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  Key  concepts of Language  Theory  and  their  extensions 
 

Languages Graphs 

Algebraic structure : 
monoid  (X*,*,ε)  

Algebras based on graph operations : ⊕, ⊗, // 
quantifier-free definable operations 

Algebras :  HR,  VR 
Context-free languages : 

Equational subsets of (X*,*,ε) 
Equational sets of the 

algebras   HR,  VR 
Regular languages : 
Finite  automata  ≡ 

Finite congruences   ≡ 
Regular expressions   ≡ 

Recognizable sets  
of the algebras HR, VR 

 
defined by finite congruences 

≡   Monadic Second-order 
definable sets of words or terms

∪ 
Monadic Second-order definable  

sets of graphs  
Rational and other types of 

transductions 
Monadic Second-order transductions 

Recognizability   Theorem  :  the  inclusion   ∪ 
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1.  The  graph algebra   VR 
 

Origin :  Vertex  Replacement   context-free   graph   grammars  

Associated complexity measure: clique-width.  

 Graphs are  defined in terms of very simple  graph operations,   

 giving easy  inductive proofs. 
 

Graphs  are  simple,  loop-free,  directed or not.         

 

Vertex  labels  :  1 ,..., k.   Each  vertex  has  one  and  only  one   label.  
 

One  binary  operation :   disjoint   union    :   ⊕ 

  

 Well-defined  up  to isomorphism :  one takes disjoint  copies ;  

 G ⊕ G   is  not  equal  to  G  
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Unary  operations:  Edge addition denoted  by  Add-edga,b 
 

Add-edga,b(G)   is  G  augmented with undirected edges  between   

every   a-labelled vertex   and   every  b-labelled  vertex 

 

 

 

 

 
 

 

      H = Add-edga,b(G) ; only 5  new edges added  

The  number  of added edges  depends  on  the  argument graph. 

 The  directed   version  of   Add-edga,b    adds   directed  edges  from  

every   a-labelled vertex   to   every  b-labelled  vertex 
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Vertex  relabellings :  
Relaba       b(G)  is  G  with  every  (vertex)  label  a  changed into    b 

 

 

Basic graphs   :   a    one    vertex  labelled  by a. 

 

 

 

Definition: A  graph  G has  clique-width ≤ k   

 ⇔  it can be constructed from basic graphs  with the  operations  

   ⊕, Add-edga,b  and  Relaba      b  with  labels  a, b in   1,…,k. 

 

     Its  (exact)   clique-width   cwd(G)  is   the   smallest   such   k. 
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 Example : Cliques  (a-labelled)  have  clique-width  2.  
 

 

 

 

 

 

 

 

  Kn   is   defined   by   tn   where    t1   =   a 

  tn+1   =   Relabb      a( Add-edga,b(tn ⊕ b)) 
 

Example :  Cographs  (a-labelled)  are   generated   by   ⊕   and   ⊗   defined  by: 

G ⊗ H  =  Relabb      a( Add-edga,b (G ⊕ Relaba      b(H))) 

            = G ⊕ H   with   “all edges”  between   G   and    H. 
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2.  Recognizable  sets  :  an   algebraic   notion 
 

M = < M, (fM)f ∈ F >  :   an  F-algebra   where   F  is  a  finite  signature. 

      L  ⊆ M   is   (M-)recognizable  if  it  is  a  union  of  equivalence classes 

for a  finite congruence   ≈   on   M. 

 Congruence  = equivalence  relation  such that : 

m ≈ m’   and     p ≈ p’     ⇒     fM(m,p)  ≈  fM(m’,p’).   

  Finite   means  that   M / ≈   is  finite,  i.e., ≈  has  finitely many classes. 

Equivalently, L = h-1(D)  for  a  homomorphism  h :  M → A,  where  

A  is  a   finite   F-algebra    and    D ⊆  A.  
   

 Rec(M) = the recognizable subsets of M .   
 This notion is  relative  to  the algebra  M. 
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Classical  examples  

Algebra          Recognizable    sets  
 

<A* , ., ε , a,b,…,d>                       Regular  languages 
             (syntactic  monoid) 
 

<A* , ε , (λu∈A*.ua)a∈ A >               Regular  languages 
             (Myhill-Nerode)  
 

T(F), terms over F, (initial F-algebra)    Regular  sets  of  terms  
On terms,  h  is the run of a  finite  deterministic bottom-up  automaton 

 

<Nk, + , (0,…,0), … (0,…,1,0,…,0) …>    Finite  unions  of Cartesian 

    products  of   k  sets  { u + n.v  ⎜ n  ∈ N }       for  u,v ∈ N 
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The  algebra   VR  has   an   infinite  signature 
 

We introduce   a  notion  of  type  (or  sort   in a  many-sorted  framework). 
 

