. Decidability of Monadic Second-Order logic on classes of  finite  graphs, and on

infinite graphs.

4. Extension to graphs and hypergraphs of the main concepts of Formal

Language Theory : grammars, recognizability, transductions, decidability questions.
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    Summary
1. Introduction

Extension of Formal  Language Theory notions

2. Recognizability, an algebraic notion.

3. Context-free  sets defined  by  equation  systems.

4. The graph algebras  VR  and  HR.

Algorithmic  applications  :

5. Inductive computations and recognizability; fixed-parameter  tractable algorithms.

6. Monadic second-order logic defines inductive  properties and functions

Formal  language  theory  extended to graphs

7. Closure and decidability properties ; generation  of classes of graphs  by  monadic

second-order  transductions.

Monadic second-order  logic and combinatorics

8 Seese's  conjecture

Open questions
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1.  Introduction  :  An  overview  chart :

Graph                   "Context-free"

operations             sets  of  graphs

                                                        Language  theory

                                                             for   graphs

                              Recognizable   

Monadic  2nd          sets  of graphs Mon. 2nd order transductions

order  logic

                                                                Fixed  parameter

                                                                tractable algorithms



6

Key  concepts of FLT  and  their  extensions

Languages Graphs

Algebraic structure :
monoid  (X*,*,ε)

Algebras based on graph operations : ⊕, ⊗, //
quantifier-free definable operations

Algebras : HR, VR
Context-free languages :

Equational subsets of (X*,*,ε)
Equational sets of the

algebras   HR,VR
Regular languages :
Finite  automata  ≡

Finite congruences   ≡
Regular expressions   ≡

Recognizable sets
of the algebras

HR, VR
defined by congruences

≡   Monadic Second-order
definable sets of words or terms

∪
Monadic Second-order definable sets of graphs

Rational and other types of
transductions

Monadic Second-order transductions
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Relationships  between  algebraic  and  logical  notions
for sets  of  graphs  (and  hypergraphs)

Algebraic
notions

Algebraic
characterizations

Logical
characterizations

Closure
properties

union,  ∩ Rec
equation systems MS-trans(Trees) homoEQ
Val(REC(Terms)) MS-trans

Boolean opns
congruences MS-def ⊂ REC homo-1REC

MS-trans-1

Signatures  for  graph  algebras :
HR : graphs  and  hypergraphs with   “sources”
VR : graphs with  vertex  labels, “ports”
VR+ : VR   with quantifier-free operations     (ex. edge complement)
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Another  picture :
Value ( MS Transduction)

REC(Terms)     EQ
MS  Transductions

 Coding

   (MS Transductions) MS   Transduction

  Binary trees

Equational sets = MS-Trans(Binary Trees)

Context-free  languages  =  images  of the Dyck  language

(which encodes  trees)  under  rational  transductions

Since MS  transductions are closed under composition, the

class  of equational  sets  is closed under MS transductions
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2. Recognizable  sets  :    algebraic   definition

F :   a finite set of operations with (fixed) arity.

M = < M, (fM)f ∈ F >  :   an F-algebra.

Definition :  L  ⊆ M   is   (F-)recognizable if it is a union of equivalence classes for a finite

congruence   ≈    on    M    (finite   means  that   M / ≈   is  finite).

Equivalently, L = h-1(D) for a homomorphism  h : M → A,  where A is a finite F-

algebra, D ⊆  A. (On terms  : Finite  deterministic automata).

REC(M) is the set of recognizable subsets of M,  with respect to  the algebra M.

Closure properties : REC(M) contains M and ∅, and is closed under union, intersection

and difference.
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The  many-sorted  case  with  infinitely   many sorts

S   :   the countable  set of sorts.

