Automata based graph algorithms for logically defined problems

$$
\text { Part } 2
$$

Monadic Second-Order logic : definitions, examples.

The main construction : from MSO formulas to automata (accepting clique-width terms).

Existential quantifications and nondeterministic automata.

Tested examples : colorability problems.

Monadic Second-Order logic

First-order logic extended with (quantified) variables denoting subsets of the domains.

MSO (expressible) properties : transitive closure, properties of paths, connectivity, planarity (via Kuratowski, uses connectivity), p-colorability.

Examples of formulas for $G=\left(V_{G}, e^{2} g_{G}(. .).\right)$, undirected

```
G is 3-colorable :
\existsX,Y(X\capY=\varnothing^
    \forallu,v { edg(u,v) =>
    [(u\inX=>v\not\inX)^(u\inY=>v\not\inY)^
    (u\not\inX\cupY=>v\inX\cupY)]
})
```

G (undirected) is not connected:
$\exists X(\exists x \in X \wedge \exists y \notin X \wedge(\forall u, v(u \in X \wedge \operatorname{edg}(u, v) \Rightarrow v \in X))$
Transitive and reflexive closure : $\mathrm{TC}(\mathrm{R}, \mathrm{x}, \mathrm{y})$:
$\forall X\{$ " X is R-closed" $\wedge x \in X \Rightarrow y \in X\}$
where " X is R-closed" is defined by:
$\forall u, v(u \in X \wedge R(u, v) \Rightarrow v \in X)$

The relation R can be defined by a formula as in:
$\forall x, y(x \in Y \wedge y \in Y \Rightarrow T C(" u \in Y \wedge v \in Y \wedge \operatorname{edg}(u, v)$ ", $x, y)$
expressing that $G[Y]$ is connected (note that Y is free in R).

> Application: G contains (fixed) H as a minor where $\mathrm{V}_{\mathrm{H}}=\{1, \ldots, \mathrm{p}\}$: there exist disjoint sets of vertices X_{1}, \ldots, X_{p} in G such that each $G\left[X_{i}\right]$ is connected and, for every edge $i--j$ of H, there is an edge in G between X_{i} and X_{j} (denoted by $\operatorname{Link}\left(X_{i}, X_{j}\right)$).

> Consequence: planarity is MSO-expressible (no minor K_{5} or $K_{3,3}$).

Provably non-expressible properties
G is isomorphic to $\mathrm{K}_{\mathrm{p}, \mathrm{p}}$ for some p (not fixed; needs equipotence of two sets, hence quantification over binary relations to say that there is a bijection).

G has a nontrivial automorphism, or is regular, i.e., has all its vertices of same degree.

Exercises

1) Write an MSO-sentence expressing that the considered simple graph is a tree. ("Simple" is not MSO expressible).
2) Write an MSO-formula with free variables x, y, z expressing that, in a tree (undirected and unrooted), if one takes x as root, then y is an ancestor of z .
3) A nonempty word over alphabet $\{a, b\}$ can be considered as a directed path with unary relations $\mathrm{lab}_{\mathrm{a}}$ and $\mathrm{lab}_{\mathrm{b}}$ on vertices representing the sets of occurrences of letters a and b. Prove that every regular language over $\{a, b\}$ is MSO-definable.
4) A complete bipartite graph $K_{n, m}$ has a Hamiltonian cycle if and only if $\mathrm{n}=\mathrm{m}$. Construct such a graph "over" any word in $\{\mathrm{a}, \mathrm{b}\}^{+}$having at least one a and at least one b. Deduce from the (well-known) converse of 3) that Hamiltonicty is not MSO-expressible.

From MS formulas to automata for "clique-width" terms

F = the countable set of operations and constants :
$\mathrm{a}, \varnothing, \oplus, \overrightarrow{\operatorname{Add}}_{\mathrm{a}, \mathrm{b}}$, Add $_{\mathrm{a}, \mathrm{b}}$, Relab $\mathrm{a}_{\mathrm{a}} \longrightarrow \mathrm{b}$
$\mathrm{G}(t)=$ the graph defined by a term t in $\mathrm{T}(\mathrm{F})$.

Its vertices are (in bijection with) the occurrences of the constants a in t (those not \varnothing).