The  type  of G  is :   π(G)  =  the  set  of  vertex  labels  having  an  occurrence.  

π  has  a  homomorphic  behaviour : 

π(G ⊕ H)  = π(G) U π(H)   ;        π(Add-edga,b(G)) = π(G)    ;  

 π(Relaba       b(G) )  =  π(G)[b/a]. 

For defining  the  recognizability  of  set   L  we  require  that  the  congruence  ≈  

is    type  preserving    :      G ≈ H    implies   π(G)  =  π(H), 

 locally  finite  :  it  has  finitely  many classes  of   each   type, 

 L    is   a   union   of   classes  (possibly  of   different   types). 
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 Properties  of  recognizable  sets  that  follow  from the  algebraic setting : 
 

 

 Closure   under  ∪, ∩   and   -  (difference), 

    under  inverse homomorphisms  and   

    under  inverse  unary derived operations. 

 

 Filtering  Theorem : The  intersection  of  an  equational  

 (i.e.,  “context-free” )   set  and  a  recognizable  one   is   equational    

 With  effective  constructions. 
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Properties  of  recognizable  sets  of  graphs  that  do  not  follow  “algebraically”   

 
Closure  under  the  binary  operation    ⊕, 

under  the  unary  relabelling  operations.  
(false  for  Add-edg  but  true  if  some  “harmless”  restriction  of    

the use  of  this  operation  is made.) 

(Fact : It  is  more difficult  to prove the closure under concatenation  of  regular  

languages  than their closure under Boolean operations ; this is reflected  

by the  sizes  of  syntactic  monoids). 
 

Properties  that  do  not  hold  as  we  could  wish  or  expect. 
 

Emptiness  is  not  decidable  (because  of  infinite  signatures). 

  Rec  and  Equat  are  incomparable. 

  Every  set  of  square  grids   is   VR-recognizable.  

  There are  uncountably many  recognizable  sets, hence 
  no  characterization  by  finite automata   or  logical  formulas. 
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Proposition :  If  F  is  finite  and  generates  M,  i.e.,  if  every  element  of M   

   is  the  value   valM(t)  of  some  term   t  in  T(F), then : 

   a  subset  L  of   M   is   M-recognizable   
   if  and  only  if  

   the  set  of  terms  valM
-1(L)  is  T(F)-recognizable,  

   if  and  only  if  

   valM
-1(L)  is   defined   by   a  finite  (deterministic)   automaton. 

 

 Two  possible  proofs  that   a   set   L   is   M-recognizable  : 

    Construction  of  a  finite  congruence   on  M   that   saturates  L, 

    Construction  of  an  automaton  that  defines   valM
-1(L). 
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3.   Monadic Second-Order (MS) Logic  
 
=  First-order logic on power-set structures  
 
=  First-order logic extended with (quantified) variables  

denoting subsets  of the domains. 
 
MS properties :   transitive closure,  properties of paths, connectivity,  

 
planarity  (via Kuratowski, uses connectivity),   k-colorability. 
 
 

Examples  of formulas for   G =  ( VG , edgG(.,.) ), undirected 
 
 
 

3-colorability  (NP-complete property) 
∃X,Y (”X,Y  are  disjoint”  ∧  ∀u,v { edg(u,v) ⇒  
                    [(u ∈ X  ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧(u ∈V-(X∪Y)  ⇒ v ∉V-(X∪Y)]} ) 
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Non connectivity   (whence connectivity, more generally transitive closure)  : 
∃X ( ∃x ∈ X  ∧  ∃y ∉ X  ∧  ∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∈ X)  ) 
 
 
Planarity  :  no  K5  or  K3,3  minor. 
 