F  :   an S-signature : each  f  in  F  has a type  s1s2 …sk → s,  with s, si ∈ S

M = < (Ms)s ∈ S, (fM)f ∈ F  >  F-algebra, Ms ∩ Mt  = ∅, if s  ≠  t

where fM : Ms1 X  Ms2 X … X  Msk →  Ms

Definition : L  ⊆ Ms  is    (F-) recognizable  if it is a union of equivalence classes for a

congruence ≈ on  M  such that equivalent  elements  are  of  the  same  sort and there are

finitely  many  classes  of  each  sort.
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3. Equational  (context-free) sets

Equation  systems =  Context-Free  (Graph)  Grammars
         in  an  algebraic  setting

In the case of  words,   the  set of context-free  rules

S  → a S T ;    S  → b  ;  T  → c T T T ;   T  → a
is equivalent to  the system  of  two set  equations:

S  =  a S T   ∪   { b }

T  =  c T T T    ∪        { a }

where S is the language generated  by S      (idem for T and T).
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For  graphs  (or  other  objects)  we consider  systems of equations like:

S  =  f( k( S ), T  )  ∪ { b }

T  =  f( T , f( g(T ), m( T ))) ∪ { a }

where  f   is a binary operation,  g, k, m   are unary operations on  graphs,

a, b   denote  basic graphs  (up  to  isomorphism).

An  equational set  is  a component  of the least  (unique)  solution  of such  an

equation system. This  is  well-defined in any  algebra.
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Closure properties and algebraic characterizations

General  algebraic  properties

Algebraic
notions

Algebraic
characterizations

Closure
properties

equation systems union,  ∩ RecEQ
Val(REC(Terms)) homomorphisms

congruences Boolean operationsREC
homomorphisms-1

Theorem (Mezei and Wright) :

1) In an algebra of  terms T(F) :   EQ(T(F)) = REC(T(F))

2) In an F-algebra M :         EQ(M) = ValM(REC(T(F))

where ValM : T(F)         M   is the evaluation mapping,  the unique homomorphism.
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4. The  graph algebras   VR   and    HR

Tree-width  :  Tree-decomposition of  width  k : k+1 = maximum  size  of a  box

Tree-width : twd(G) = minimum  width of a  tree-decomposition

Trees  have tree-width 1, Kn  has tree-width n-1, the n x n grid  has tree-width  n

Outerplanar  graphs  have  tree-width  at  most  2.
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HR operations : Origin :  Hyperedge Replacement hypergraph grammars ; associated complexity

measure : tree-width

Graphs have  distinguished vertices called sources,  pointed  to  by labels from  a  set of

size k :    {a, b, c,  ..., h}.

Binary operation(s)  : Parallel  composition

G // H    is   the  disjoint  union of  G  and  H and sources  with  same  label  are   fused. (If

G  and  H are  not disjoint, one  first  makes  a  copy of  H disjoint from  G).
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Unary operations   :    Forget   a  source  label

Forgeta(G)    is  G     without  a-source  : the  source  is  no longer

                                   distinguished ; it is  made  "internal".

Source renaming :

Rena,b(G)  exchanges  source  names  a  and b

(replaces  a  by  b   if  b is not the name  of a  source)

Nullary operations denote  basic graphs :  the connected graphs with at most one edge. For

dealing with hypergraphs one takes more nullary symbols for denoting hyperedges.

More precise algebraic framework : a many sorted algebra where each finite set of

source labels is a sort. The above operations are  overloaded.
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Proposition:  A  graph  has  tree-width  ≤  k  if and only if  it  can  be  constructed   from

basic  graphs  with   ≤  k+1  labels  by  using  the  operations    // , Rena,b  and  Forgeta .

Example : Trees are of tree-width 1, constructed with two source labels, r  (root) and n  (new root):

Fusion of two trees at their roots  :

Extension of a tree by parallel composition

with a new edge,  forgetting the old root,

making   the "new root" as current root :

E  =  r  •_________•  n

Renn,r (Forgetr (G // E))
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From  an algebraic  expression  to  a   tree-decomposition

Example :  cd // Rena,c (ab // Forgetb(ab // bc))

Constant  ab  denotes  a  directed edge from  a   to  b.

                         The tree-decomposition associated  with this term.
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VR    operations

Origin : Vertex Replacement graph grammars

Associated complexity measure :   clique-width, has no  combinatorial  characterization  but is

defined in terms of  few very simple  graph operations  (whence easy  inductive proofs).

