Automata based graph algorithms for logically defined problems

Part 2

Monadic Second-Order logic : definitions, examples.

The main construction : from MSO formulas to automata (accepting clique-width terms).

Existential quantifications and nondeterministic automata.

Tested examples : colorability problems.

Monadic Second-Order logic

First-order logic extended with (quantified) variables denoting subsets of the domains.

MSO (expressible) properties : transitive closure, properties of paths, connectivity, planarity (via Kuratowski, uses connectivity), p-colorability. Examples of formulas for $G = (V_G, edg_G(.,.))$, undirected

```
G is 3-colorable :
```

$$\begin{aligned} \exists X,Y (X \cap Y = \emptyset \land \\ \forall u,v \{ edg(u,v) \Rightarrow \\ [(u \in X \Rightarrow v \notin X) \land (u \in Y \Rightarrow v \notin Y) \land \\ (u \notin X \cup Y \Rightarrow v \in X \cup Y)] \\ \}) \end{aligned}$$

G (undirected) is not connected :

 $\exists X (\exists x \in X \land \exists y \notin X \land (\forall u, v (u \in X \land edg(u, v) \Longrightarrow v \in X))$

Transitive and reflexive closure : TC(R, x, y):

 $\begin{array}{l} \forall X \{ ``X is R-closed" \land x \in X \implies y \in X \} \\ \\ \text{where ``X is R-closed" is defined by :} \\ \\ \\ \forall u,v (u \in X \land R(u,v) \implies v \in X) \end{array}$

The relation R can be defined by a formula as in:

 $\forall x, y (x \in Y \land y \in Y \implies TC("u \in Y \land v \in Y \land edg(u,v)", x, y)$

expressing that G[Y] is connected (note that Y is free in R).

Application : G contains (fixed) H as a minor where $V_H = \{1,...,p\}$: there exist disjoint sets of vertices $X_1,..., X_p$ in G such that each $G[X_i]$ is connected and, for every edge i -- j of H, there is an edge in G between X_i and X_i (denoted by $Link(X_i, X_i)$).

Consequence : planarity is MSO-expressible (no minor K_5 or $K_{3,3}$).

Provably non-expressible properties

G is *isomorphic to* $K_{p,p}$ for some p (*not fixed*; needs equipotence of two sets, hence quantification over binary relations to say that there is a bijection).

G has a *nontrivial automorphism*, or is *regular*, i.e., has all its vertices of same degree.

Exercises

1) Write an MSO-sentence expressing that the considered *simple* graph is a tree. ("Simple" is not MSO expressible).

2) Write an MSO-formula with free variables x,y,z expressing that, in a tree (undirected and unrooted), if one takes x as root, then y is an ancestor of z.
3) A nonempty word over alphabet {a,b} can be considered as a directed path with unary relations lab_a and lab_b on vertices representing the sets of occurrences of letters a and b. Prove that every regular language over {a,b} is MSO-definable.

4) A complete bipartite graph $K_{n,m}$ has a Hamiltonian cycle if and only if n=m. Construct such a graph "over" any word in $\{a,b\}^+$ having at least one a and at least one b. Deduce from the (well-known) converse of 3) that Hamiltonicty is not MSO-expressible.

From MS formulas to automata for "clique-width" terms

F = the countable set of operations and constants : **a**, \emptyset , \oplus , $\overrightarrow{Add}_{a,b}$, $Add_{a,b}$, $Relab_a \longrightarrow b$

G(t) = the graph defined by a term t in T(F).

Its vertices are (in bijection with) the occurrences of the constants **a** in t (those not \emptyset).

Example

Graph G(t)

Terms are equipped with Booleans that encode assignments of vertex sets $V_1,...,V_p$ to the free set variables $X_1,...,X_p$ of MSO formulas (formulas are written without first-order variables):

1) we replace in F each constant **a** by the constants (**a**, (w₁,...,w_p)) where $w_i \in \{0,1\}$: we get $F^{(p)}$

(only constants are modified);

2) a term s in T(F^(p)) encodes a term t in T(F) and an assignment of sets V₁,...,V_p to the set variables X₁,...,X_p: if u is an occurrence of (a, (w₁,...,w_p)), then $w_i = 1$ if and only if $u \in V_i$.

3) **s** is denoted by $t * (V_1, \dots, V_p)$.

By an induction on ϕ , we construct for each $\phi(X_1,...,X_p)$ a finite (bottom-up) deterministic fly-automaton $A(\phi(X_1,...,X_n))$ that recognizes:

 $L(\phi(X_1,...,X_p)) := \{ t * (V_1,...,V_p) \in T(F^{(p)}) / (G(t), (V_1,...,V_p)) \mid = \phi \}$

Theorem : For each MS-sentence φ , the FPT-fly-automaton A(φ) accepts in time $f(\varphi, k)$. $\mid t \mid$ the terms t in T(F_k) such that $G(t) \mid = \varphi$.

