On several proofs of the Recognizability Theorem

Bruno Courcelle

Université Bordeaux 1, LaBRI, and Institut Universitaire de France

Reference : Graph structure and monadic second-order logic, book to be published by Cambridge University Press, readable on :
http://www.labri.fr/perso/courcell/ActSci.html

An overview chart

Key concepts of Language Theory and their extensions

Languages	Graphs
Algebraic structure : monoid ($\mathrm{X}^{\star},{ }^{*}, \varepsilon$)	Algebras based on graph operations : $\oplus, \otimes, / /$ quantifier-free definable operations Algebras: HR, VR
Context-free languages : Equational subsets of ($\mathrm{X}^{\star}, *, \varepsilon$)	Equational sets of the algebras HR, VR
Regular languages: Finite automata \equiv Finite congruences \equiv Regular expressions \equiv	Recognizable sets of the algebras $\mathbf{H R}$, VR defined by finite congruences
\equiv Monadic Second-order definable sets of words or terms	Monadic Second-order definable sets of graphs
Rational and other types of transductions	Monadic Second-order transductions

Recognizability Theorem : the inclusion \cup

Summary

1. The graph algebra VR.
2. Recognizability : an algebraic notion
3. Monadic second-order logic
4. The Recognizability Theorem
5. The case of terms (proof by Büchi)
6. $\mathbf{V R}_{\mathbf{k}}$ - Recognizability after Büchi.
7. VR-Recognizability using the Feferman-Vaught paradigm
8. Extension of the Büchi-style proof after Engelfriet
9. Comparisons

1. The graph algebra VR

Origin: Vertex Replacement context-free graph grammars
Associated complexity measure: clique-width.
Graphs are defined in terms of very simple graph operations, giving easy inductive proofs.

Graphs are simple, loop-free, directed or not.

Vertex labels : $1, \ldots, k$. Each vertex has one and only one label.

One binary operation : disjoint union : \oplus

Well-defined up to isomorphism : one takes disjoint copies ;
$G \oplus G$ is not equal to G

Unary operations: Edge addition denoted by Add-edg $_{a, b}$

Add-edga,b(G) is G augmented with undirected edges between every a-labelled vertex and every b-labelled vertex

$\mathrm{H}=$ Add-edga, $\mathrm{b}(\mathrm{G})$; only 5 new edges added
The number of added edges depends on the argument graph.
The directed version of Add-edga,b adds directed edges from every a-labelled vertex to every b-labelled vertex

Vertex relabellings:

Relaba $\longrightarrow b(\mathrm{G})$ is G with every (vertex) label a changed into b

Basic graphs : a one vertex labelled by a.

Definition: A graph G has clique-width $\leq \mathrm{k}$
\Leftrightarrow it can be constructed from basic graphs with the operations \oplus, Add-edga, b and Relaba $\longrightarrow b$ with labels a, b in $1, \ldots, k$.

Its (exact) clique-width $\operatorname{cwd}(\mathrm{G})$ is the smallest such k.

Example: Cliques (a-labelled) have clique-width 2.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{n}} \text { is defined by } \mathrm{t}_{\mathbf{n}} \text { where } \mathrm{t}_{\mathbf{1}}=\mathbf{a} \\
& \mathrm{t}_{\mathrm{n}+1}=\text { Relabb } \longrightarrow a\left(\text { Add-edga, } b\left(\mathrm{t}_{\mathbf{n}} \oplus \mathbf{b}\right)\right)
\end{aligned}
$$

Example: Cographs (a-labelled) are generated by \oplus and \otimes defined by:
$\mathrm{G} \otimes \mathrm{H}=$ Relabb $\longrightarrow a($ Add-edga, $b(\mathrm{G} \oplus$ Relaba $\longrightarrow b(\mathrm{H})))$
$=\mathrm{G} \oplus \mathrm{H}$ with "all edges" between G and H .
2. Recognizable sets : an algebraic notion
$\mathbf{M}=<\mathrm{M},\left(\mathrm{f}_{\mathrm{M}}\right)_{\mathrm{f}} \in \mathrm{F}>$: an F-algebra where F is a finite signature.
$\mathrm{L} \subseteq \mathrm{M}$ is $(\mathrm{M}-$)recognizable if it is a union of equivalence classes for a finite congruence \approx on M .