 
Having  a   K5   minor : 
 
∃X1,…,X5 ( “ the Xi’s are pairwise disjoint”    
  ∧ “each  Xi  induces a connected graph”     
  ∧  “for every  i<j, there is an edge  between some u in Xi  and some v in Xj” ) 
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4.  The recognizability  theorem  
 

 A  set  L  of   finite  words, terms,  graphs  or  relational  structures   is  

Monadic Second-Order  (MS)  definable  if  it  is  the set of finite models of  an  

MS  sentence  ϕ    (a  formula  without  free  variables)  : 

L  =  Models(ϕ)  : =  { S finite   /    S   ⎜=  ϕ  }   for  a  fixed  MS sentence  ϕ 
 
 
 
 

The  Recognizability  Theorem : 
 
 Every MS- definable  set  of   graphs  is  VR-recognizable 
 
 Every MS- definable set  of  relational  structures  is recognizable with respect 

to an algebra  that  generalizes  VR (using   ⊕  and  unary  quantifier-free   definable  

operations  generalizing  edge  addition, vertex relabelling, edge  complement). 
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Consequences  
 

Fixed  Parameter  Tractable   algorithms  for checking  MS graph 

properties,  for  clique-width  (or  tree-width) as parameter. 

 

Filtering Theorem   :  if  L  is  VR-equational  (“context-free”),   

the  set   L  ∩  Models(ϕ)   is  (effectively)  VR-equational  for  each  MS  

sentence  ϕ. 

Example :  for  ϕ  expressing  planarity, a  direct  proof  would  be  unwritable. 
 

  Decidability  of  monadic theories : given k and ϕ,  one  can  decide if  

ϕ  is  true  in   all   graphs  of   tree-width  or  clique-width  at  most k. 
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5.  Büchi-style  proof  for  the case  of  terms 
  

Terms   in  T(F)  where   F  is  a   finite  signature 

Logical  representation  S(t)  of  a   term  t :   

 nodes  of  the  syntactic  tree,  son  binary relation,  

 unary  predicates  labf  for “my  label  is  f ” and bri  for  “I  am the i-th brother”. 

 

Example  :  t = f1(g2(a3,b4),b5)     (integers  1,2,…,5  designate  nodes  = occurrences) 

S(t)    has  domain   { 1,2,3,4,5 },  

   son relation { (1,2), (1,5), (2,3), (2,4) },  

   unary predicates :  labf  =  {1}, labg =  {2}, laba  =  {3}, labb  =  {4,5},  

        br1  =  {2,3},  br2  =  {4,5}. 
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Construction : for each  sentence  ϕ   an  automaton  A(ϕ)  that  defines  

Models(ϕ)∩T(F)         by   induction on  the  structure  of  sentence  ϕ 

   -  Sentences   are  without   first-order  variables   and    ∀   . 

   -  For  ∃ X. ϕ(X), we need  A(ϕ(X)); more generally   A(ϕ(X1,...,Xn)) :     

  f  in  F  is  replaced  by  (f, (w1,...,wn))  in  F x {0,1}n  of same arity,   

  a  term  t*ν  in T(Fx{0,1}n)  encodes  a term  t   in T(F)  and  an  

  assignment   ν : { X1,..,Xn }   P(Nodes(t)) 

 (if  u  is  an occurrence  of  (f, (w1,..,wn))  then  wi = 1 iff  u  ∈  Xi ) 

 -  One constructs  A(ϕ(X1,..,Xn))   that  defines   

    {  t*ν  ∈ T(Fx{0,1}n)   /   (t , ν)  ⎜ =  ϕ }  
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 Then : 

  L( A( ∃ Xn+1 . ϕ(X1, ..., Xn+1)))= pr( L(A( ϕ(X1, ..., Xn+1)) ) 
 

where  pr  is  the  projection   that  eliminates   the  last  Boolean. 
  

 One  obtains  a   nondeterministic   automaton. 
 

 For  ∧  and   ∨  :  product  of   two  automata. 

 For  negation : exchange accepting/non-accepting  states  

          for  a  deterministic  automaton. 

 The  case  of  atomic  formulas  is  easy. 
  

 The number  of  states  is   an   h-iterated  exponential,  

where  h  =  maximum  nesting  of  negations. This is not avoidable. 
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6. Büchi-style  proof  for  VRk-recognizability 
 

 We  fix  k, a  bound  on  clique-width  of  the  considered  graphs 

 Fk  consists  of  binary operation  ⊕   and  the  O(k2)  unary operations 

(Add-edga,b , Relaba        b) , the constant  1  defining  the vertex labelled 1.  
           (1 can be changed into another label). 

