Canonical Graph Decompositions

Bruno Courcelle

Université Bordeaux 1, LaBRI and Institut Universitaire de France

References : BC+JE: The Great Book of MSO, Cambridge University Press, May 2012 BC: MSOL of graphs: X, XI, XII, XVI, Theoret. Comp. Sci. and Logical Meth. in Comp. Sci. (1996-2006)

BC : Circle graphs and MSOL, J. of Applied Logic, 2008
$B C+A B$: MSO definable graph orderings, 2011, submitted.
$B C$: The atomic decomposition of strongly connected graphs and application to Gauss words, 2012, submitted.

Other title : The missing chapter

Perhaps Chapter 10 of
the second edition.

GRAPH STRUCTURE AND MONADIC SECOND-ORDER LOGIC

A Language-Theoretic Approach

Bruno courcelle and Joost Engelfriet

Dear Participants of Bruno's Workshop,

I was surprised, impressed and inspired when I heard, many years ago, that Bruno had generalized Büchi's Theorem from strings to graphs.

Surprised because I had not expected such a result to be possible.
Impressed because the proof was ingenious and elegant.
Inspired because it initiated a fascinating development.

So, in the past few years, it has been a great pleasure for me to work together with Bruno on a book (The Book) with this and related results as subject matter.
During this work we never met, but we exchanged 576 emails, by a
rough count of the ones I kept. Since the work is now finished, these
mails can be thrown in the dustbin, together with all previous
versions of The Book.
But in case Bruno is planning "The Book, Part Two", everything will
start again...
Unfortunately I cannot be present at the workshop. From here
I greet all my old friends, and I wish all participants a wonderful
workshop.
Joost Engelfriet

Graph structure is a broad concept, covering

Hierarchical graph decompositions

And also (Robertson and Seymour):
Embeddings in surfaces
Existence of a substructure of a certain type
(subgraph, minor, vertex-minor)
Orientations or orderings with particular properties.
Colorings (many notions)
Many links between these different types.

MSO (Monadic Second-Order) logic is useful:
to express properties of graphs or relational structures,
to express queries (sets of tuples satisfying a formula with free variables) in relational structures,
to express transformations of relational structures by
MSTs : monadic second-order transductions.

Example: MSO expression of planarity via Kuratowsky;
Better: construction by an MST of the unique plane embedding of a 3-connected planar graph.

Language Theoretic Aspects
Equational ("context-free"), recognizable sets of graphs and MST are related by properties extending the case of languages:

Graph structuring by Monadic Second-order Transductions

Can one define by an MST:

All (or only some) orientations of a graph ? (depends)

Some linear order ? (depends, A.Blumensath+B.C.)

Some planar embedding of a planar graph ? (yes, if ordered)

Some chord diagram representing a circle graph?
(yes, if the graph is linearly ordered)

Can one define hierarchical decompositions by MSTs:

Some tree-decomposition of width k ? (yes, if $k \leq 3$; other k ?) Some clique-width expression or rank-decomposition of width at most k ? (yes, for ordered cographs ; other cases??)

Canonical decompositions:

The decomposition in 3-connected components (Tutte 1984) ?(yes)
The modular decomposition (Gallai 1967)? (yes, if lin. ordered)
The split decomposition (Cunningham 1980)? (yes, if lin. ordered)

1. Canonical decompositions are easier to define by MSTs than tree-decompositions, for which some choices must be made, that are not (easily) MSO expressible.
2. Several constructions use (need ?) a linear order on the given graph. (Why ?)
3. Some of these constructions extend to countable graphs.

Application : Construction by an MST of planar embeddings ?

- $\mathrm{G} \rightarrow$ the decomposition in 3-connected (planar) components, "bonds" (several parallel edges) and cycles;
- 3-connected planar graphs and cycles have unique planar embeddings, that are constructible by MSTs;
- the linear order yields planar embedding of bonds;
- the embeddings of the components can be combined into one of the given graph.

The very same schema can be used for constructing :

- All transitive orientations of a comparability graph (using the modular decomposition)
- Some chord diagram for a circle graph (using the split decomposition)

Unicity properties are used twice : for building the decompositions and for constructing the objects attached to the "prime" components.

A new (I think!) canonical graph decomposition:
The atomic decomposition of a strongly connected graph

Quick look:

The subgraphs
G_{i} are its atoms.

Motivation: Gauss words describing intersections of curves

Question: Can one describe by an MST all (tuples of) curves (up to homeomorphism) corresponding to a given Gauss (multi)word?