Congruence $=$ equivalence relation such that:

$$
m \approx m^{\prime} \text { and } p \approx p^{\prime} \Rightarrow f_{M}(m, p) \approx f_{M}\left(m^{\prime}, p^{\prime}\right)
$$

Finite means that M / \approx is finite, i.e., \approx has finitely many classes.
Equivalently, $L=h^{-1}(\mathbf{D})$ for a homomorphism $h: \mathbf{M} \rightarrow \mathbf{A}$, where
A is a finite F -algebra and $\mathrm{D} \subseteq \mathrm{A}$.
$\operatorname{Rec}(M)=$ the recognizable subsets of M.
This notion is relative to the algebra \mathbf{M}.

Classical examples
Algebra Recognizable sets
$<A^{*}, ., \varepsilon, a, b, \ldots, d>$
Regular languages
(syntactic monoid)
$<A^{*}, \varepsilon,\left(\lambda u \in A^{*} . u a\right)_{a \in A}>$
Regular languages
(Myhill-Nerode)
$T(F)$, terms over F, (initial F-algebra)
Regular sets of terms
On terms, h is the run of a finite deterministic bottom-up automaton
$<\mathbf{N}^{\mathrm{k}},+,(0, \ldots, 0), \ldots(0, \ldots, 1,0, \ldots, 0) \ldots>\quad$ Finite unions of Cartesian products of k sets $\{u+n . v \mid n \in \mathbf{N}\} \quad$ for $u, v \in \mathbf{N}$

The algebra VR has an infinite signature
We introduce a notion of type (or sort in a many-sorted framework).

The type of G is: $\pi(G)=$ the set of vertex labels having an occurrence.
π has a homomorphic behaviour:

```
\pi(\textrm{G}\oplus\textrm{H})=\pi(\textrm{G})\cup\pi(\textrm{H}) ; }\quad\pi(\mathrm{ Add-edga,b(G))= 
    \pi(Relaba\longrightarrowb(G)) = 
```

For defining the recognizability of set L we require that the congruence \approx
is type preserving : $\mathrm{G} \approx \mathrm{H}$ implies $\pi(\mathrm{G})=\pi(\mathrm{H})$,
locally finite : it has finitely many classes of each type,
L is a union of classes (possibly of different types).

Properties of recognizable sets that follow from the algebraic setting:

Closure under \cup, \cap and - (difference),
under inverse homomorphisms and
under inverse unary derived operations.

Filtering Theorem: The intersection of an equational
(i.e., "context-free") set and a recognizable one is equational With effective constructions.

Properties of recognizable sets of graphs that do not follow "algebraically"
Closure under the binary operation \oplus,
under the unary relabelling operations.
(false for Add-edg but true if some "harmless" restriction of the use of this operation is made.)
(Fact : It is more difficult to prove the closure under concatenation of regular languages than their closure under Boolean operations; this is reflected by the sizes of syntactic monoids).

Properties that do not hold as we could wish or expect.
Emptiness is not decidable (because of infinite signatures).
Rec and Equat are incomparable.
Every set of square grids is VR-recognizable.
There are uncountably many recognizable sets, hence no characterization by finite automata or logical formulas.

Proposition: If F is finite and generates \mathbf{M}, i.e., if every element of M is the value val $_{M}(\mathrm{t})$ of some term t in $\mathrm{T}(\mathrm{F})$, then :
a subset L of M is M-recognizable
if and only if
the set of terms val $_{M}{ }^{-1}(\mathrm{~L})$ is $\mathrm{T}(\mathrm{F})$-recognizable,
if and only if
val $_{M}{ }^{-1}(\mathrm{~L})$ is defined by a finite (deterministic) automaton.

Two possible proofs that a set L is M -recognizable :
Construction of a finite congruence on \mathbf{M} that saturates L ,
Construction of an automaton that defines $\mathrm{val}_{\mathrm{M}}{ }^{-1}(\mathrm{~L})$.

