Graph structuring and monadic second-order logic

Bruno Courcelle

Université Bordeaux 1, LaBRI

History: The confluence of 4 independent research directions, now intimately related:

- 1. <u>Polynomial algorithms</u> for NP-complete and other hard problems on particular classes of graphs, and especially hierarchically structured ones: series-parallel graphs, cographs, partial k-trees, graphs or hypergraphs of tree-width < k, graphs of clique-width < k.
- 2. Excluded minors and related notions of forbidden configurations (matroid minors, « vertex-minors »).
- 3. <u>Decidability of Monadic Second-Order logic on classes</u> of finite graphs, and on infinite graphs.
- 4. Extension to graphs and hypergraphs of the main concepts of Formal Language Theory: grammars, recognizability, transductions, decidability questions.

Summary

1. Introduction

Extension of Formal Language Theory notions

- 2. Recognizability, an algebraic notion.
- 3. Context-free sets defined by equation systems.
- 4. The graph algebras VR and HR.

Algorithmic applications :

- 5. Inductive computations and recognizability; fixed-parameter tractable algorithms.
- Monadic second-order logic defines inductive properties and functions

Formal language theory extended to graphs

7 Closure and decidability properties; generation of classes of graphs by monadic second-order transductions.

Monadic second-order logic and combinatorics

8 Seese's conjecture

Open questions

An overview chart:

1. Introduction

Key concepts of FLT and their extensions

Languages	Graphs	
Algebraic structure :	Algebras based on graph	
monoid (X*,*,ε)	operations : \oplus , \otimes , //	
	quantifier-free definable	
	operations	
	Algebras : HR, VR	
Context-free languages :	Equational sets of the	
Equational subsets of $(X^*,*,\epsilon)$	algebras HR,VR	
Regular languages :	Recognizable sets	
Finite automata ≡	of the algebras	
Finite congruences ≡	HR, VR	
	defined by congruences	
Regular expressions ≡		
■ Monadic Second-order	C	
definable sets of words or	Monadic Second-order	
terms	definable sets of graphs	
Rational and other types of	Monadic Second-order	
transductions	transductions	

Relationships between algebraic and logical notions for sets of graphs (and hypergraphs)

Algebraic	Algebraic	Logical	Closure
notions	characterizations	characterizations	properties
			union, ∩ Rec
EQ	equation systems	MS-trans(Trees)	homo
	Val(REC(Terms))		MS-trans
			Boolean opns
REC	congruences	MS-def ⊂ REC	homo ⁻¹
			MS-trans

Signatures for graph algebras:

HR: graphs and hypergraphs with "sources"

VR: graphs with vertex labels ("ports")

VR⁺: VR with quantifier-free operations

(ex. edge complement)

Another picture:

Equational sets = MS-Trans(Binary Trees)

Compare:

Context-free languages = images of the Dyck language (which encodes trees) under rational transductions

Since MS transductions are closed under composition, the class of equational sets is closed under MS transductions

2. Recognizable sets: algebraic definition

F: a finite set of operations with (fixed) arity.

 $\mathbf{M} = \langle M, (f_M)_f \in F \rangle$: an F-algebra.

Definition: L \subseteq M is (F-)recognizable if it is a union of equivalence classes for a finite congruence \approx on **M** (finite means that M / \approx is finite).

Equivalently, $L = h^{-1}(D)$ for a homomorphism $h : \mathbf{M} \to \mathbf{A}$, where \mathbf{A} is a finite F-algebra, $D \subseteq A$.

 $\mathsf{REC}(M)$ is the set of recognizable subsets of M, with respect to the algebra M.

Closure properties: $REC(\mathbf{M})$ contains M and \emptyset , and is closed under union, intersection and difference.

The many-sorted case with infinitely many sorts

S: the countable set of sorts.

F: an S-signature (means that each f in F has a type $s_1s_2\dots s_k \to s, \text{ with } s,s_i \in S \)$

$$\begin{split} \boldsymbol{M} = &< (M_s)_{s \ \in \ S}, \ (f_{\boldsymbol{M}})_{f \ \in \ F} \ > \ F\text{-}\textit{algebra}, \ M_s \cap M_t = \varnothing, \ \text{if } s \ \neq \ t \end{split}$$
 where $f_{\boldsymbol{M}} : M_{s1} \ x \ M_{s2} \ x \ ... \ x \ M_{sk} \longrightarrow \ M_s$

 $Definition: L \subseteq M_s$ is (F-) recognizable if it is a union of equivalence classes for a congruence \approx on M such that equivalent elements are of the same sort and there are finitely many classes of each sort.