An ambiguous multiword (abcd, bc, ad) (the circle "bc" is "flipped"). It is not ambiguous for nonoriented curves (invariance under flipping).

Method: Multiword W yields (2,2)-regular graph Gra(W) with transitions.

Ex.: Gra(Z) for
Z = (abcd, akcbkd)
What are the planar embeddings of Gra(W) that respect its transitions ?

Planarity of (2,2)-regular t-graphs (t- means "with transitions") can be checked in linear time.
(Easy reduction to the usual planarity test).

Circular composition of graphs, t-graphs and maps

$\mathrm{G}=\mathrm{H} \boxplus e, f \mathrm{~K}$

Atoms : those that cannot be decomposed.
A planar t-atom has a unique planar embedding.
By "flipping the embedding of K ", one gets a different embedding of the t-graph G.
(Flipping is like turning over a pancake.)

Examples of t-atoms (with transitions):

not planar

Circular composition satisfies some laws (circular associativity).
Graphs and not trees, represent "normal forms" of terms.

Circular composition $\boxplus_{\text {e1,e2,e3,e4 }}\left(\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, \mathrm{G}_{4}\right.$) defined as

$$
\left(\left(\mathrm{G}_{1} \boxplus_{\mathrm{e} 1, \mathrm{e} 2} \mathrm{G}_{2}\right) \boxplus_{\mathrm{e} 2, \mathrm{e} 3} \mathrm{G}_{3}\right) \boxplus_{\mathrm{e} 3, \mathrm{e} 4} \mathrm{G}_{4}
$$

Two vertices belong to an atom $\leftarrow \rightarrow$ they are not separated by an "edge-cut" of 2 edges.

This equivalence is MSO expressible.

The quotient graph is a cactus: It defines the atomic decomposition.

Cactus: the 2-connected components are circuits
$\leftrightarrow \rightarrow$ for all x, y, there is a unique path from x to y
(the directed version of one characterization of undirected trees).

The Tutte decomposition of a 2-connected graph:

The blocks have vertex sets $\{c, d\},\{a, b, i, j, k\},\{e, f, g, h\},\{l, m, n\}$.

Atoms from the Tutte decomposition:

- u and v are separated at block B by $\{e, f\}$
- v and w are not separated at block B by $\{e, f\}$
(An atom is not a subgraph of a block in general.)

The atomic decomposition can be computed in linear time from the Tutte decomposition.

Application to Gauss multiwords

- Given a multiword W, construct Gra(W);
- Check if planar; check if a t-atom;
- If planar and not atom, build the atomic decomposition
(using the Tutte decomposition);
- Build the unique planar embedding of each t-atom;
- By flipping each of the p t-atoms, one gets the 2^{p-1}
different planar embeddings of $\mathrm{Gra}(\mathrm{W})$.
All these tasks can be done by MSO formulas and MSTs and by linear time algorithms.

Gauss multiwords representing tuples of nonoriented curves

The multiword (abcd,bc,ad) is ambiguous for oriented curves but not for nonoriented ones. The problem comes (only) from small curves: those with 2 intersections.

Both orientations of the red circle give the same multiword.

$W=\left(a b, w_{1}, \ldots, W_{n}\right) \rightarrow W^{\prime}=\left(w_{1}^{\prime}, \ldots, W_{n}^{\prime}\right) \quad$ (we remove a, b)
N tuples of nonoriented $\leftarrow N$ planar embeddings of Und(Gra(W')) curves for W.

General case for nonoriented curves

Theorem: Let W be a Gauss multiword of the form
$W=\left(a b, \ldots, c d, w_{1}, \ldots, w_{n}\right) \rightarrow W^{\prime}=\left(w_{1}^{\prime}, \ldots, W_{n}^{\prime}\right)$ (removing $\left.a, b, \ldots, c, d\right)$,
w_{1}, \ldots, w_{n} have length ≥ 3 (actually ≥ 4 by planarity),
W has q small components : ab,...,cd,
Gra(W') has p atoms,
\rightarrow there are $2^{p-1}(q+n)$-tuples of nonoriented curves with
Gauss multiword W.

There are 6 small components (in red).
The remaining curves (in black and blue) represent
$\mathrm{Gra}(\mathrm{W}$ ') that has 7 atoms $\rightarrow 64$ different 11-tuples of curves

Extensions and open questions

Curves with multiple intersections, Knot diagrams,

Decompositions based on circular composition
of directed graphs,
Gauss multiwords on other surfaces,
Forbidden configurations (minors ?) for planar 4-regular graphs with transitions,

Applications to be developed ? Yes !

Grammar for
Gauss words of kolams ?

A wooden knot diagram