Example

Terms are equipped with Booleans that encode assignments of vertex sets $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{p}}$ to the free set variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{p}}$ of MSO formulas (formulas are written without first-order variables):

1) we replace in F each constant a by the constants
$\left(a,\left(w_{1}, \ldots, w_{p}\right)\right)$ where $w_{i} \in\{0,1\}$: we get $F^{(p)}$
(only constants are modified);
2) a term s in $T\left(F^{(p)}\right)$ encodes a term t in $T(F)$ and an assignment of sets $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{p}}$ to the set variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{p}}$:
if u is an occurrence of $\left(a,\left(w_{1}, . ., w_{p}\right)\right)$, then
$w_{i}=1$ if and only if $u \in V_{i}$.
3) s is denoted by $t *\left(\mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{p}}\right)$.

Example (continued)

By an induction on φ, we construct for each $\varphi\left(X_{1}, \ldots, X_{p}\right)$ a finite (bottom-up) deterministic fly-automaton $A\left(\varphi\left(X_{1}, \ldots, X_{n}\right)\right)$ that recognizes:

$$
\mathrm{L}\left(\varphi\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{p}}\right)\right):=\left\{t *\left(\mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{p}}\right) \in \mathrm{T}\left(\mathrm{~F}^{(\mathrm{p})}\right) /\left(\mathrm{G}(t),\left(\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{p}}\right)\right) \mid=\varphi\right\}
$$

Theorem: For each MS-sentence φ, the FPT-fly-automaton $A(\varphi)$ accepts in time $\mathrm{f}(\varphi, \mathrm{k}) .|t|$ the terms t in $\mathrm{T}\left(\mathrm{F}_{\mathrm{k}}\right)$ such that $\mathrm{G}(t) \mid=\varphi$.

The inductive construction of $A(\varphi)$

Atomic formulas : discussed below.

For \wedge and \vee : product of two automata with appropriate accepting states.

For negation: exchange accepting / non-accepting states for a complete deterministic automaton; determinization preserves fly-automata. (Recall that Fly-automata are run deterministically by means of a bottom-up computation of finite sets of states).

Quantifications: Formulas are written without \forall

$$
\begin{aligned}
& L\left(\exists X_{p+1} \cdot \varphi\left(X_{1}, \ldots, X_{p+1}\right)\right)=\operatorname{pr}\left(L\left(\varphi\left(X_{1}, \ldots, X_{p+1}\right)\right)\right. \\
& A\left(\exists X_{p+1} \cdot \varphi\left(X_{1}, \ldots, X_{p+1}\right)\right)=\operatorname{pr}\left(A\left(\varphi\left(X_{1}, \ldots, X_{p+1}\right)\right)\right.
\end{aligned}
$$

where pr is the "projection" that eliminates the last Boolean. Yields a non-deterministic automaton even if $A\left(\varphi\left(X_{1}, \ldots, X_{p+1}\right)\right.$ is deterministic .

Consequence: Over a finite signature, the number of states of $\mathrm{A}(\varphi(\underline{\mathrm{X}}))$ is finite, but is an h -iterated exponential, where $\mathrm{h}=$ maximum nesting of negations. (There is no alternative construction, Frick and Grohe, 2004).

Some tools for constructing automata
Substitutions and inverse images ("cylindrifications").

1) If we know $A\left(\varphi\left(X_{1}, X_{2}\right)\right)$, we can get easily $A\left(\varphi\left(X_{4}, X_{3}\right)\right)$:

$$
L\left(\varphi\left(X_{4}, X_{3}\right)\right)=h^{-1}\left(L\left(\varphi\left(X_{1}, X_{2}\right)\right) \quad\right. \text { where }
$$

$h \operatorname{maps}\left(a,\left(w_{1}, w_{2}, w_{3}, w_{4}\right)\right)$ to $\left(a,\left(w_{4}, w_{3}\right)\right)$
We take

$$
A\left(\varphi\left(X_{4}, X_{3}\right)\right)=h^{-1}\left(A\left(\varphi\left(X_{1}, X_{2}\right)\right)\right)
$$

This construction preserves determinism and the number of states.
Set term
2) From $A\left(\varphi\left(X_{1}, X_{2}\right)\right)$, we can get $\left.A\left(\varphi\left(X_{3}, \widehat{X_{1} \cup\left(X_{2} \backslash X_{4}\right.}\right)\right)\right)$ by h^{-1} with h mapping $\left(a,\left(w_{1}, w_{2}, w_{3}, w_{4}\right)\right)$ to $\left(a,\left(w_{3}, w_{1} \vee\left(w_{2} \wedge \neg w_{4}\right)\right)\right)$

Relativization to subsets by inverse images.