3. Equational (context-free) sets

Equation systems = Context-Free (Graph) Grammars in an algebraic setting

In the case of words, the set of context-free rules

$$S \rightarrow aST$$
; $S \rightarrow b$; $T \rightarrow cTTT$; $T \rightarrow a$

is equivalent to the system of two set equations:

$$S = a S T$$
 $\cup \{b\}$

$$T = c T T T$$
 \cup {a}

where S is the language generated by S (idem for T and T).

For graphs we consider similarily systems of equations like:

$$S = f(k(S), T) \cup \{b\}$$

$$T = f(T, f(g(T), m(T))) \cup \{a\}$$

where f is a binary operation, g, k, m are unary operations on graphs, a, b are basic graphs.

An *equational set* is a component of the least (unique) solution of such an equation system. This is well-defined in any algebra.

Closure properties and algebraic characterizations

General algebraic properties

Algebraic	Algebraic	Closure	
notions	characterizations	properties	
EQ	equation systems	union, ∩ Rec	
	Val(REC(Terms))	homomorphisms	
REC	congruences	Boolean operations	
		homomorphisms ⁻¹	

Theorem (Mezei and Wright):

- 1) In an algebra of terms **T**(F): EQ(**T**(F)) = REC(**T**(F))
- 2) In an F-algebra **M** : $EQ(\mathbf{M}) = Val_{\mathbf{M}}(REC(\mathbf{T}(F))$

where $Val_{\mathbf{M}}: \mathbf{T}(F) \longrightarrow \mathbf{M}$ is the evaluation mapping, the unique homomorphism.

4. The graph algebras VR and HR HR operations

(Origin: **H**yperedge **R**eplacement hypergraph grammars; associated complexity measure: tree-width)

Graphs have distinguished vertices called *sources*, pointed to by labels from a set of size k : {a, b, c, ..., h}.

Binary operation(s): Parallel composition

G // H is the disjoint union of G and H and sources with same label are fused.

(If G and H are not disjoint, one first makes a copy of H disjoint from G.)

Unary operations:

Forget a source label

Forgeta(G) is G without a-source:

the source is no longer
distinguished; it is made "internal".

Source renaming:

Rena,b(G) exchanges a and b

(replaces a by b if b is not a source)

Nullary operations denote *basic graphs*: the connected graphs with at most one edge.

For dealing with hypergraphs one takes more nullary symbols for denoting hyperedges.

More precise algebraic framework: a many sorted algebra where each finite set of source labels is a sort. The above operations are overloaded.

Proposition: A graph has tree-width ≤ k if and only if it can be constructed from basic graphs with ≤ k+1 labels by using the operations //, Rena,b and Forgeta.

Example: Trees are of tree-width 1, constructed with two source labels, r (root) and n (new root):

Fusion of two trees at their roots:

Extension of a tree by parallel composition with a new edge, forgetting the old root, making the "new root" as current root:

$$E = r \bullet - n$$

Tree-width

Tree-decomposition of width k : k+1 = max. size of a box

Tree-width: twd(G) = minimum width of a tree-decomposition

Trees have tree-width 1, K_n has tree-width n-1

The n x n grid has tree-width = n

Planar graphs and cliques have unbounded tree-width.

Outerplanar graphs have tree-width at most 2.

From an algebraic expression to a tree-decomposition

Example: cd // Rena,c (ab // Forgetb(ab // bc))

Constant ab denotes a directed edge from a to b.

The tree-decomposition associated with this term.

VR operations

(origin : Vertex Replacement graph grammars ; associated complexity measure : clique-width)

Graphs are simple, directed or not.

k labels : a, b, c, ..., h.

Each vertex has one and only one label; a label p may label several vertices, called the *p-ports*.

Binary operation: disjoint union ⊕

Unary operations: Edge addition denoted by Add-edga, b

Add-edga,b(G) is G augmented with (un)directed edges from every a-port to every b-port.

Relaba, b(G) is G with every vertex labelled by a relabelled into b

Basic graphs are those with a single vertex.

Definition: A graph G has clique-width ≤ k

⇔ it can be constructed from basic graphs
 by means of k labels and the
 operations ⊕, Add-edga,b
 and Relaba,b

Its (exact) clique-width, *cwd*(G), is the smallest such k.

Proposition: (1) If a set of simple graphs has bounded treewidth, it has bounded clique-width, but not vice versa.