 A  term  t   in  T(Fk ∪{1})  defines   a  graph  G(t)  with  vertex set   

 =  the  set  of  occurrences  of 1.  For  representing  assignments  

    ν: { X1,...,Xn }        P(Vertices(G(t))) 

 we  replace  1  by   constants   (1, (w1,…,wn)) , wi ∈ {0,1}    as for terms 

 A   term  t*ν  in  T(Fk ∪({1}x{0,1}n))  defines  the graph  G(t)  and  

some assignment  ν  :  { X1,...,Xn }        P(Vertices(G(t)) 
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As  in  the case of terms,  we construct  for  all  relevant   k, n  and  ϕ  

a  finite  deterministic   automaton    A(ϕ(X1,…,Xn))   that  defines   

   {  t*ν  ∈ T(Fk ∪({1}x{0,1}n) )    /  ( G(t), ν  )   ⎜ =  ϕ  }  

 

 Inductive   steps : 

  ϕ ∧ ψ  ,  ϕ ∨ ψ  :  product  of  two  automata  
   ¬ ϕ : exchange  of  accepting  /  non-accepting  states  of  a  deterministic  
                 automaton 
 ∃ Xn+1 ϕ  :  “projection”  pr  : makes  automata  non-deterministic 
 

   Basic   cases :  atomic  formulas. 
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 Example :  The automaton  A(edg(X1,X2))  with    k2+k+3   states  

 Graph  labels  are   in   [k]  =  {1,…,k}. 

 States  :  0, Ok, a(1), a(2), ab, Error,      for a,b  in   [k]  , a  ≠  b 

 Meanings of states  

  (at  occurrence  u  in  t ; its  subterm  t/u  defines  a  graph  G(t/u)  ⊆  G(t) ).  

 0   : X1 = ∅  , X2 = ∅   

 Ok   : X1 = {v}  , X2 = {w}  ,  edg(v,w)  in  G(t/u)   

 a(1) : X1 = {v}  , X2 = ∅  ,  v  has  label  a  in  G(t/u)   

 a(2)  : X1 = ∅  , X2 = {w}  ,  w  has  label  a  in  G(t/u)   

 ab  : X1 = {v}  , X2 = {w}  , v  has  label  a, w  has  label  b  (hence v ≠ w) 
             and  ¬edg(v,w)   in  G(t/u),    
 Error   :  all  other  cases. 

 Accepting   state  :  Ok
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 Transition  rules  

 For  the  constant   1 : 

 (1,00)   0  ;  (1,10)   1(1)  ;  (1,01)    1(2) , (1,11)    Error 

 

 For  the  binary  operation  ⊕:      r 

            p             q  

 

  If  p = 0  then  r := q  

  If  q = 0  then  r := p 

  If  p = a(1),  q =  b(2) and  a  ≠  b   then   r  := ab 

  If  p = b(2),  q =  a(1) and  a  ≠  b   then   r  := ab 

  Otherwise  r  : =  Error 
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 For  unary  operations   Add-edgea,b        r 
 

                 p  

  If  p = ab   then  r  :=  Ok   else  r  : =  p 

 

 For  unary  operations   Relaba       b  

 
  If   p = a(i)     where   i = 1 or 2       then     r : = b(i)  

  If   p =  ac   where  c ≠ a  and  c  ≠  b    then     r : =  bc      

  If   p =  ca   where  c ≠ a  and  c  ≠  b   then     r : =  cb       

  If   p =  Error  or  0  or  Ok  or  c(i)  or cd  or dc  where  c ≠ a   

            then     r : = p  
          End  of  example ; end of proof sketch. 
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 We  have  only  proved  that   for  every   k   and  MS  sentence  ϕ 

 1)  {  t ∈ T(Fk ∪{1})     /  G(t)   ⎜=  ϕ }   is   T(Fk ∪{1})-recognizable  

 2)  The set  of  models  of  ϕ   of clique-width < k,  is  VRk-recognizable   

 
 This  is   NOT   the  Recognizability  Theorem  which   needs  a   type-

preserving ,  locally  finite  congruence  working  on ALL  graphs  (of unbounded 

clique-width).  

