
Automata based graph algorithms

for logically defined problems

Part 2

Monadic Second-Order logic : definitions, examples.

The main construction : from MSO formulas to automata

(accepting clique-width terms).

Existential quantifications and nondeterministic automata.

Tested examples : colorability problems.

2

Monadic Second-Order logic

First-order logic extended with (quantified) variables
denoting subsets of the domains.

MSO (expressible) properties : transitive closure, properties of paths,

 connectivity, planarity (via Kuratowski, uses connectivity), p-colorability.

Examples of formulas for G = (VG , edgG(.,.)), undirected

G is 3-colorable :

∃X,Y (X ∩ Y = ∅ ∧
 ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧

 (u ∉ X ∪ Y ⇒ v ∈ X ∪ Y)]
 })

3

G (undirected) is not connected :

∃X (∃x ∈ X ∧ ∃y ∉ X ∧ (∀u,v (u ∈ X ∧ edg(u,v) ⇒ v ∈ X))

 Transitive and reflexive closure : TC(R, x, y) :

 ∀ X { “X is R-closed” ∧ x ∈ X ⇒ y ∈ X }

 where “X is R-closed” is defined by :
 ∀u,v (u ∈ X ∧ R(u,v) ⇒ v ∈ X)

The relation R can be defined by a formula as in :

∀x,y (x ∈ Y ∧ y ∈ Y ⇒ TC(“u ∈ Y ∧ v ∈ Y ∧ edg(u,v)”, x, y)

expressing that G[Y] is connected (note that Y is free in R).

4

Application : G contains (fixed) H as a minor where VH = {1,…,p} :
there exist disjoint sets of vertices X1,…, Xp in G such that each
G[Xi] is connected and, for every edge i -- j of H, there is an edge
in G between Xi and Xj (denoted by Link(Xi, Xj)).

Consequence : planarity is MSO-expressible (no minor K5 or K3,3).

Provably non-expressible properties

G is isomorphic to Kp,p for some p (not fixed; needs equipotence of two

sets, hence quantification over binary relations to say that there is a bijection).

G has a nontrivial automorphism, or is regular, i.e., has all its vertices of

same degree.

5

Exercises

1) Write an MSO-sentence expressing that the considered simple graph is a

tree. (“Simple” is not MSO expressible).

2) Write an MSO-formula with free variables x,y,z expressing that, in a tree

(undirected and unrooted), if one takes x as root, then y is an ancestor of z.

3) A nonempty word over alphabet {a,b} can be considered as a directed path

with unary relations laba and labb on vertices representing the sets of

occurrences of letters a and b. Prove that every regular language over

{a,b} is MSO-definable.

4) A complete bipartite graph Kn,m has a Hamiltonian cycle if and only if

n=m. Construct such a graph “over” any word in {a,b}+ having at least one

a and at least one b. Deduce from the (well-known) converse of 3) that

Hamiltonicty is not MSO-expressible.

6

From MS formulas to automata for “clique-width” terms

F = the countable set of operations and constants :

 a , ∅ , ⊕⊕⊕⊕ , Adda,b, Adda,b, Relab a b

G(t) = the graph defined by a term t in T(F).

Its vertices are (in bijection with) the occurrences of the

constants a in t (those not ∅).

7

Example

 Graph G(t)

 Term t

8

 Terms are equipped with Booleans that encode assignments of

vertex sets V1,…,Vp to the free set variables X1,…,Xp of MSO

formulas (formulas are written without first-order variables):

 1) we replace in F each constant a by the constants

 (a, (w1,…,wp)) where wi ∈ {0,1} : we get F(p)

 (only constants are modified);

 2) a term s in T(F(p)) encodes a term t in T(F) and an

 assignment of sets V1,…,Vp to the set variables X1,…,Xp :

 if u is an occurrence of (a, (w1,..,wp)), then

 wi = 1 if and only if u ∈ Vi .

 3) s is denoted by t * (V1,…,Vp).

9

Example (continued)

 V1 = {1,3,4}, V2 = {2,3}

 Term t * (V1,V2)

10

 By an induction on ϕ, we construct for each ϕ(X1,…,Xp) a finite

(bottom-up) deterministic fly-automaton A(ϕ(X1,…,Xn)) that

recognizes:

L(ϕ(X1,…,Xp)) : = { t * (V1,…,Vp) ∈ T(F(p)) / (G(t), (V1,…,Vp)) = ϕ }

Theorem : For each MS-sentence ϕ, the FPT-fly-automaton A(ϕ)

accepts in time f(ϕ, k). t the terms t in T(Fk) such that

G(t) = ϕ .