- (2) Unlike tree-width, clique-width is sensible to edge directions: Cliques have clique-width 2, tournaments have unbounded clique-width.
- (3) "Clique-width \leq 3" is polynomial. The complexity (polynomial or NP-complete) of "Clique-width = 4" is unknown.

Example: Cliques have clique-width 2.

 K_n is defined by t_n $t_{n+1} = Relab_{b,a}(Add-edg_{a,b}(t_n \oplus b))$

Another example: Cographs

Cographs are generated by \oplus and \otimes defined by :

 $G \otimes H = Relab_{b,a} (Add-edg_{a,b} (G \oplus Relab_{a,b}(H))$

 $= G \oplus H$ with "all edges" between G and H.

5. Algorithmic applications

Fixed parameter tractability results
Theorem (B.C.):

A) For graphs of clique-width $\leq k$, each monadic second-order property, (ex. 3-colorability), each monadic second-order optimization function, (ex. distance), each monadic second-order counting function, (ex. # of paths) is evaluable:

in linear time on graphs given by a term over VR, in time $O(n^3)$ otherwise (by S. Oum, 2005).

B) All this is possible in linear time on graphs of tree-width \leq k, for each fixed k. (by Bodlaender, 1996)

Inductive computations

Example: Series-parallel graphs, defined as graphs with sources 1 and 2, generated from e = 1 -2 and the operations // (parallel-composition) and series-composition defined from other operations by:

$$G \bullet H = Forget_3(Ren_{2,3} (G) // Ren_{1,3} (H))$$

Example:

Inductive proofs:

- 1) G, H connected implies G//H and G H connected,
- e is connected:
- ⇒ All series-parallel graphs are connected.
- 2) It is not true that G, H planar implies G//H planar. ($K_5 = H//e$) A stronger property for induction :
- G has a planar embedding with the sources in the same "face"
- ⇒ All series-parallel graphs are planar.

Inductive computation: Test for 2-colorability

Not all series-parallel graphs are 2-colorable (K_3)

G, H 2-colorable does not imply that G//H is 2-colorable.

($K_3=P_3//e$).

One can check the property with 2 auxiliary properties :

Same(G) = G is 2-colorable with sources of the same color,

Diff(G) = G is 2-colorable with sources of different colors

by using rules : Diff(e) = True Same(e) = False
$$Same(G//H) \Leftrightarrow Same(G) \land Same(H)$$

$$Diff(G//H) \Leftrightarrow Diff(G) \land Diff(H)$$

$$Same(G \bullet H) \Leftrightarrow (Same(G) \land Same(H)) \lor (Diff(G) \land Diff(H))$$

$$Diff(G \bullet H) \Leftrightarrow (Same(G) \land Diff(H)) \lor (Diff(G) \land Same(H))$$

We can compute for every SP-term t, by induction on the structure of t the pair of Boolean values ($Val(t) = graph \ value \ of t$). (Same(Val(t)), Diff(Val(t))).

We get the answer for G = Val(t) (the graph that is the value of t) regarding 2-colorability.

Implementation by an automaton

States are pairs of Boolean values, 0 = False, 1 = True, representing (Same(Val(t)), Diff(Val(t))), for t = the subterm processed.

Example:

The graph $Val((e \bullet e) // e) \bullet (e // e))$ is not 2-colorable.

Important facts to be developped:

- 1) The existence of properties forming an inductive set (w.r.t. operations of F) is equivalent to recognizability in the considered F-algebra.
- 2) The simultaneous computation of m inductive properties can be implemented by a 2^m -state automaton working on terms t. It takes time O(|t|).
- 3) An inductive set of properties can be found (theoretically) from every monadic-second order formula.
- 4) This result extends to the computation of values (integers) defined by monadic-second order formulas.

Recognizability and inductive properties

Definition: A finite set P of properties on an F-algebra M is F-inductive if for every $p \in P$ and $f \in F$, there exists (we know) a Boolean formula B such that :

$$p(f_{\mathbf{M}}(a,b)) = B[...,q(a),...,q(b),...,q \in P]$$

for all a and b in **M**. (q(a),..., q(b) \in {True, False})

Proposition: A subset L of **M** is recognizable iff it is the set of elements that satisfy a property belonging to a finite inductive set of properties P.

Proof: Let $L = h^{-1}(C)$ for a homomorphism $h : \mathbf{M} \to \mathbf{A}$, \mathbf{A} a finite F-algebra and C a subset of A (domain of \mathbf{A}).