 

 This  weak form  is  sufficient  for   FPT  algorithms  and  for  the  Filtering 

Theorem  because : 

 -  graphs  of  clique-width  <   k   are   genertated   by   Fk ∪{1}   

 -  VR-equational  implies  VRk-equational,   for k  =  maximum  label  

occurring in the defining system. 
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 Although  the   signature    VR  is  the  union  of  the   signatures  VRk,  

we  may  have   a   set   L  that  is  not   VR-recognizable,   whereas : 

L ∩ { G  / cwd(G)  <  k}    is    VRk-recognizable   for  each  k. 

  

 

Example  :  The set  of  duplicated  square  grids   Gm x m ⊕ Gm x m   
is   not   VR-recognizable,  but  each  of  its  restrictions  to  graphs  of  clique-width  

<  k  is  finite,   hence  MS-definable,  whence   VRk-recognizable   (by  the  proved  

special  case of the Recognizability Theorem.)
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 VRk-recognizability  proved  with  Backwards  Translation:   

 

 The  mapping :   t  in T(Fk ∪{1}) ⎜            G(t) = valVR(t)  is an  MS 

transduction.   

 The  set  L  of  terms  t  in  T(Fk ∪{1})  such  that   G(t)  ⎜=  ϕ   is   

defined  by  an  MS  formula  ϕ#  obtained  by  Backwards  Translation. 

 By  the  Recognizability Theorem  for  terms,  L  is recognizable in 

T(Fk ∪{1}), hence  definable  by  a  finite  automaton.  

 

 Short  proof,  but   ϕ#   has   larger  quantifier-height   than   ϕ , hence  

bad  in  view  of   a   concrete  implementation.
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The  Feferman-Vaught  paradigm  yields  VR-recognizability 

 

The   result   of  the query  defined  by  ϕ   is : 

  Sat(G, ϕ, X1,…,Xn)  = { (A1,…,An)    /  G   ⎜=  ϕ(A1,…,An) }   

 

Lemma 1 : If  f  is a quantifier-free  mapping on graphs  (edge-addition, 

vertex relabeling, edge complement ) , every ϕ has a  Backwards 

Translation  f #(ϕ)  relative  to f   such  that  for  all  G  : 

    Sat(f (G), ϕ, X1,…,Xn)  = Sat(G, f #(ϕ), X1,…,Xn)  

f #(ϕ)  has  no larger  quantifier-height  than  ϕ 

 

Proof : Routine. 
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Splitting  Theorem :  One  can  construct   formulas  ψi, θi ,  i = 1,…,p,  

of  no  larger  quantifier-height  than  ϕ  such that for all disjoint  G  and  H: 

Sat(G⊕H, ϕ, X1,…,Xn)  is the disjoint  union of the sets  

Sat(G, ψi, X1,…,Xn)  ◊  Sat(H, θi, X1,…,Xn),  i = 1,…,p, 

where  ◊  combines  “partial  answers”  as  follows :   

A ◊ B = { (A1∪ B1,…,An∪Bn)  /  (A1,…,An) ∈ A , (B1,…,Bn) ∈ B } 

Proof :  Induction  on  the  structure  of  ϕ  and  set  manipulations.  
 

Lemma  2  :  For  each  n  and  h  there  are  finitely  many  formulas  

ϕ(X1,…,Xn)  of  quantifier-height  < h,  up  to  a  decidable  and  sound 

equivalence.    Proof sketch :  ϕ   ~  ψ iff  ψ  is obtained from ϕ  by Boolean laws 

and renamings of bound variables.  
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Proof  of  the  Recognizability  Theorem  (general form) : 

 

For each  h , the  equivalence  relation  such that    

     G ≈ H   ⇔   Sat(G, ψ)  =   Sat(H, ψ)    ( =  ∅  or ( ) , the empty sequence)   

                         for every  sentence   ψ  of quantifier-height  < h  

is  a type-preserving, locally  finite  congruence  on  VR  that saturates 

Models(ϕ)  for each every  sentence   ϕ  of  quantifier-height  < h  

 

 (The  same proof  works  for  the algebra  of  relational  structures). 
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 For each  k  and  MS  sentence  ϕ  one obtains an  automata that reco-

gnizes  the set of  terms in  T(Fk ∪{1})  that  define  graphs  satisfying   ϕ. 