3. Monadic Second-Order (MS) Logic

$=$ First-order logic on power-set structures
$=$ First-order logic extended with (quantified) variables
denoting subsets of the domains.
MS properties : transitive closure, properties of paths, connectivity, planarity (via Kuratowski, uses connectivity), k-colorability.

Examples of formulas for $G=\left(V_{G}\right.$, edg $\left._{G}(.,).\right)$, undirected

```
3-colorability (NP-complete property)
\(\exists X, Y(" X, Y\) are disjoint" \(\wedge \forall u, v\{\operatorname{edg}(u, v) \Rightarrow\)
    \([(u \in X \Rightarrow v \notin X) \wedge(u \in Y \Rightarrow v \notin Y) \wedge(u \in V-(X \cup Y) \Rightarrow v \notin V-(X \cup Y)]\})\)
```

Non connectivity (whence connectivity, more generally transitive closure) : $\exists X(\exists x \in X \wedge \exists y \notin X \wedge \forall u, v(u \in X \wedge \operatorname{edg}(u, v) \Rightarrow v \in X))$

Planarity : no K_{5} or $K_{3,3}$ minor.

Having a K_{5} minor:
$\exists X_{1}, \ldots, X_{5}$ (" the X_{i} 's are pairwise disjoint"
\wedge "each X_{i} induces a connected graph"
\wedge "for every $i<j$, there is an edge between some u in X_{i} and some v in X_{j} ")

4. The recognizability theorem

A set L of finite words, terms, graphs or relational structures is Monadic Second-Order (MS) definable if it is the set of finite models of an MS sentence φ (a formula without free variables) :
$L=\operatorname{Models}(\varphi):=\{S$ finite $/ S \mid=\varphi\}$ for a fixed MS sentence φ

The Recognizability Theorem:
Every MS- definable set of graphs is VR-recognizable
Every MS- definable set of relational structures is recognizable with respect to an algebra that generalizes VR (using \oplus and unary quantifier-free definable operations generalizing edge addition, vertex relabelling, edge complement).

Consequences

Fixed Parameter Tractable algorithms for checking MS graph properties, for clique-width (or tree-width) as parameter.

Filtering Theorem : if L is VR-equational ("context-free"),
the set $\mathrm{L} \cap \operatorname{Models}(\varphi)$ is (effectively) VR-equational for each MS sentence φ.

Example: for φ expressing planarity, a direct proof would be unwritable.

Decidability of monadic theories: given k and φ, one can decide if φ is true in all graphs of tree-width or clique-width at most k .

5. Büchi-style proof for the case of terms

Terms in $T(F)$ where F is a finite signature
Logical representation $\mathrm{S}(\mathrm{t})$ of a term t :
nodes of the syntactic tree, son binary relation,
unary predicates lab_{f} for "my label is f " and br_{i} for "I am the i-th brother".

Example : $\mathrm{t}=\mathrm{f}_{1}\left(\mathrm{~g}_{2}\left(\mathrm{a}_{3}, \mathrm{~b}_{4}\right), \mathrm{b}_{5}\right)$ (integers $1,2, \ldots, 5$ designate nodes $=$ occurrences) $S(\mathrm{t})$ has domain $\{1,2,3,4,5\}$, son relation $\{(1,2),(1,5),(2,3),(2,4)\}$, unary predicates: $\operatorname{lab}_{f}=\{1\}, \operatorname{lab}_{g}=\{2\}, \operatorname{lab}_{a}=\{3\}, \operatorname{lab}_{b}=\{4,5\}$, $b r_{1}=\{2,3\}, b r_{2}=\{4,5\}$.