For each a in A, let \hat{a} be the property : $\hat{a}(m) \Leftrightarrow h(m) = a$. Let p be such that $p(m) = True \Leftrightarrow h(m) \in C \Leftrightarrow m \in L$.

Properties p, \hat{a} , $a \in A$, are F-inductive.

If P is an inductive set of m properties, one can define an F-algebra structure on the set A of m-tuples of Booleans, such that the mapping $h: m \to the m-tuple$ of Booleans is a homomorphism.

Inductive properties and automata on terms

If P is an inductive set of m properties, one can define a deterministic automaton on terms of T(F) with set of states the m-tuples of Booleans, that computes in a bottom-up way, for each term t, the truth values :

p(Val(s)) for all $p \in P$ and all subterms s of t.

Membership of an element m of M in a recognizable set L can be tested by such an automaton on any term t in T(F) defining m.

Application to graphs

Immediate but depends on two things:

Parsing algorithms building terms from the given graphs: Bodlaender (for twd), Oum (for cwd).

Language for expressing inductive properties:

Monadic second-order logic.

6. Monadic Second-Order (MS) Logic

A logical language which specifies inductive properties and functions

- = First-order logic on power-set structures
- = First-order logic extended with (quantified) variables denoting subsets of the domains.

MS properties:

```
transitive closure, properties of paths, connectivity, planarity (via Kuratowski, uses connectivity), k-colorability.
```

Examples of formulas for $G = \langle V_G, edg_G(.,.) \rangle$, undirected

```
Non connectivity: \exists X \ (\exists x \in X \land \exists y \notin X \land \forall u, v \ (u \in X \land edg(u, v) \Rightarrow v \in X))2\text{-colorability (i.e. } G \text{ is bipartite}):\exists X \ (\forall u, v \ (u \in X \land edg(u, v) \Rightarrow v \notin X) \land \forall u, v \ (u \notin X \land edg(u, v) \Rightarrow v \in X))
```

Non MS properties:

Equicardinality, bijections, automorphisms.

Definition: A set L of words, of trees, of graphs is Monadic Second-Order (MS) definable iff

L = { S / S
$$\mid$$
 = ϕ } for an MS formula ϕ

Theorem: (1) A language or a set of *finite terms* is recognizable \iff it is MS definable.

This is true for graph algebras HR, VR, VR⁺.

Proofs: (1) Doner, Thatcher, Wright (1968-1970).

Recognizable → automaton with states 1,...,n → MS formula :

 $\exists X_1,...,X_n$ ("these sets define an accepting run")

Conversely, induction on the structure of formula, using closure of recognizable sets under union, intersection, difference, alphabetic homomorphisms.

Basic facts for (2): Let F consist of ⊕ and unary quantifier-free definable operations f (examples : relabellings, edge-complement).

For every MS formula ϕ of quantifier-height k, we have (a) for every f, one can construct a formula $f^{\#}(\phi)$

such that :
$$f(S) \mid = \phi \iff S \mid = f^{\#}(\phi)$$

Better, for ϕ with free variables X,Y,Z:

$$Sat(f(S), \varphi, X,Y,Z) = Sat(S, f^{\#}(\varphi), X,Y,Z)$$

where Sat(S, ϕ , X,Y,Z) is the set of triples of sets that satisfy ϕ in S.

(b) (Fefermann-Vaught) : One can construct formulas $\psi_1,...,\psi_n,$ $\theta_1,...,\theta_n$ such that :

S
$$\oplus$$
T \mid = ϕ \Leftrightarrow for some i, S \mid = ψ_i & T \mid = θ_i

Better:

$$\begin{split} \text{Sat}(S \oplus T, \phi, \, X, Y, Z) &= U_i \; \; \text{Sat}(S, \, \psi_i, \, X, Y, Z) \otimes \text{Sat}(T, \, \theta_i, \, X, Y, Z) \\ \text{Here } f^\#(\phi), \, \psi_1, \dots, \psi_n, \, \theta_1, \dots, \theta_n \; \; \text{have quantifier-height} \; \leq \; k. \end{split}$$

(c) Up to equivalence, there are finitely many formulas of quantifier-height \leq k forming a set Φ_k . One builds an automaton with states the subsets of Φ_k (the MS-theories of quantifier-height \leq k of the graphs defined by the subterms of the term to be processed).