Equivalent notion : rank-width (Oum and Seymour) with better structural and algorithmic

properties.

Graphs are simple, directed or not.

k   labels  :  a , b , c,  ..., h.  Each vertex has one and only  one label ;

a label p may label several vertices, called the   p-ports.

One  binary operation:   disjoint  union    :   ⊕
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Unary  operations:  Edge addition denoted  by  Add-edga,b

Add-edga,b(G)   is  G   augmented with (un)directed edges  from every   a-port   to every

b-port.

     G   Add-edga,b(G)
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Vertex  relabellings :

Relaba,b(G) is  G with every vertex labelled by a   relabelled into b

Basic graphs  are those with a single vertex.

Definition:  A  graph  G  has  clique-width  ≤ k  ⇔ it can be constructed  from basic graphs

by means  of  k  labels  and   the  operations ⊕, Add-edga,b   and   Relaba,b  

Its (exact) clique-width,  cwd(G),   is the   smallest  such  k.
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Proposition :  (1) If  a  set of  simple graphs  has  bounded  tree-width, it has  bounded

clique-width, but  not  vice-versa.

(2) Unlike tree-width, clique-width  is  sensible to edge directions :  Cliques have clique-

width  2, tournaments have unbounded clique-width.

(3) Deciding  “Clique-width < 3” is a polynomial problem. (Habib et al.)

     The complexity (polynomial or NP-complete) of  “Clique-width = 4” is unknown.

     It is  NP-complete  to  decide  for given k and G  if  cwd(G) < k. (Fellows et al.)

      There exists  a cubic approximation algorithm  that for given k and G

answers (correctly) :

either  that cwd(G) >k,

or  produces  a  clique-width algebraic term  using  224k labels. (Oum)

This  yields  Fixed Parameter Tractable  algorithms  for many hard problems.
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Example : Cliques have clique-width 2.

Kn  is   defined  by   tn where  tn+1  =   Relabb,a( Add-edga,b(tn  ⊕  b))

Another  example :  Cographs

Cographs  are generated  by  ⊕  and  ⊗  defined by :

G ⊗ H   =   Relabb,a ( Add-edga,b (G ⊕ Relaba,b(H))

              = G ⊕ H  with  “all edges”  between  G and H.
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5.   Algorithmic  applications

Fixed parameter  tractability  results

Theorem (B.C.) :  A)  For  graphs  of  clique-width  ≤  k ,

each monadic  second-order  property, (ex. 3-colorability),

each monadic  second-order optimization function, (ex. distance),

each monadic  second-order  counting  function, (ex. #  of paths)

       is  evaluable :

in  linear  time  on graphs  given  by a term over VR-operations,

in time  O(n3)  otherwise  (by  S. Oum, 2005).

B) All  this  is  possible  in linear  time  on graphs  of tree-width ≤  k, for each  fixed

k  (by  Bodlaender, 1996).
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Inductive  computations

Example : Series-parallel graphs, defined  as graphs with sources 1 and 2,

generated from  e   = 1             2    and the operations //  (parallel-composition)  and

series-composition   defined  from other operations by :

G • H =  Forget3(Ren2,3 (G) // Ren1,3 (H))

Example  :

  1 •        G              •        H                            •  2

    3

   1   •            • 2
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Inductive  proofs :

1) G, H connected implies :  G//H   and   G • H   are  connected, (induction)

e   is connected (basis) :

⇒      All  series-parallel graphs are connected.

3) It is not true that :

G  and  H  planar implies :  G//H is  planar  (K5 = H//e).

A stronger property for induction :

G has a planar embedding with the sources in the same “face”

⇒      All  series-parallel graphs are planar.
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Inductive  computation  :  Test  for 2-colorability

1) Not all  series-parallel  graphs are  2-colorable  (see  K3)
2) G, H  2-colorable does not imply that G//H is 2-colorable  (because  K3=P3//e).