The inductive construction of $A(\phi)$

Atomic formulas : discussed below.

For \land and \lor : product of two automata with appropriate accepting states.

For *negation* : exchange accepting / non-accepting states for a complete *deterministic* automaton; determinization preserves fly-automata. (Recall that Fly-automata are run deterministically by means of a bottom-up computation of *finite* sets of states). Quantifications: Formulas are written without \forall

$$L(\exists X_{p+1} . \phi(X_1, ..., X_{p+1})) = pr(L(\phi(X_1, ..., X_{p+1}))$$
$$A(\exists X_{p+1} . \phi(X_1, ..., X_{p+1})) = pr(A(\phi(X_1, ..., X_{p+1}))$$

where pr is the "*projection*" that eliminates the last Boolean. Yields a *non-deterministic* automaton even if $A(\phi(X_1, ..., X_{p+1}))$ is deterministic.

Consequence : Over a finite signature, the number of states of $A(\varphi(\underline{X}))$ is finite, but is an h-iterated exponential, where h = maximum nesting of negations. (There is no alternative construction, Frick and Grohe, 2004).

Some tools for constructing automata

Substitutions and inverse images ("cylindrifications").

1) If we know $A(\phi(X_1, X_2))$, we can get easily $A(\phi(X_4, X_3))$:

$$L(\phi(X_4, X_3)) = h^{-1} (L(\phi(X_1, X_2)))$$
 where

h maps $(a, (w_1, w_2, w_3, w_4))$ to $(a, (w_4, w_3))$ We take

$$A(\phi(X_4, X_3)) = h^{-1} (A(\phi(X_1, X_2)))$$

This construction preserves determinism and the number of states.

2) From A($\phi(X_1, X_2)$), we can get A($\phi(X_3, X_1 \cup (X_2 \setminus X_4))$) by h⁻¹ with h mapping (**a**, (w₁, w₂, w₃, w₄)) to (**a**, (w₃, w₁ \lor (w₂ $\land \neg$ w₄)))

Relativization to subsets by inverse images.

If φ is a closed formula expressing a graph property *P*, its relativization $\varphi[X_1]$ expresses that the subgraph induced on X_1 satisfies *P*. To construct it, we can replace recursively

 $\exists y. \theta \quad by \quad \exists y. y \in X_1 \land \theta, etc...$

However, there is an easy transformation of automata: Let h map (a, 0) to \emptyset and (a, 1) to a.

$$L(\phi [X_1]) = h^{-1} (L(\phi))$$

Hence:

$$A(\phi [X_1]) := h^{-1} (A(\phi))$$

The inductive construction (continued)

Complete *deterministic* FA for atomic formulas and basic graph properties : automaton over $F^{(p)}$ recognizing the set of terms

$$t * (V_1,...,V_p)$$
 in $L(\phi(X_1,...,X_p))$

Atomic and basic formulas :

 $X_1 \subseteq X_2$, $X_1 = \emptyset$, $Sgl(X_1)$ (X_1 is singleton)

Card $_{p,q}(X_1)$: cardinality of X_1 is = p mod. q,

Card $_{<q}(X_1)$: cardinality of X_1 is < q.

→ Easy constructions with small numbers of states independent on F: respectively 2, 2, 3, q, q+1.

Example: for $X_1 \subseteq X_2$, the term must have no constant (a, 10).

Atomic formula : $edg(X_1, X_2)$ for directed edges

edg(X₁,X₂) means : X₁ = { x }
$$\land$$
 X₂ = { y } \land x \longrightarrow y
The restriction to a set C of k labels uses k²+k+3 *states* :
0, Ok, a(1), a(2), ab, Error, for a,b in C, a \neq b

Meaning of states (at node u in t; its subterm t/u defines $G(t/u) \subseteq G(t)$).