Consequences

- 1) For checking the validity of properties defined by closed formulas : point (c) gives the finite set of auxiliary formulas ; (a) and (b) show they form an inductive set.
 - 2) For computing values:

$$opt(\phi)(G) = Min \{ |X| / G | = \phi(X) \}$$

Sat(S
$$\oplus$$
T, ϕ ,X) = U_i Sat(S, ψ_i , X) \otimes Sat(T, θ_i , X) yields :

$$opt(\phi)(S \oplus T) = Min_i \{ opt(\psi_i)(S) + opt(\theta_i)(T) \}$$

3) Similar calculations for counting answers to queries :

$$\#(\phi)(G) = \text{Card } \{ (X,Y) / G \mid = \phi(X,Y) \}.$$

4) Applications: linear delay enumeration of answers to MS expressible queries.

7. Monadic Second-Order Transductions

STR(Σ): the set of finite Σ -relational structures (or finite directed ranked Σ -hypergraphs).

MS transductions are multivalued mappings

$$\tau : STR(\Sigma) \rightarrow STR(\Gamma)$$

$$S \vdash T = \tau(S)$$

where T is:

- a) defined by MS formulas
- b) inside the structure: S ⊕ S ⊕ ... ⊕ S(fixed number of disjoint "marked" copies of S)
- c) in terms of "parameters" i.e. subsets $X_1, ..., X_p$ of the domain of S

Proposition: The composition of twoMS transductions is an MS transduction.

Remark: For each tuple of parameters $X_1, ..., X_p$ satisfying an MS property, T is uniquely defined. τ is multivalued by the different choices of parameters.

Examples: $(G,\{x\})$ \longrightarrow the connected component containing x.

(G,X,Y) \longrightarrow the minor of G resulting from contraction of edges in X and deletion of edges and vertices in Y.

Example of an MS transduction (without parameters)

The *square* mapping δ on words: $u \mid \rightarrow uu$

a a c a a c

In $\delta(S)$ we redefine Suc (i.e., \rightarrow) as follows:

$$Suc(x,y): \iff p_{1}(x) \& p_{1}(y) \& Suc(x,y) \\ v p_{2}(x) \& p_{2}(y) \& Suc(x,y) \\ v p_{1}(x) \& p_{2}(y) \& "x has no successor" \\ \& "y has no predecessor"$$

We also remove the "marker" predicates p₁, p₂.

The fundamental property of MS transductions:

$$S \longmapsto \tau(S)$$

$$\tau^{\#}(\psi) \longleftarrow \psi$$

Every MS formula ψ has an effectively computable backwards translation $\tau^{\#}(\psi)$, an MS formula, such that :

$$S \mid = \tau \#(\psi) \Leftrightarrow \tau (S) \mid = \psi$$

The verification of ψ in the object structure $\tau(S)$ reduces to the verification of $\tau^{\#}(\psi)$ in the given structure S.

Intuition: S contain all necessary information to describe $\tau(S)$; the MS properties of $\tau(S)$ are expressible by MS formulas in S

Consequence: If $L \subseteq STR(\Sigma)$ has a decidable MS satisfiability problem, so has its image under an MS transduction.

Other results

A set of graphs is VR -equational ⇔ it is the image of (all) binary trees under an MS transduction.

VR-equational sets are stable under MS-transductions.

A set of graphs has bounded clique-width \Leftrightarrow it is the image of a set of binary trees under an MS transduction.

2) A set of graphs is HR-equational \Leftrightarrow it is the image of (all) binary trees under an MS₂ transduction. (MS₂ = MS with edge set quantifications).

HR-equational sets are stable under MS₂-transductions.

A set of graphs has bounded tree-width \Leftrightarrow it is the image of a set of binary trees under an MS₂ transduction.

3) A set of hypergraphs is QF-equational ⇔ it is the image of (all) binary trees under an MS-transduction.

QF-equational sets are stable under MS-transductions.

4) (A. Blumensath, B.C.,2004) : QF-recognizable sets are preserved under *inverse* MS transductions.

QF = the signature for relational structures consisting of \oplus (disjoint union) and quantifier-free definable transformations. It includes VR^+ .

Relationships between algebraic and logical notions

Algebraic notions	Algebraic characterizations	Logical characterizations	Closure properties
			union, ∩ Rec
EQ	equation systems	MS-trans(Trees)	homo
	Val(REC(Terms))		MS-trans
			Boolean opns
REC	congruences	MS-def ⊂ REC	homo -1
			MS-trans -1

Signatures for graphs and hypergraphs:

HR: graphs and hypergraphs with "sources"

VR: graphs with vertex labels ("ports")

VR⁺: VR with quantifier-free operations(ex. edge complement)

QF: hypergraphs, i.e., relational structures (disjoint union ⊕ and quantifier-free definable unary operations)

8. Links between MS logic and combinatorics : Seese's Conjecture

Theorem (Seese 1991):

If a set of graphs has a decidable MS₂ satisfiability problem, it has bounded tree-width.