Construction: for each sentence φ an automaton $A(\varphi)$ that defines Models $(\varphi) \cap T(F) \quad$ by induction on the structure of sentence φ

- Sentences are without first-order variables and \forall.
- For $\exists \mathrm{X} . \varphi(\mathrm{X})$, we need $\mathrm{A}(\varphi(\mathrm{X}))$; more generally $\mathrm{A}\left(\varphi\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)\right)$:
f in F is replaced by $\left(f,\left(w_{1}, \ldots, w_{n}\right)\right)$ in $F \times\{0,1\}^{n}$ of same arity, a term $\mathrm{t} * \mathrm{~V}$ in $\mathrm{T}\left(\mathrm{F} \times\{0,1\}^{\mathrm{n}}\right)$ encodes a term t in $\mathrm{T}(\mathrm{F})$ and an assignment $v:\left\{\mathrm{X}_{1}, . ., \mathrm{X}_{\mathrm{n}}\right\} \rightarrow P(\operatorname{Nodes}(\mathrm{t}))$
(if u is an occurrence of ($f,\left(w_{1}, . ., w_{n}\right)$) then $w_{i}=1$ iff $u \in X_{i}$)
- One constructs $A\left(\varphi\left(X_{1}, . ., X_{n}\right)\right)$ that defines

$$
\left\{t * v \in T\left(F \times\{0,1\}^{n}\right) \quad /(t, v) \mid=\varphi\right\}
$$

Then :

$$
L\left(A\left(\exists X_{n+1} \cdot \varphi\left(X_{1}, \ldots, X_{n+1}\right)\right)\right)=\operatorname{pr}\left(L\left(A\left(\varphi\left(X_{1}, \ldots, X_{n+1}\right)\right)\right)\right.
$$

where pr is the projection that eliminates the last Boolean.
One obtains a nondeterministic automaton.

For \wedge and \vee : product of two automata.
For negation : exchange accepting/non-accepting states
for a deterministic automaton.
The case of atomic formulas is easy.
The number of states is an h-iterated exponential, where $\mathrm{h}=$ maximum nesting of negations. This is not avoidable.
6. Büchi-style proof for $V R_{k}$-recognizability

We fix k , a bound on clique-width of the considered graphs
F_{k} consists of binary operation \oplus and the $\mathrm{O}\left(\mathrm{k}^{2}\right)$ unary operations $\left(\right.$ Add-edg $_{a, b}$, Relab $\left._{a} \longrightarrow b\right)$, the constant 1 defining the vertex labelled 1.
(1 can be changed into another label).
A term t in $\mathrm{T}\left(\mathrm{F}_{\mathrm{k}} \cup\{1\}\right)$ defines a graph $\mathrm{G}(\mathrm{t})$ with vertex set
$=$ the set of occurrences of 1 . For representing assignments

$$
v:\left\{X_{1}, \ldots, X_{n}\right\} \quad \rightarrow \quad P(\operatorname{Vertices}(G(t)))
$$

we replace 1 by constants $\left(1,\left(w_{1}, \ldots, w_{n}\right)\right), w_{i} \in\{0,1\}$ as for terms
A term $t * V$ in $T\left(F_{k} \cup\left(\{1\} \times\{0,1\}^{n}\right)\right)$ defines the graph $G(t)$ and some assignment $v:\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\} \rightarrow P(\operatorname{Vertices}(\mathrm{G}(\mathrm{t}))$

As in the case of terms, we construct for all relevant k, n and φ a finite deterministic automaton $A\left(\varphi\left(X_{1}, \ldots, X_{n}\right)\right.$) that defines

$$
\left\{t * \nu \in T\left(F_{k} \cup\left(\{1\} \times\{0,1\}^{n}\right)\right) \quad /(G(t), \nu) \mid=\varphi\right\}
$$

Inductive steps:
$\varphi \wedge \psi, \varphi \vee \psi$: product of two automata
$\neg \varphi:$ exchange of accepting / non-accepting states of a deterministic automaton
$\exists X_{n+1} \varphi$: "projection" pr: makes automata non-deterministic

Basic cases: atomic formulas.