0 :
$$X_1 = \emptyset$$
 , $X_2 = \emptyset$

Ok Accepting state: $X_1 = \{v\}$, $X_2 = \{w\}$, edg(v,w) in G(t/u)

a(1) :
$$X_1 = \{v\}$$
, $X_2 = \emptyset$, v has label a in G(t/u)

a(2) : $X_1 = \emptyset$, $X_2 = \{w\}$, w has label a in G(t/u)

ab :
$$X_1 = \{v\}$$
, $X_2 = \{w\}$, v has label a, w has label b (hence $v \neq w$)
and $\neg edg(v,w)$ in $G(t/u)$

Error : all other cases

Transition rules

For the constants based on a:

 $(\mathbf{a},00) \rightarrow 0$; $(\mathbf{a},10) \rightarrow \mathbf{a}(1)$; $(\mathbf{a},01) \rightarrow \mathbf{a}(2)$; $(\mathbf{a},11) \rightarrow \text{Error}$

For the binary operation \oplus : (p,q,r are states) p q

If p = 0 then r := qIf q = 0 then r := pIf p = a(1), q = b(2) and $a \neq b$ then r := abIf p = b(2), q = a(1) and $a \neq b$ then r := abOtherwise r := Error For unary operations Adda,b

If p = ab then r := Ok else r := p

If p = a(i) where i = 1 or 2 If p = ac where $c \neq a$ and $c \neq b$ then r := bcIf p = ca where $c \neq a$ and $c \neq b$ then r := cbIf p = Error or 0 or Ok or c(i) or cd or dc where $c \neq a$ then r := p

р

Number of states of some deterministic FA

restricted to k labels; k = bound on clique-width.

Property	Partition	edg(X,Y)	NoEdge	Connected,	Path(X,Y)	Connected,
	(X ₁ ,,X _p)			NoCycle		Nocycle
				for degree <u><</u> d		
Number of states N(k)	2	k ² +k+3	2 ^k	2 ^{O(d.k.k)}	2 ^{O(k.k)}	2 ^{0(k)}

We construct directly FA for important graph properties : NoEdge,

Connectedness, NoCycle, Path(X,Y) (there is a path with vertices in Y between the two vertices of X).

This construction works well for formulas with no quantifier alternation, but that use "powerful atomic formulas".

Examples : p-acyclic colorability

 $\exists X_1, \dots, X_p \text{ (Partition}(X_1, \dots, X_p) \land \text{ NoEdge}(X_1) \land \dots \land \text{ NoEdge}(X_p) \land \dots \land \dots \land \text{ NoCycle}(X_i \cup X_j) \land \dots)$

Minor inclusion : *H* simple, loop-free. $Vertices(H) = \{v_1, ..., v_p\}$

$$\exists X_1, \dots, X_p \text{ (Disjoint(X_1, \dots, X_p) \land Conn(X_1) \land \dots \land Conn(X_p) \land \dots \\ \dots \land Link(X_i, X_j) \land \dots)$$

Existence of "holes" : odd induced cycles (to check *perfectness*; one checks "anti-holes" on the edge-complement of the given graph).

Some experiments using FA (by Irène Durand, LaBRI)

3-colorability of the 6 x 300 grid (of clique-width 8) in less than 2 hours,

4-acyclic-colorability of the Petersen graph (clique-width 7) in 17 minutes.

(3-colorable but not acyclically;red and green verticesinduce a cycle).

The McGee graph

24 vertices on the external cycle.

Defined by a term with 10 labels (optimal ?) of size 99 and height 76.

It is 3-acyclically colourable. Checked in 11 hours with an *annotated term*

(a preprocessing defined below).

Recursively defined graphs

Verification of 4-colorability

i	term	dag
9	88 mn	1.5 mn
20	??	4 mn
30	??	146 mn

Other tool: Annotations

At some positions in the given term, we attached some (finite) *contextual information*.

Example :

At position **u** in a term **t**, we attach the set

 $ADD_t(\mathbf{u}) =$ the set of pairs (a,b) such that some operation

 $Add_{c,d}$ above u (hence, in its "context") adds edges between the (eventual) vertices below u labelled by a and b.

These sets can be computed in *linear time* by means of a top-down traversal of *t*.

Certain automata on annotated terms may have less states. *Example*: $edg(X_1, X_2)$: 2k+3 states instead of k² +k +3 : 0, Ok, a(1), a(2), Error, for a in C.

If p = 0 then r := q; if q = 0 then r := p; if p = a(1), q = b(2) and $(a, b) \in R \land$ then r := Ok; and if $(a, b) \notin R \land$ then r := Error; if p = b(2), q = a(1) : *idem*; otherwise r := Error. Other examples :

For *Clique*[X] meaning that X induces a clique : $2^{k} + 2$ states instead of $2^{O(k.k)}$.

For Connectedness : same states but they "shrink" quicker : cf. the rules for $Add_{a,c}$ in the first part of the lecture.

Recall the example state : $q = \{ \{a\}, \{a,b\}, \{b,c,d\}, \{b,d,f\} \}$. And the transition :

 $Add_{a,c}: \qquad q \longrightarrow \{ \{a,b,c,d\}, \{b,d,f\} \}.$