3) One can check 2-colorability  with 2 auxiliary  properties :
    Same(G) =  G is 2-colorable with sources of the same color,

Diff(G) =  G is 2-colorable with sources  of different colors
by  using rules : Diff(e) =  True  ;  Same(e) = False

Same(G//H)  ⇔ Same(G) ∧ Same(H)
Diff(G//H) ⇔  Diff(G) ∧  Diff(H)
Same(G•H)  ⇔  (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H))
Diff(G•H)  ⇔  (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧  Same(H))

We can compute for every SP-term t, by induction on the structure of  t the pair of

Boolean values (Same(Val(t)) ,  Diff(Val(t)) ). 

We  get  the answer  for  G = Val(t)  (the graph  that  is  the value  of t )  regarding 2-

colorability.
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Important facts  :

1)  The existence of properties  forming  an inductive set  (w.r.t. operations of

F) is equivalent  to recognizability in  the  considered F-algebra.

2) The simultaneous computation of m inductive properties can be

implemented by a "tree" automaton with 2m  states working on terms  t. This

computation  takes  time  O( t ).

3) An inductive set of properties can be constructed (at least theoretically)

from every monadic-second order formula.

4) This  result extends  to the computation of values  (integers)  defined  by

monadic-second order formulas.
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Recognizability  and  inductive  properties

Definition : A finite  set  P  of  properties  on an F-algebra M is  F-inductive   if  for
every  p ∈ P  and f ∈ F, there exists a (known)   Boolean formula  B  such that  :

p(fM(a,b) )  =  B[…,q(a),…,q(b),….,q∈P]
for  all  a  and  b in M.     (where   q(a),…, q(b) ∈ {True, False}) .

Proposition :  A  subset  L of  M  is recognizable  iff  it is the set of elements  that

satisfy a property belonging to a finite inductive set of properties P.

Proof : Let L = h-1(C)  for a homomorphism h : M → A , A  a finite F-algebra  and C a
subset of  A (domain of A).

For each a  in  A, let  â  be the property : â(m)= True  ⇔  h(m) = a.   Let  p  be  such
that  p(m) = True   ⇔  h(m) ∈ C  ⇔  m ∈ L.

Properties  {p, â / a∈ A}  form an  F-inductive  set.
If  P is an inductive set of k properties, one can define an F-algebra  structure on the

set Bk of  k-tuples of Booleans, such that  the  mapping
h : m → the k-tuple  of  Booleans   is   a homomorphism.
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Inductive  properties and automata on terms

If  P is an inductive set of k properties, one can define a deterministic

automaton on terms of T(F)  with set of states  the  k-tuples of Booleans, that

computes in a bottom-up way,   for each  term t,   the  truth values  :

   p(Val(s))   for  all  p ∈ P  and  all subterms  s   of   t.

Membership  of  an element  m  of  M  in a recognizable set  L  can be  tested

by such an automaton  on  any   term   t   in  T(F)  defining  m.



31

Application  to  graphs

Immediate  but  depends  on  two things  :

Parsing  algorithms  building  terms  from the given graphs :

1) results by Bodlaender for constructing tree-decompositions (in linear time),

whence terms representing them,

 2) results by Oum for  constructing (non-optimal)  terms for graphs  of  clique-

width at most  k. (Cubic time algorithm).

Language  for  expressing  inductive  properties : Monadic second-order

logic.
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6.  Monadic Second-Order (MS) Logic
A  logical  language  which specifies  inductive  properties  and functions

=  First-order logic on power-set structures

=  First-order logic extended with (quantified) variables
denoting subsets  of the domains.

MS properties :   transitive closure,  properties of paths, connectivity,

planarity  (via Kuratowski, uses connectivity),   k-colorability.

Examples  of formulas for   G =  < VG , edgG(.,.) >, undirected

Non connectivity :
∃X ( ∃x ∈ X  ∧  ∃y ∉ X  &  ∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∈ X)  )

2-colorability (i.e.  G  is   bipartite) :
∃X ( ∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∉ X) ∧ ∀u,v (u ∉ X  ∧  edg(u,v) ⇒ v ∈ X) )
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Edge set  quantifications

Incidence  graph  of G undirected,  Inc(G) = < VG ∪ EG, incG(.,.) >.

incG(v,e)   ⇔   v is a vertex of edge  e.