Example: The automaton $A\left(\operatorname{edg}\left(X_{1}, X_{2}\right)\right)$ with $k^{2}+k+3$ states
Graph labels are in $[k]=\{1, \ldots, k\}$.
States : 0, Ok, a(1), a(2), ab, Error, for a, b in $[k], a \neq b$ Meanings of states
(at occurrence u in t; its subterm t / u defines a graph $G(t / u) \subseteq G(t)$).
$0 \quad: \mathrm{X}_{1}=\varnothing, \mathrm{X}_{2}=\varnothing$
Ok : $X_{1}=\{v\}, X_{2}=\{w\}$, edg (v, w) in $G(t / u)$
$a(1) \quad: X_{1}=\{v\}, X_{2}=\varnothing, v$ has label a in $G(t / u)$
$a(2) \quad: X_{1}=\varnothing, X_{2}=\{w\}, w$ has label a in $G(t / u)$
ab $: X_{1}=\{v\}, X_{2}=\{w\}, v$ has label a, w has label b (hence $v \neq w$) and $\neg e d g(v, w)$ in $G(t / u)$,
Error : all other cases.
Accepting state : Ok

Transition rules

For the constant 1:

$$
(1,00) \rightarrow 0 ;(1,10) \rightarrow 1(1) ;(1,01) \rightarrow 1(2),(1,11) \rightarrow \text { Error }
$$

For the binary operation \oplus :

If $\mathrm{p}=0$ then $\mathrm{r}:=\mathrm{q}$
If $q=0$ then $r:=p$
If $p=a(1), q=b(2)$ and $a \neq b$ then $r:=a b$
If $p=b(2), q=a(1)$ and $a \neq b$ then $r:=a b$
Otherwise r := Error

For unary operations Add-edge $_{\mathrm{a}, \mathrm{b}}$

r p

If $p=a b$ then $r:=$ Ok else $r:=p$

For unary operations Relab $\mathrm{a}_{\mathrm{a}} \longrightarrow \mathrm{b}$

$$
\begin{aligned}
& \text { If } p=a(i) \text { where } i=1 \text { or } 2 \text { then } r:=b(i) \\
& \text { If } p=a c \text { where } c \neq a \text { and } c \neq b \text { then } r:=b c \\
& \text { If } p=c a \text { where } c \neq a \text { and } c \neq b \text { then } r:=c b \\
& \text { If } p=\text { Error or } 0 \text { or Ok or } c(i) \text { or } c d \text { or dc where } c \neq a \\
& \text { then } r:=p
\end{aligned}
$$

End of example ; end of proof sketch.

We have only proved that for every k and MS sentence φ

1) $\left\{t \in T\left(F_{k} \cup\{1\}\right) \quad / G(t) \quad \mid=\varphi\right\}$ is $T\left(F_{k} \cup\{1\}\right)$-recognizable
2) The set of models of φ of clique-width $\leq k$, is $V R_{k}$-recognizable

This is NOT the Recognizability Theorem which needs a typepreserving, locally finite congruence working on ALL graphs (of unbounded clique-width).

This weak form is sufficient for FPT algorithms and for the Filtering Theorem because:

- graphs of clique-width $\leq k$ are genertated by $\mathrm{F}_{\mathrm{k}} \cup\{1\}$
- VR -equational implies VR_{k}-equational, for $\mathrm{k}=$ maximum label occurring in the defining system.

Although the signature VR is the union of the signatures $V R_{k}$, we may have a set L that is not VR-recognizable, whereas:
$L \cap\{G / \operatorname{cwd}(G) \leq k\} \quad$ is $\quad V R_{k}$-recognizable for each k.

Example : The set of duplicated square grids $G_{m \times m} \oplus \mathrm{G}_{\mathrm{m} \times \mathrm{m}}$ is not VR-recognizable, but each of its restrictions to graphs of clique-width $\leq \mathrm{k}$ is finite, hence MS -definable, whence VR_{k}-recognizable (by the proved special case of the Recognizability Theorem.)
VR_{k}-recognizability proved with Backwards Translation:

The mapping: t in $\mathrm{T}\left(\mathrm{F}_{\mathrm{k}} \cup\{1\}\right) \mid \longrightarrow \mathrm{G}(\mathrm{t})=\operatorname{val}_{\mathrm{VR}}(\mathrm{t})$ is an MS transduction.

The set L of terms t in $\mathbf{T}\left(\mathrm{F}_{\mathrm{k}} \cup\{1\}\right)$ such that $G(\mathrm{t}) \mid=\varphi$ is defined by an MS formula $\varphi^{\#}$ obtained by Backwards Translation.

By the Recognizability Theorem for terms, L is recognizable in $T\left(F_{k} \cup\{1\}\right)$, hence definable by a finite automaton.