Conjecture (Seese 1991):

If a set of graphs has a decidable MS satisfiability problem, it is the image of a set of trees under an MS transduction, equivalently, has bounded cliquewidth.

Theorem (B.C., S. Oum 2004):

If a set of graphs has a decidable C₂MS satisfiability problem, it has bounded clique-width.

MS = (Basic) MS logic without edge quantifications

MS₂ = MS logic with edge quantifications

C₂MS = MS logic with even cardinality set predicates

A set C has a decidable L satisfiability problem if one can decide for every formula in L whether it is satisfied by some graph in C

Proof of Seese's Theorem:

- A) If a set of graphs *C* has unbounded tree-width, the set of its minors includes all kxk-grids (Robertson, Seymour)
- B) If a set of graphs contains all kxk-grids, its MS₂ satisfiability problem is undecidable
- C) If C has decidable MS_2 satisfiability problem, so has Minors(C), because $C \longrightarrow Minors(C)$ is an MS_2 transduction.

Hence, if C has unbounded tree-width and a decidable MS_2 satisfiability problem, we have a contradiction for the decidability of the MS_2 satisfiability problem of Minors(C).

Proof of Courcelle-Oum's Theorem:

- D) Equivalence between the cases of all (directed and undirected) graphs and bipartite undirected graphs.
- A') If a set of bipartite graphs C has unbounded cliquewidth, the set of its <u>vertex-minors</u> contains all " S_k " graphs C') If C has decidable C_2MS satisfiability problem, so has Vertex-Minors(C), because $C \longrightarrow Vertex$ -Minors(C) is a C_2MS transduction.
- E) An MS transduction transforms S_k into the kxk-grid.

Definitions and facts

Local complementation of G at vertex v

G * v = G with edge complementation of $G[n_G(v)]$, the subgraph induced by the neighbours of v

Local equivalence (\approx loc) = transitive closure of local complementation (at all vertices)

Vertex-minor relation:

 $H \leq_{VM} G : \Leftrightarrow H$ is an induced subgraph of some $G' \approx_{loc} G$

Proposition: The mapping associating with G its locally equivalent graphs is a C_2MS transduction.

Why is the even cardinality set predicate necessary?

Consider G * X for $X \subseteq Y$:

u is linked to v in G * X

 \Leftrightarrow Card(X) is even

Definition of S_k:

bipartite : $A = \{1, ..., (k+1)(k-1)\}$, $B = \{1, ..., k(k-1)\}$

for $j \in A$, $i \in B : edg(i,j) \iff i \le j \le i+k-1$

From S_k to Grid_{kxk} by an MS transduction

(folded) Grid_{3x4}

1) One can define the orderings of A and B:

x, y are consecutive \Leftrightarrow Card(n_G(x) Δ n_G(y)) = 2

- 2) One can identify the edges from i ∈ B to i ∈ A, and from i ∈ B to i+k-1 ∈ A (thick edges on the left drawing)
- 3) One can create edges (e.g. from $1 \in A$ to $2 \in A$, from $2 \in A$ to $3 \in A$ etc...and similarly for B, and from $1 \in B$ to $4 \in A$, etc...) and delete others (from $4 \in B$ to $6 \in A$ etc...), and vertices like 7,8 in A, to get a grid containing $Grid_{kxk}$

Corollary: If a set of directed acyclic graphs having Hamiltonian directed paths has a decidable MS satisfiability problem, then:

it has bounded clique-width,

it is the image of a set of trees under an MS transduction.

Proof: Since on these graphs a linear order is MS definable, MS and C₂MS are equivalent.

The previously known techniques for similar results (in particular for line graphs or interval graphs, B.C. 2004) do not work in this case.

9. Some open questions

Question 1: Under which operations, quantifier-free definable or not, are REC(VR) and REC(HR) closed?

(The case of REC(HR) is considered in B.C.: (HR-)Recognizable sets of graphs, equivalent definitions and closure properties, 1994. It is not hard to see that REC(VR) is closed under ⊕ (disjoint union) but not under the operations Add-edg_{a,b}.)

Question 2: Is it true that the decidability of the MS (and not the C₂MS) satisfiability problem for a set of graphs implies bounded clique-width, as conjectured by D. Seese?