  

 Its  states  are  theories  :  finite  sets of   reduced  sentences  of  

quantifier-height  < h   that  are  true  in  some  structure. 

 (Reduced  in  some  canonical  form, using  Boolean  laws  and 

renamings  of  bound  variables,   cf. Lemma  2,  slide 31)  

 

 No  good  bound  on  automata  sizes  and  no  possible  implemen-

tation  can be obtained  from this proof.  
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Extensions  of  the  proof : 

1) For counting  valid assignments, i.e.,  for computing,  for  a  fixed  MS 

formula  ϕ   and  a  given  G,  the cardinality  of   Sat(G, ϕ, X1,…,Xn),  the 

Splitting Theorem  gives (because  of  disjoint unions)  the recursion  :  

  ⎜Sat(G⊕H, ϕ, X1,…,Xn) ⎜  =   

    Σ i = 1,…,p   ⎜Sat(G, ψi, X1,…,Xn) ⎜. ⎜Sat(H, θi, X1,…,Xn) ⎜   

2) Similar   fact   for  optimizing   functions , defined  by  : 

 MaxSat(G, ϕ, X)  =  Max { ⎜A ⎜   /  G   ⎜=  ϕ(A) }   

 

Remark  :  In  these  two cases, one  could  also  use  the  deterministic  

automata  constructed  during   the  Büchi-style  proof,  with   better  

practical   perspectives. 
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8.   A  Büchi-style  proof  of  The Theorem,  
based  on  J. Engelfriet :  A  regular characterization of MS definable  graph 

languages, Theor. Comput. Sci. Vol. 88 (1991) 139-150 
 

  For  set of labels  A : G(A) = {  graphs with vertices labelled in A  } 

  For  graph  G  and  ν: { X1,...,Xn }             P(Vertices(G)), 

     the  graph  G*ν  in  G({ 0,1 }n)  encodes  G and ν as in the “Büchi-style”  

proof.        

  For  ϕ(X1,…,Xn)  MS formula, we  define  :  

 L(ϕ(X1,…,Xn))   =  the  set   of   G*ν   such  that  (G, ν) ⎜=  ϕ  
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Proposition :  These  sets  are  defined  by   regular  expressions 

constructed  from  certain  local  sets  by   Boolean  operations  and  

relabellings             (analogous to the  “projections”  of the “Büchi-style” proof). 

 

Local  sets  are  associated  with  atomic  formulas  

L(Xi  ⊆  Xj )  =  graphs without  label (w1,…, wn) such that  wi=1,  wj=0 

L(edg(Xi,Xj))  =  graphs  with  at least  one edge between a vertex labelled  

      in  Bi  and  a  vertex  labelled  in  Bj,   where  

      Bi  =  set  of  labels (w1,…, wn)  such  that  wi = 1.  

Relabelling  based  on  h : A            B,  replaces  every  label  a  by  h(a). 

Useful to define  L(∃Xn.ϕ(X1,…,Xn)) )  =  h(L(ϕ(X1,…,Xn)) )   where  h 

deletes the last  Boolean  in  each  label. 
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Boolean   (set)  operations   give   the  cases   of   ∧ , ∨ ,  ¬. 

 

Proof of the  Recognizability  Theorem : 

 1) Each  local  set  is recognizable :  not hard  to  construct  

congruences  witnessing   this   fact. 

 2) Rec(VR)  is  closed  under  Boolean  operations      (general fact), 

 3) and  under  relabellings  h  :  G(A)             G(B) : 

 if  L  ⊆ G(A)  is  recognizable  for  congruence    ~   ,  

 then  h(L)  ⊆ G(B)   is  recognizable  for congruence  ≈  such that : 

 G  ≈  H     ⇔     k(G) = k(H)  where k(G)  =   {  [G’ ]~  ⎜ h(G' )  = G  } 

 The number of  classes  may  increase  exponentially from ~ to  ≈.  
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9.  Comparing the proofs 
E(ngelfriet’s)  extends  B(üchi’s);  F-V = Feferman-Vaught paradigm 

 B E F-V 

Rec  Thm  for  VR  

   

NO YES YES 

Rec  Thm  for  STR NO Technical YES 

Implementability YES 
“Small”  cases  

as  for  B NO 

Extension to counting YES NO YES 

Other  algo. applications YES NO ?? 