11

The inductive construction of A(ϕ)

 Atomic formulas : discussed below.

 For ∧∧∧∧ and ∨∨∨∨ : product of two automata with appropriate accepting

states.

 For negation : exchange accepting / non-accepting states

 for a complete deterministic automaton;

 determinization preserves fly-automata.

(Recall that Fly-automata are run deterministically by means of a

bottom-up computation of finite sets of states).

12

 Quantifications: Formulas are written without ∀

 L(∃ Xp+1 . ϕ(X1, ..., Xp+1)) = pr(L (ϕ(X1, ..., Xp+1))

 A(∃ Xp+1 . ϕ(X1, ..., Xp+1)) = pr(A (ϕ(X1, ..., Xp+1))

where pr is the “projection” that eliminates the last Boolean.

Yields a non-deterministic automaton even if A(ϕ(X1, ..., Xp+1) is

deterministic .

 Consequence : Over a finite signature, the number of states of

A(ϕ(X)) is finite, but is an h-iterated exponential, where h = maximum

nesting of negations. (There is no alternative construction, Frick and Grohe,

2004).

13

Some tools for constructing automata

 Substitutions and inverse images (“cylindrifications”).

 1) If we know A(ϕ(X1, X2)) , we can get easily A(ϕ(X4, X3)):

 L(ϕ(X4, X3)) = h-1 (L(ϕ(X1, X2))) where

 h maps (a , (w1, w2 , w3, w4)) to (a , (w4, w3))

 We take

 A(ϕ(X4, X3)) = h-1 (A(ϕ(X1, X2)))

 This construction preserves determinism and the number of states.

 Set term

 2) From A(ϕ(X1, X2)), we can get A(ϕ (X3, X1∪∪∪∪ (X2 \ X4))) by h-1

 with h mapping (a , (w1, w2 , w3, w4)) to (a , (w3, w1 ∨∨∨∨(w2 ∧∧∧∧ ¬w4)))

14

 Relativization to subsets by inverse images.

 If ϕ is a closed formula expressing a graph property P, its

relativization ϕ [X1] expresses that the subgraph induced on X1

satisfies P. To construct it, we can replace recursively

 ∃ y. θ by ∃ y. y ∈ X1 ∧ θ, etc…

 However, there is an easy transformation of automata :

 Let h map (a , 0) to ∅∅∅∅ and (a , 1) to a.

L(ϕ [X1]) = h-1 (L(ϕ))

 Hence:

A(ϕ [X1]) : = h-1 (A(ϕ))

15

The inductive construction (continued)

Complete deterministic FA for atomic formulas and basic graph

properties : automaton over F(p) recognizing the set of terms

 t * (V1,…,Vp) in L(ϕ(X1,…,Xp))

Atomic and basic formulas :

X1 ⊆ X2 , X1 = ∅∅∅∅ , Sgl(X1) (X1 is singleton)

Card p,q (X1) : cardinality of X1 is = p mod. q,

Card < q (X1) : cardinality of X1 is < q.

� Easy constructions with small numbers of states independent on F:

 respectively 2, 2, 3, q, q+1.

Example : for X1 ⊆ X2 , the term must have no constant (a, 10).

16

Atomic formula : edg(X1,X2) for directed edges

 edg(X1,X2) means : X1 = { x } ∧∧∧∧ X2 = { y } ∧∧∧∧ x y

 The restriction to a set C of k labels uses k2+k+3 states :

 0, Ok, a(1), a(2), ab, Error, for a,b in C , a ≠ b

 Meaning of states (at node u in t ; its subterm t/u defines G(t/u) ⊆ G(t)).

 0 : X1 = ∅ , X2 = ∅

 Ok Accepting state : X1 = {v} , X2 = {w} , edg(v,w) in G(t/u)

 a(1) : X1 = {v} , X2 = ∅ , v has label a in G(t/u)

 a(2) : X1 = ∅ , X2 = {w} , w has label a in G(t/u)

 ab : X1 = {v} , X2 = {w} , v has label a, w has label b (hence v ≠ w)

 and ¬edg(v,w) in G(t/u)

 Error : all other cases

17

 Transition rules

 For the constants based on a :