If φ is a closed formula expressing a graph property P, its relativization $\varphi\left[X_{1}\right]$ expresses that the subgraph induced on X_{1} satisfies P. To construct it, we can replace recursively

$$
\exists \mathrm{y.} \theta \text { by } \exists \mathrm{y} . \mathrm{y} \in \mathrm{X}_{1} \wedge \theta, \text { etc... }
$$

However, there is an easy transformation of automata:
Let h map $(a, 0)$ to \varnothing and $(a, 1)$ to a.

$$
\mathrm{L}\left(\varphi\left[\mathrm{X}_{1}\right]\right)=\mathrm{h}^{-1}(\mathrm{~L}(\varphi))
$$

Hence:

$$
A\left(\varphi\left[X_{1}\right]\right):=h^{-1}(A(\varphi))
$$

The inductive construction (continued)

Complete deterministic FA for atomic formulas and basic graph properties: automaton over $\mathrm{F}^{(\mathrm{p})}$ recognizing the set of terms

$$
t *\left(\mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{p}}\right) \text { in } \mathrm{L}\left(\varphi\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{p}}\right)\right)
$$

Atomic and basic formulas :
$X_{1} \subseteq X_{2}, \quad X_{1}=\varnothing, \quad \operatorname{Sgl}\left(X_{1}\right)\left(X_{1}\right.$ is singleton $)$
Card ${ }_{\mathrm{p}, \mathrm{q}}\left(\mathrm{X}_{1}\right)$: cardinality of X_{1} is $=\mathrm{p} \bmod \mathrm{q}$,
Card ${ }_{<q}\left(X_{1}\right)$: cardinality of X_{1} is $<q$.
\rightarrow Easy constructions with small numbers of states independent on F : respectively $2,2,3, q, q+1$.

Example : for $\mathrm{X}_{1} \subseteq \mathrm{X}_{2}$, the term must have no constant (a, 10).

Atomic formula : edg $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ for directed edges
edg $\left(X_{1}, X_{2}\right)$ means: $X_{1}=\{x\} \wedge X_{2}=\{y\} \wedge x \longrightarrow y$
The restriction to a set C of k labels uses $k^{2}+k+3$ states :
$0, \mathrm{Ok}, \mathrm{a}(1), \mathrm{a}(2), \mathrm{ab}$, Error, for a, b in $\mathrm{C}, \mathrm{a} \neq \mathrm{b}$
Meaning of states (at node u in t; its subterm t / u defines $G(t / u) \subseteq G(t)$).
$0 \quad: \mathrm{X}_{1}=\varnothing, \mathrm{X}_{2}=\varnothing$
Ok Accepting state: $X_{1}=\{v\}, X_{2}=\{w\}$, edg (v, w) in $G(t / u)$
$a(1) \quad: X_{1}=\{v\}, X_{2}=\varnothing, v$ has label a in $G(t / u)$
$a(2) \quad: X_{1}=\varnothing, X_{2}=\{w\}$, w has label a in $G(t / u)$
$a b \quad: X_{1}=\{v\}, X_{2}=\{w\}, v$ has label a, w has label b (hence $\left.v \neq w\right)$ and $\neg \operatorname{edg}(v, w)$ in $G(t / u)$
Error : all other cases

Transition rules

For the constants based on a:

$$
(\mathrm{a}, 00) \rightarrow 0 ;(\mathrm{a}, 10) \rightarrow \mathrm{a}(1) ;(\mathrm{a}, 01) \rightarrow \mathrm{a}(2) ;(\mathrm{a}, 11) \rightarrow \text { Error }
$$

For the binary operation \oplus : ($\mathrm{p}, \mathrm{q}, \mathrm{r}$ are states)

If $p=0$ then $r:=q$
If $q=0$ then $r:=p$
If $p=a(1), q=b(2)$ and $a \neq b$ then $r:=a b$
If $p=b(2), q=a(1)$ and $a \neq b$ then $r:=a b$
Otherwise r := Error

For unary operations $\overrightarrow{A d d}_{\mathrm{a}, \mathrm{b}}$

If $p=a b$ then $r:=O k$ else $r:=p$

For unary operations Relab $_{a} \longrightarrow b$

$$
\begin{array}{lr}
\text { If } p=a(i) \text { where } i=1 \text { or } 2 & \text { then } r:=b(i) \\
\text { If } p=a c \text { where } c \neq a \text { and } c \neq b & \text { then } r:=b c \\
\text { If } p=c a \text { where } c \neq a \text { and } c \neq b & \text { then } r:=c b \\
\text { If } p=\text { Error or } 0 \text { or Ok or } c(i) \text { or cd or dc where } c \neq a \\
\text { then } r:=p
\end{array}
$$

Number of states of some deterministic FA
restricted to k labels ; $\mathrm{k}=$ bound on clique-width.