Short proof, but $\varphi^{\#}$ has larger quantifier-height than φ, hence bad in view of a concrete implementation.

The Feferman-Vaught paradigm yields VR-recognizability

The result of the query defined by φ is:

$$
\operatorname{Sat}\left(G, \varphi, X_{1}, \ldots, X_{n}\right)=\left\{\left(A_{1}, \ldots, A_{n}\right) \quad / G \mid=\varphi\left(A_{1}, \ldots, A_{n}\right)\right\}
$$

Lemma 1 : If f is a quantifier-free mapping on graphs (edge-addition, vertex relabeling, edge complement), every φ has a Backwards
Translation $f^{\#}(\varphi)$ relative to f such that for all G :

$$
\operatorname{Sat}\left(f(G), \varphi, X_{1}, \ldots, X_{n}\right)=\operatorname{Sat}\left(G, f^{\#}(\varphi), X_{1}, \ldots, X_{n}\right)
$$

$f^{\#}(\varphi)$ has no larger quantifier-height than φ

Proof: Routine.

Splitting Theorem: One can construct formulas $\psi_{i}, \theta_{i}, i=1, \ldots, p$, of no larger quantifier-height than φ such that for all disjoint G and H : $\operatorname{Sat}\left(\mathrm{G} \oplus \mathrm{H}, \varphi, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$ is the disjoint union of the sets

$$
\operatorname{Sat}\left(G, \psi_{i}, X_{1}, \ldots, X_{n}\right) \diamond \operatorname{Sat}\left(H, \theta_{i}, X_{1}, \ldots, X_{n}\right), i=1, \ldots, p,
$$

where \diamond combines "partial answers" as follows:

$$
\underline{A} \diamond \underline{B}=\left\{\left(\mathrm{A}_{1} \cup \mathrm{~B}_{1}, \ldots, \mathrm{~A}_{n} \cup \mathrm{~B}_{n}\right) /\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}\right) \in \underline{A},\left(\mathrm{~B}_{1}, \ldots, \mathrm{~B}_{n}\right) \in \underline{B}\right\}
$$

Proof: Induction on the structure of φ and set manipulations.
Lemma 2 : For each n and h there are finitely many formulas $\varphi\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$ of quantifier-height $\leq \mathrm{h}$, up to a decidable and sound equivalence. Proof sketch: $\varphi \sim \psi$ iff ψ is obtained from φ by Boolean laws and renamings of bound variables.

Proof of the Recognizability Theorem (general form) :

For each h , the equivalence relation such that

$$
\begin{aligned}
\mathrm{G} \approx H \Leftrightarrow & \operatorname{Sat}(\mathrm{G}, \psi)=\operatorname{Sat}(\mathrm{H}, \psi) \quad(=\varnothing \text { or }(), \text { the empty sequence }) \\
& \text { for every sentence } \psi \text { of quantifier-height } \leq h
\end{aligned}
$$

is a type-preserving, locally finite congruence on VR that saturates
Models (φ) for each every sentence φ of quantifier-height $\leq h$
(The same proof works for the algebra of relational structures).

For each k and MS sentence φ one obtains an automata that recognizes the set of terms in $\mathbf{T}\left(\mathrm{F}_{\mathrm{k}} \cup\{1\}\right)$ that define graphs satisfying φ.

Its states are theories : finite sets of reduced sentences of quantifier-height $\leq h$ that are true in some structure.
(Reduced in some canonical form, using Boolean laws and renamings of bound variables, cf. Lemma 2, slide 31)

No good bound on automata sizes and no possible implementation can be obtained from this proof.