 (a,00) � 0 ; (a,10) � a(1) ; (a,01) � a(2) ; (a,11) � Error

 For the binary operation ⊕⊕⊕⊕:::: r
 (p,q,r are states) p q

 If p = 0 then r := q

 If q = 0 then r := p

 If p = a(1), q = b(2) and a ≠ b then r := ab

 If p = b(2), q = a(1) and a ≠ b then r := ab

 Otherwise r : = Error

18

 For unary operations Adda,b r

 p

 If p = ab then r := Ok else r : = p

 For unary operations Relaba b

 If p = a(i) where i = 1 or 2 then r : = b(i)

 If p = ac where c ≠ a and c ≠ b then r : = bc

 If p = ca where c ≠ a and c ≠ b then r : = cb

 If p = Error or 0 or Ok or c(i) or cd or dc where c ≠ a

 then r : = p

19

 Number of states of some deterministic FA

 restricted to k labels ; k = bound on clique-width.

 Property Partition
(X1,…,Xp)

edg(X,Y) NoEdge

Connected,

NoCycle

for degree <d

Path(X,Y) Connected,

Nocycle

Number of
states
N(k)

2

k2+k+3

2k

2O(d.k.k)

2O(k.k)

O(k)

 22

 We construct directly FA for important graph properties : NoEdge,

Connectedness, NoCycle, Path(X,Y) (there is a path with vertices in Y between the

two vertices of X).

20

 This construction works well for formulas with no quantifier

alternation, but that use “powerful atomic formulas”.

 Examples : p-acyclic colorability

 ∃ X1,…,Xp (Partition(X1,…,Xp) ∧∧∧∧ NoEdge(X1) ∧∧∧∧ ∧∧∧∧ NoEdge(Xp) ∧∧∧∧
 ∧∧∧∧ NoCycle(Xi ∪∪∪∪ Xj) ∧∧∧∧)

Minor inclusion : H simple, loop-free. Vertices(H) = { v1,…,vp }

 ∃X1,…,Xp (Disjoint(X1,…,Xp) ∧∧∧∧ Conn(X1) ∧∧∧∧ ∧ ∧ ∧ ∧ Conn(Xp) ∧ ∧ ∧ ∧
 ∧ ∧ ∧ ∧ Link(Xi , Xj) ∧ ∧ ∧ ∧)

 Existence of “holes” : odd induced cycles (to check perfectness ; one

checks “anti-holes” on the edge-complement of the given graph).

21

Some experiments using FA (by Irène Durand, LaBRI)

 3-colorability of the 6 x 300 grid (of clique-width 8) in less than 2
hours,

 4-acyclic-colorability of the Petersen graph (clique-width 7) in 17
minutes.

 (3-colorable but not acyclically;

 red and green vertices

 induce a cycle).

22

The McGee graph

24 vertices on the external cycle.

Defined by a term

with 10 labels (optimal ?)

of size 99 and height 76.

It is 3-acyclically colourable.

Checked in 11 hours with

an annotated term

(a preprocessing defined below).

Recursively defined graphs

 Verification of 4-colorability

i term dag
9 88 mn 1.5 mn
20 ?? 4 mn
30 ?? 146 mn

23

Other tool : Annotations

 At some positions in the given term, we attached some (finite)

contextual information.

Example :

 At position u in a term t, we attach the set

 ADDt(u) = the set of pairs (a,b) such that some operation

 Addc,d above u (hence, in its “context”) adds edges between the

 (eventual) vertices below u labelled by a and b.

 These sets can be computed in linear time by means of a top-down

 traversal of t.

24

 Certain automata on annotated terms may have less states.

Example : edg(X1, X2) : 2k+3 states instead of k2 +k +3 :

 0, Ok, a(1), a(2), Error, for a in C.

 Transitions for ⊕⊕⊕⊕ annotated by R : : : : ⊕⊕⊕⊕,R r
 (p, q, r are states) p q

 If p = 0 then r := q ; if q = 0 then r := p ;

 if p = a(1), q = b(2) and (a , b) ∈ R ∧ then r := Ok ;

 and if (a , b) ∉ R ∧ then r := Error ;

 if p = b(2), q = a(1) : idem ;

 otherwise r : = Error.

25

Other examples :

 For Clique[X] meaning that X induces a clique :

 2 k + 2 states instead of 2 O(k.k) .

 For Connectedness : same states but they “shrink” quicker :

 cf. the rules for Add a,c in the first part of the lecture.

Recall the example state : q = { {a}, {a,b}, {b,c,d}, {b,d,f } }.

And the transition :

 Adda,c : q { {a,b,c,d}, {b,d,f } }.