Property	Partition $\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{p}}\right)$	edg(X,Y)	NoEdge	Connected, NoCycle for degree $\leq \mathrm{d}$	Path(X,Y)	Connected, Nocycle
Number of states $\mathrm{N}(\mathrm{k})$	2	$\mathrm{k}^{2}+\mathrm{k}+3$	2^{k}	$2^{\mathrm{O} \text { (d.k.k) }}$	$2^{\mathrm{O}(\mathrm{k} . \mathrm{k})}$	$2^{2^{\mathrm{O}(\mathrm{k})}}$

We construct directly FA for important graph properties : NoEdge,
Connectedness, NoCycle, Path (X, Y) (there is a path with vertices in Y between the two vertices of X).

This construction works well for formulas with no quantifier alternation, but that use "powerful atomic formulas".

Examples: p-acyclic colorability
$\exists X_{1}, \ldots, X_{p}\left(\operatorname{Partition}\left(X_{1}, \ldots, X_{p}\right) \wedge \operatorname{NoEdge}\left(X_{1}\right) \wedge \ldots . . \wedge \operatorname{NoEdge}\left(X_{p}\right) \wedge \ldots\right.$ $\left.\ldots \wedge \operatorname{NoCycle}\left(X_{i} \cup X_{j}\right) \wedge\right)$

Minor inclusion : H simple, loop-free. Vertices(H) $=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{p}}\right\}$

$$
\begin{aligned}
& \exists X_{1}, \ldots, X_{p}\left(\operatorname{Disjoint}\left(X_{1}, \ldots, X_{p}\right) \wedge \operatorname{Conn}\left(X_{1}\right) \wedge \ldots \wedge \operatorname{Conn}\left(X_{p}\right) \wedge \ldots\right. \\
& \left.\quad \ldots \wedge \operatorname{Link}\left(X_{i}, X_{j}\right) \wedge \ldots\right)
\end{aligned}
$$

Existence of "holes" : odd induced cycles (to check perfectness; one checks "anti-holes" on the edge-complement of the given graph).

Some experiments using FA (by Irène Durand, LaBRI)

3-colorability of the 6×300 grid (of clique-width 8) in less than 2 hours,

4-acyclic-colorability of the Petersen graph (clique-width 7) in 17 minutes.
(3-colorable but not acyclically; red and green vertices induce a cycle).

The McGee graph

24 vertices on the external cycle.

Defined by a term with 10 labels (optimal ?)
of size 99 and height 76 .

It is 3 -acyclically colourable.
Checked in 11 hours with

an annotated term
(a preprocessing defined below).

Recursively defined graphs

Verification of 4-colorability

i	term	dag
9	88 mn	1.5 mn
20	$? ?$	4 mn
30	$? ?$	146 mn

Other tool : Annotations

At some positions in the given term, we attached some (finite) contextual information.

Example:

At position u in a term t, we attach the set
$\operatorname{ADD}_{t}(u)=$ the set of pairs (a, b) such that some operation
Add $_{\mathrm{c}, \mathrm{d}}$ above u (hence, in its "context") adds edges between the (eventual) vertices below u labelled by a and b.

These sets can be computed in linear time by means of a top-down traversal of t.

Certain automata on annotated terms may have less states.
Example : $e d g\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right): 2 \mathrm{k}+3$ states instead of $\mathrm{k}^{2}+\mathrm{k}+3$:
$0, O k, a(1), a(2)$, Error, for a in C.

Transitions for \oplus annotated by R : (p, q, r are states)


```
If \(p=0\) then \(r:=q\); if \(q=0\) then \(r:=p\);
if \(p=a(1), q=b(2)\) and \((a, b) \in R \wedge\) then \(r:=O k\);
    and if \((a, b) \notin R \wedge\) then \(r:=\) Error ;
    if \(p=b(2), q=a(1):\) idem;
    otherwise \(r:=\) Error.
```

Other examples:

For Clique $[\mathrm{X}]$ meaning that X induces a clique :

$$
2^{k}+2 \text { states instead of } 2^{\mathrm{O}(\mathrm{k} . \mathrm{k})} .
$$

For Connectedness : same states but they "shrink" quicker : cf. the rules for Add $_{\mathrm{a}, \mathrm{c}}$ in the first part of the lecture.

Recall the example state : $q=\{\{a\},\{a, b\},\{b, c, d\},\{b, d, f\}\}$.
And the transition :

$$
\text { Adda }_{\mathrm{a}, \mathrm{c}}: \quad \mathrm{q} \longrightarrow\{\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\},\{\mathrm{b}, \mathrm{~d}, \mathrm{f}\}\} .
$$