Teachability Easy Technical Doable
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About  implementation: The   automaton  constructed from  ϕ  and  k   may  be  

too  large  for  being  practically  compiled. 
Problems  with size  of  memory   for  intermediate  automata, even if  the unique  

minimal  deterministic  automaton    has  manageable  number of  states.   

Hopes   come   from  precomputed  automata   for  subformulas. 

 Soguet  et  al.,  using   MONA,  have constructed  automata  for  the following cases : 

       Clique-width 2     Clique-width  3  

  MaxDegree<3    91   states    Space-Out 

  Degree<4(x)               48   states    233      states  

  Path(x,y)in(X)              26   states             Space-Out 

  Connectedness           11   states             Space-Out 

  IsConnComp(X)         48   states                 Space-Out 

  Has<4-VertCov   111 states   1037    states 

  HasClique>4               21 states   153      states 

  2-colorable                  11   states    57       states 
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Open questions : 
 

 To  what extent  can one overcome the difficulties that come 

from  state  explosion  of   the   constructed   automata  ? 

  

 Another  difficulty :  the  parsing problem : construction  of an 

appropriate  term  witnessing clique-width < k   (also arise for graphs 

of bounded tree-width). 
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Bonus :  Monadic Second-order logic  with  edge set 

quantifications  and  the  graph  algebra   HR   
 

Edge  set quantifications  increase  the  expressive power of MS  

                   logic   
 

Incidence  graph  of   G  undirected,  Inc(G) = ( VG ∪ EG, incG(.,.).) 
 
incG(v,e)   ⇔   v  is  a  vertex  ( in VG )  of  edge  e  (in  EG ). 
 
Monadic second-order  (MS2)  formulas  written  with  inc   can use 

 quantifications   on sets of edges.  
 

 The existence  of  a perfect matching  or  a  Hamiltonian circuit  is expressible   

  by an  MS2  formula, but  not   by   an   MS   formula.
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The  Recognizability  Theorem : 
 
 
 Every MS- definable set of finite  graphs is VR-recognizable 
 
 
 Every MS2- definable set of finite  graphs is HR-recognizable 
 
where  HR-  is another  graph algebra  defined  below 
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HR operations : Origin :  Hyperedge Replacement hypergraph grammars ; associated complexity 
measure : tree-width 
 

Graphs have  distinguished vertices called sources, (or terminals or boundary vertices) 

pointed  to  by source  labels from a finite set :    {a, b, c,  ..., h}. 

Binary operation(s)  :  Parallel  composition 

G // H     is  the  disjoint  union of  G  and  H  and sources  with  same  label  are   fused.  

(If G  and  H are  not disjoint, one  first  makes  a  copy of  H disjoint from  G). 
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Unary operations   :    Forget   a  source  label  
       Forgeta(G)   is  G  without  a-source: the  source  is  no longer distinguished ;  

(it is  made  "internal"). 

       Source renaming : 
Rena     b(G)  exchanges  source  labels  a  and b     

(replaces  a  by  b   if  b is not the label of a  source) 
 

Nullary operations denote basic graphs : the connected graphs with at most one edge.  
 

For dealing with hypergraphs one takes more nullary symbols for denoting 

hyperedges. 
 

Each graph G has type τ(G) = the set of labels  of its sources.  

The  type  function  has  a  homomorphic  behaviour :  

     τ(G//H) = τ(G) U τ(G) ; τ(Forgeta(G)) = τ(G) - {a} ; τ(Rena     b(G)) = τ(G)[a/b, b/a]. 
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Tree-decompositions 
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Proposition:  A  graph  has  tree-width  ≤  k  if and only if  it  can  be  constructed   from  

basic  graphs  with   ≤  k+1  labels  by  using  the  operations    // , Rena     b  and  Forgeta.  
 

Example : Trees are of tree-width 1, constructed with two source labels, r  (root) and n  (new 

root):  Fusion of two trees at their roots  :  

 

Extension of a tree by parallel composition 

with a new edge,  forgetting the old root, 

making   the "new root" as current root :  

e  =  r  •_________•  n 

Renn      r  (Forgetr (G // e )) 
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From  an algebraic  expression  to  a   tree-decomposition 

Example : cd // Rena       c (ab // Forgetb(ab // bc)) (Constant  ab  denotes  an edge from  a   to  b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                         The  tree-decomposition  associated  with  this term. 