Monadic second-order  (MS2)  formulas  written  with  inc   can use quantifications
on sets of edges.

Existence  of Hamiltonian circuit  is expressible  by an  MS2  formula, but not by an MS
formula.

Theorem : MS2 formulas are no more powerful  than  MS  formulas  :

for graphs  of degree  < d, or of  tree-width < k,
or for planar graphs, or graphs without some fixed H as a minor,
or  graphs of  average  degree  <  k  (uniformly k-sparse).
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Definition :  A set  L  of words,  of trees,  of graphs or relational structures   is
Monadic Second-Order  (MS)  definable  iff

L  =  { S   /    S  =  ϕ }  for an MS formula  ϕ

Theorem  :  (1) A  language (set  of words or  finite  terms ) is
recognizable   ⇔   it  is  MS  definable

(2) A set  of finite  graphs  is  VR-  or  VR+-recognizable    
⇐  it  is  MS  definable

(3) A set  of finite  graphs  is  HR-recognizable   
 ⇐  it  is  MS2 definable

Proofs:
(1) Doner, Thatcher, Wright, see W. Thomas, Handbook formal languages, vol.3.
(2) (3)  There  are  two  possible proofs .
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Basic  facts  for   (2) :

Let  F  consist  of   ⊕  and  unary  quantifier-free  definable  operations f.

For every  MS  formula  ϕ  of quantifier-height  k, we  have

(a) for  every   f , one can construct  a formula  f#(ϕ)   such that :   

 f(S)  =  ϕ  ⇔  S  =  f#(ϕ)

(b) (Hanf, Fefermann  and  Vaught, Shelah) one can construct formulas  ψ1,…,ψn,θ1,…,θn

such that :

S⊕T  =  ϕ  ⇔  for some i,  S  =  ψi  ∧ T  =  θ i

where f#(ϕ), ψ1,…,ψn, θ1,…,θn  have quantifier-height  <  k.

(c) Up  to  equivalence, there  are  finitely many  formulas  of quantifier-height  <  k   forming a set  Φk.

One builds an automaton with states the  subsets of  Φk : the MS-theories of quantifier-height < k of

the graphs defined by the subterms of  the term  to be processed.
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8. 
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7.  Monadic  second-order  transductions

STR(Σ):   the set of finite  Σ-relational  structures (or finite directed ranked Σ-hypergraphs).

MS  transductions  are  multivalued mappings  :     τ  : STR(Σ)  STR(Γ)

            S                 T  =  τ (S)
where   T  is  :

a) defined by  MS formulas

b) inside  the  structure:  S ⊕ S ⊕ ... ⊕ S
(fixed  number  of disjoint "marked" copies of S)

c) in terms  of "parameters", subsets  X1, …,Xp   of  the  domain  of  S.
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Proposition  :  The  composition  of  two   MS  transductions  is  an  MS

transduction.

Remark  :   For  each tuple of parameters X1, …,Xp   satisfying  an MS  property, T is
uniquely defined.   τ  is multivalued  by  the  different choices of parameters.

Examples : (G,{x})        the connected  component containing x.

(G,X,Y)         the minor  of G  resulting from  contraction of edges in X  and deletion of
edges  and vertices  in Y.
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Example  of  an  MS  transduction   (without parameters) : The  square  mapping
δ  on  words:  u  →   uu

For    u  =    aac, we  have     S •  →  • → • 
           a      a      c

S ⊕ S  •  →  • → •             •  →  • → •

a       a     c             a        a     c
p1     p1    p1           p2      p2    p2

δ(S) •  →  • → •  →  • → • →  •

a        a      c        a      a        c

In δ(S) we  redefine Suc (i.e., →  ) as  follows :