Extensions of the proof :

1) For counting valid assignments, i.e., for computing, for a fixed MS formula φ and a given G, the cardinality of $\operatorname{Sat}\left(G, \varphi, X_{1}, \ldots, X_{n}\right)$, the Splitting Theorem gives (because of disjoint unions) the recursion :

$$
\left|\operatorname{Sat}\left(G \oplus H, \varphi, X_{1}, \ldots, X_{n}\right)\right|=
$$

$$
\sum_{i=1, \ldots, p}\left|\operatorname{Sat}\left(G, \psi_{i}, X_{1}, \ldots, X_{n}\right)\right| .\left|\operatorname{Sat}\left(H, \theta_{i}, X_{1}, \ldots, X_{n}\right)\right|
$$

2) Similar fact for optimizing functions, defined by :

$$
\operatorname{MaxSat}(\mathrm{G}, \varphi, \mathrm{X})=\operatorname{Max}\{|\mathrm{A}| \quad / \mathrm{G} \mid=\varphi(\mathrm{A})\}
$$

Remark : In these two cases, one could also use the deterministic automata constructed during the Büchi-style proof, with better practical perspectives.
8. A Büchi-style proof of The Theorem,
based on J. Engelfriet: A regular characterization of MS definable graph languages, Theor. Comput. Sci. Vol. 88 (1991) 139-150

For set of labels $A: G(A)=\{$ graphs with vertices labelled in $A\}$
For graph G and $v:\left\{X_{1}, \ldots, X_{n}\right\} \longrightarrow P($ Vertices $(G))$,
the graph $G * v$ in $G\left(\{0,1\}^{n}\right)$ encodes G and v as in the "Büchi-style" proof.

For $\varphi\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right) \mathrm{MS}$ formula, we define :

$$
L\left(\varphi\left(X_{1}, \ldots, X_{n}\right)\right)=\text { the set of } G * v \text { such that }(G, v) \mid=\varphi
$$

Proposition: These sets are defined by regular expressions constructed from certain local sets by Boolean operations and relabellings (analogous to the "projections" of the "Büchi-style" proof).

Local sets are associated with atomic formulas
$\mathrm{L}\left(\mathrm{X}_{\mathrm{i}} \subseteq \mathrm{X}_{\mathrm{j}}\right) \quad=$ graphs without label $\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}\right)$ such that $\mathrm{w}_{\mathrm{i}}=1, \mathrm{w}_{\mathrm{j}}=0$
$\mathrm{L}\left(\mathrm{edg}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)\right)=$ graphs with at least one edge between a vertex labelled
in B_{i} and a vertex labelled in B_{j}, where
$B_{i}=$ set of labels $\left(w_{1}, \ldots, w_{n}\right)$ such that $w_{i}=1$.
Relabelling based on $h: A \longrightarrow B$, replaces every label a by $h(a)$.
Useful to define $\left.L\left(\exists X_{n} \cdot \varphi\left(X_{1}, \ldots, X_{n}\right)\right)\right)=h\left(L\left(\varphi\left(X_{1}, \ldots, X_{n}\right)\right)\right)$ where h deletes the last Boolean in each label.

Boolean (set) operations give the cases of \wedge, \vee, \neg.

Proof of the Recognizability Theorem:

1) Each local set is recognizable : not hard to construct congruences witnessing this fact.
2) $\operatorname{Rec}(\mathbf{V R})$ is closed under Boolean operations (general fact),

3) and under relabellings $h: G(A) \longrightarrow G(B)$:
if $L \subseteq G(A)$ is recognizable for congruence \sim, then $h(L) \subseteq G(B)$ is recognizable for congruence \approx such that:
$G \approx H \Leftrightarrow k(G)=k(H)$ where $k(G)=\left\{\left[G^{\prime}\right] \sim \mid h\left(G^{\prime}\right)=G\right\}$
The number of classes may increase exponentially from \sim to \approx.
9. Comparing the proofs

E(ngelfriet's) extends B(üchi's); F-V = Feferman-Vaught paradigm
$\left.\begin{array}{|l|c|c|c|}\hline & \text { B } & \text { E } & \text { F-V } \\ \hline \text { Rec Thm for VR } & \text { NO } & \text { YES } & \text { YES } \\ \hline \text { Rec Thm for STR } & \text { NO } & \text { Technical } & \text { YES } \\ \hline \text { Implementability } & \text { YES } & \text { as for B } & \text { NO } \\ \hline \text { "Small" cases }\end{array}\right)$

About implementation: The automaton constructed from φ and k may be too large for being practically compiled.