Suc(x,y) :  ⇔   p1 (x) & p1 (y) & Suc(x,y)   v p2 (x) & p2 (y) & Suc(x,y)
 v p1 (x) & p2 (y) & "x has no  successor"  &   "y has no  predecessor"

We also  remove  the  "marker" predicates p1, p2.
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The fundamental property of MS  transductions :

S                      τ (S)

τ #(ψ)                ψ

Every  MS  formula  ψ  has  an effectively  computable  backwards  translation τ #(ψ),
an MS formula, such that :

S   =  τ #(ψ)    iff    τ (S)   =  ψ

The verification of ψ  in  the object structure τ(S)  reduces  to  the  verification  of
τ #(ψ)   in  the  given structure S.

Intuition : S  contain all necessary information to describe  τ(S) ;  the MS properties of τ(S)
are expressible by MS formulas in S

Consequence : If L ⊆ STR(Σ) has a decidable  MS satisfiability problem,  so has  its image
under  an MS  transduction.
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Another  look at   MS2    versus   MS  formulas

Theorem  :  The  mapping  G  Inc(G)  is an MS-transduction
on each of the  following  classes  of simple  graphs :

degree  < d,
tree-width < k,
planar graphs,
graphs without some fixed H as a minor,
graphs of  average  degree < k (uniformly k-sparse) .
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Other results 
 1) A set  of graphs  is VR -equational  iff  it is the image of  (all) binary trees under an  MS
transduction.   VR-equational  sets  are  stable  under  MS-transductions.

A  set  of graphs has bounded clique-width  iff  it is  the image  of  a  set  of binary
trees  under  an MS transduction.

2) A  set  of graphs is HR-equational   iff  it is  the image  of   (all) binary trees  under  an
MS2 transduction.

HR-equational  sets  are  stable under  MS2-transductions.

A  set  of graphs has bounded tree-width  iff  it is  the image  of  a  set  of binary trees
under  an MS2 transduction.

3) A  set  of hypergraphs is QF-equational   iff  it is  the image  of  (all) binary trees  under
an MS-transduction.   

QF-equational  sets  are  stable under  MS-transductions.

4) (A.Blumensath, B.C., 2004) : QF-recognizable sets are  preserved  under inverse  MS
transductions.
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Relationships  between  algebraic  and  logical  notions

Algebraic
notions

Algebraic
characterizations

Logical
characterizations

Closure
properties

union,  ∩ Rec
equation systems MS-trans(Trees) homoEQ
Val(REC(Terms)) MS-trans

Boolean opns
congruences MS-def ⊂ REC homo-1REC

MS-trans-1

Signatures  for  graphs and hypergraphs :

HR : graphs  and  hypergraphs with “sources”
VR : graphs with  vertex  labels (“ports”)
VR+ : VR  with quantifier-free operations  (ex. edge complement)
QF : hypergraphs, i.e., relational structures  (disjoint union ⊕ and
             quantifier-free  definable  unary  operations)
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8.  Links between MS logic and combinatorics: Seese’s  Theorem

and Conjecture

Theorem (Seese 1991): If a set of graphs  has  a decidable MS2 satisfiability

problem, it has  bounded tree-width.

Conjecture (Seese 1991): If a set of graphs  has  a decidable MS satisfiability

problem, it  is  the  image  of a set of trees under an MS  transduction,

equivalently, has  bounded clique-width.

Theorem (B.C., S. Oum 2004): If a set of graphs has a decidable C2MS

satisfiability problem, it has  bounded clique-width.
MS  = (Basic) MS logic without edge  quantifications, MS2 = MS logic  with  edge  quantifications
C2MS = MS logic with even cardinality set  predicates. A set C  has  a  decidable L  satisfiability
problem  if one can decide for every  formula  in L   whether  it  is  satisfied  by some graph in C
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Proof  of  Seese’s  Theorem :

A)  If  a  set  of  graphs  C  has unbounded  tree-width, the set of its  minors  includes

all k x k-grids  (Robertson, Seymour)

B)  If  a  set  of  graphs   contains  all kxk-grids,  its MS2 satisfiability  problem is

undecidable

C) If C has  decidable MS2 satisfiability  problem, so has Minors(C),

because   C                     Minors(C)  is an  MS2 transduction.