Problems with size of memory for intermediate automata, even if the unique minimal deterministic automaton has manageable number of states.
Hopes come from precomputed automata for subformulas.
Soguet et al., using MONA, have constructed automata for the following cases :
Clique-width 2 Clique-width 3
MaxDegree ≤ 3
91 states
Space-Out
Degree $\leq 4(x)$
48 states
233 states
Path (x, y) in (X)
26 states
Connectedness
11 states
Space-Out

IsConnComp(X)
48 states
Has ≤ 4-VertCov
HasClique ≥ 4
111 states

2-colorable
21 states
153 states
11 states
57 states

Open questions :

To what extent can one overcome the difficulties that come from state explosion of the constructed automata ?

Another difficulty: the parsing problem : construction of an appropriate term witnessing clique-width $\leq k \quad$ (also arise for graphs of bounded tree-width).

Bonus : Monadic Second-order logic with edge set quantifications and the graph algebra HR

Edge set quantifications increase the expressive power of MS
logic
Incidence graph of G undirected, $\operatorname{Inc}(G)=\left(V_{G} \cup E_{G}, \operatorname{inc}_{G}(.,)..\right)$
$\operatorname{inc}_{G}(v, e) \Leftrightarrow v$ is a vertex (in V_{G}) of edge e (in E_{G}).
Monadic second-order $\left(\mathrm{MS}_{2}\right)$ formulas written with inc can use quantifications on sets of edges.

The existence of a perfect matching or a Hamiltonian circuit is expressible by an MS_{2} formula, but not by an MS formula.

The Recognizability Theorem:

Every MS- definable set of finite graphs is VR-recognizable

Every MS_{2} - definable set of finite graphs is HR-recognizable where HR- is another graph algebra defined below

HR operations: Origin : Hyperedge Replacement hypergraph grammars ; associated complexity measure : tree-width

Graphs have distinguished vertices called sources, (or terminals or boundary vertices) pointed to by source labels from a finite set: $\{a, b, c, \ldots, h\}$.
Binary operation(s) : Parallel composition
$\mathrm{G} / / \mathrm{H}$ is the disjoint union of G and H and sources with same label are fused.
(If G and H are not disjoint, one first makes a copy of H disjoint from G).

Unary operations : Forget a source label
Forgeta(G) is G without a-source: the source is no longer distinguished;
(it is made "internal").

Source renaming :

Ren $a \leftrightarrow b$ (G) exchanges source labels a and b (replaces a by b if b is not the label of a source)

Nullary operations denote basic graphs : the connected graphs with at most one edge.
For dealing with hypergraphs one takes more nullary symbols for denoting hyperedges.

Each graph G has type $\tau(G)=$ the set of labels of its sources.
The type function has a homomorphic behaviour:

$$
\tau(\mathrm{G} / / \mathrm{H})=\tau(\mathrm{G}) \cup \tau(\mathrm{G}) ; \tau(\text { Forgeta }(\mathrm{G}))=\tau(\mathrm{G})-\{\mathrm{a}\} ; \tau(\text { Ren } \mathrm{a} \leftrightarrow b(\mathrm{G}))=\tau(\mathrm{G})[\mathrm{a} / \mathrm{b}, \mathrm{~b} / \mathrm{a}] .
$$

Tree-decompositions

Proposition: A graph has tree-width $\leq \mathrm{k}$ if and only if it can be constructed from basic graphs with $\leq \mathrm{k}+1$ labels by using the operations $/ /$, Ren $a_{\hookrightarrow} b$ and Forgeta.

Example : Trees are of tree-width 1, constructed with two source labels, r (root) and n (new root): Fusion of two trees at their roots :

G// H

Extension of a tree by parallel composition with a new edge, forgetting the old root, making the "new root" as current root :

$$
e=r \bullet \bullet n
$$

$$
\text { Renn } \leftrightarrow r(\text { Forgetr (G // e)) }
$$

From an algebraic expression to a tree-decomposition
Example : cd // Ren $\mathrm{a}_{\leftrightarrow} \mathrm{c}$ (ab// Forget $\mathrm{b}_{\mathrm{b}}(\mathrm{ab} / / \mathrm{bc})$) (Constant ab denotes an edge from a to b)

The tree-decomposition associated with this term.