Hence, if   C  has unbounded  tree-width and a decidable MS2 satisfiability

problem, we have a contradiction  for the decidability of the  MS2 satisfiability  problem

of Minors(C).
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Proof  of  Courcelle-Oum’s  Theorem :

D) Equivalence  between  the cases  of all  (directed and undirected) graphs  and

bipartite  undirected graphs.

A’)  If a  set  of  bipartite graphs  C  has unbounded  clique-width, the set of its  vertex-

minors  contains  all  “Sk“  graphs

C’)  If C has  decidable C2MS satisfiability  problem, so has Vertex-Minors(C),

because  C                 Vertex-Minors(C)  is a   C2MS transduction.

E)  An   MS transduction  transforms Sk into the kxk-grid.

Hence  A' + B + C' + E   gives the result for bipartite undirected graphs. Result with D.
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Definitions  and  facts

Local  complementation of  G  at vertex  v

G * v   =  G  with edge complementation of  G[nG(v)],

   the subgraph induced  by the neighbours of v

Local equivalence  ( ≈ loc )  = transitive closure of local  complementation

(at  all  vertices)

Vertex-minor  relation :

H  <VM  G  : ⇔ H  is an induced  subgraph  of  some G’ ≈ loc G.
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Proposition (Courcelle and Oum 2007) :  The  mapping  that  associates   with  G  its locally

equivalent  graphs  is a   C2MS transduction.

Why is  the  even cardinality  set predicate  necessary ?

 u                               Consider G * X for X ⊆ Y :

                                  u  is  linked  to  v  in G * X

 v                               ⇔    Card(X)  is even

G       Y
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Definition of   Sk : bipartite : A = {1,…,(k+1)(k-1)} , B =  {1,…,k(k-1)} for  j  ∈  A,   i ∈  B :

edg(i,j )   ⇔   i ≤ j ≤ i+k-1

From Sk  to  Gridkxk   by an MS transduction

               S3               (folded)  Grid3x4

1) One can define the orderings of A and B :

x, y  are  consecutive   ⇔   Card(nG(x) ∆ nG(y)) = 2

2) One can identify the edges from i  ∈ B  to  i   ∈ A, and

from i ∈ B to i+k-1 ∈ A (thick edges on the left drawing)
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3) One can create edges (e.g. from  1 ∈ A to 2 ∈ A, from  2 ∈ A to 3 ∈ A etc…and

similarly for B, and from  1 ∈ B to 4 ∈ A, etc…)  and delete others (from 4 ∈ B to 6 ∈ A

etc…), and vertices like 7,8 in A, to get  a grid containing Gridkxk

Corollary : If a set of directed acyclic graphs having Hamiltonian directed  paths has a

decidable MS satisfiability problem, then :

it has bounded clique-width,

it is the image of a set of trees under an MS transduction.

Proof : Since on these graphs a linear order is MS definable, MS and C2MS   are

equivalent.

The  previously known  techniques for similar results (in particular for line graphs or

interval  graphs,  B.C. 2004)  do not work in this case.
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9. A  few   open  questions

Question 1 (A. Blumensath, P. Weil, B.C.): Which operations, quantifier-free definable or

not, yield extensions  of VR, HR, QF  that are equivalent ?

Question 2 : Under which operations, quantifier-free definable or not, are  REC(VR)  and

REC(HR)  closed ?

The case of REC(HR) is considered in B.C.: (HR-)Recognizable sets of graphs,

equivalent definitions and closure properties, 1994. It is not hard to see that REC(VR)

is closed under ⊕ (disjoint union)  but not under the operations   Add-edga,b.

Answer : unary  operations with inverse  defined  by an MS-transduction.

Question 3 : Is  it  true  that  the decidability  of the MS (and not of the C2MS)  satisfiability

problem for a set of graphs implies bounded clique-width, as conjectured by D. Seese?

                    What  about  sets  of hypergraphs or  relational structures?


