
Automata  based  graph  algorithms   

for  logically  defined  problems 
 

Part 2  
  

Monadic Second-Order  logic : definitions, examples. 
 

The  main construction : from MSO formulas to automata 

(accepting clique-width terms). 
 

Existential quantifications and nondeterministic  automata. 
 

Tested examples : colorability problems. 
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Monadic Second-Order logic 
 

First-order  logic  extended  with  (quantified)  variables  
denoting subsets  of  the  domains. 

 
 

MSO  (expressible)  properties :   transitive closure,  properties  of paths,   

  connectivity, planarity   (via Kuratowski,  uses connectivity),   p-colorability. 

Examples  of   formulas   for     G  =  ( VG , edgG(.,.) ), undirected 
 

G  is  3-colorable  : 
 
∃X,Y ( X ∩ Y = ∅  ∧   
  ∀u,v { edg(u,v) ⇒    
    [(u ∈ X  ⇒  v ∉ X) ∧ (u ∈ Y ⇒  v ∉ Y) ∧  

    (u ∉ X ∪ Y  ⇒  v ∈ X ∪ Y)  ] 
      } ) 
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G  (undirected)  is  not  connected : 

∃X ( ∃x ∈ X  ∧  ∃y ∉ X  ∧  (∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∈ X)  ) 

 

 Transitive  and  reflexive  closure  :   TC(R, x, y) :   
 
 ∀ X { “X is R-closed”  ∧  x ∈ X  ⇒ y ∈ X  } 
 

       where   “X is R-closed”    is defined  by :   
  ∀u,v (u ∈ X  ∧  R(u,v) ⇒ v ∈ X)  
 
The  relation  R  can  be  defined   by  a   formula  as  in : 
 
∀x,y (x ∈ Y  ∧  y ∈ Y ⇒   TC(“u ∈ Y  ∧ v ∈ Y ∧ edg(u,v)”, x, y) 
 
expressing  that   G[Y ]  is connected    (note  that  Y  is  free  in  R). 
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Application :  G   contains  (fixed)   H  as  a  minor  where   VH = {1,…,p} : 
there  exist  disjoint  sets  of vertices  X1,…, Xp  in  G   such   that   each   
G[Xi]  is   connected  and, for every  edge  i -- j  of  H,  there  is  an  edge   
in G  between   Xi   and   Xj    (denoted  by  Link(Xi, Xj) ). 
 
Consequence :   planarity  is  MSO-expressible  (no minor  K5  or  K3,3). 

 

Provably  non-expressible  properties  
 
G  is  isomorphic  to  Kp,p  for  some  p   (not  fixed; needs  equipotence  of  two 

sets, hence quantification over binary relations to say that there is  a  bijection). 

 
G  has  a  nontrivial  automorphism,  or is regular, i.e., has  all its vertices  of  

same degree. 
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Exercises  

1)  Write  an  MSO-sentence expressing that the considered  simple  graph  is  a  

tree.   (“Simple”  is not MSO expressible). 

2)  Write an MSO-formula  with  free variables  x,y,z  expressing that, in  a  tree 

(undirected and  unrooted), if one takes  x  as  root, then  y  is  an  ancestor  of  z. 

3)  A nonempty  word  over alphabet {a,b} can be  considered as a directed path 

with unary relations  laba  and  labb  on vertices representing  the sets  of  

occurrences  of  letters  a  and  b.     Prove  that  every  regular language  over  

{a,b}  is  MSO-definable. 

4)  A  complete bipartite  graph  Kn,m  has  a  Hamiltonian  cycle  if and only if 

n=m. Construct  such a  graph  “over”  any  word  in  {a,b}+  having  at  least  one  

a  and  at  least  one b. Deduce from the  (well-known)  converse of  3)  that  

Hamiltonicty  is  not  MSO-expressible. 
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From MS formulas to automata for “clique-width” terms 
 

 

F  =  the  countable set  of  operations  and  constants : 

       a , ∅ ,  ⊕⊕⊕⊕    , Adda,b, Adda,b, Relab a         b  

 

G(t)  =  the  graph  defined  by  a  term  t  in  T(F).   

 

Its  vertices  are  (in  bijection  with)  the  occurrences  of  the  

constants  a  in  t  (those  not  ∅). 
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Example  

 

 

 

 

 

 

 

             

                         Graph  G(t)    

 

 

 

       

      Term   t      
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 Terms  are  equipped  with  Booleans  that  encode  assignments  of  

vertex  sets  V1,…,Vp  to  the  free  set  variables  X1,…,Xp  of   MSO 

formulas   (formulas   are   written   without   first-order  variables): 

  1) we   replace  in   F  each  constant   a   by   the   constants    

  (a, (w1,…,wp))  where   wi ∈ {0,1}  :   we   get   F(p)    

          (only  constants  are  modified); 

  2) a  term   s  in  T(F(p) )  encodes  a   term  t   in  T(F)  and  an  

 assignment  of  sets  V1,…,Vp   to  the  set  variables  X1,…,Xp :   

   if   u  is  an  occurrence  of  (a, (w1,..,wp)),  then    

   wi  =  1  if  and  only  if    u  ∈  Vi . 

  3)  s   is  denoted  by  t * (V1,…,Vp).    
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Example   (continued)  

 

 

 

 

 

               V1  =  {1,3,4},  V2  =  {2,3}   

 

 

 

 

   Term   t * (V1,V2)       
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 By  an  induction  on  ϕ,  we  construct  for  each  ϕ(X1,…,Xp)   a  finite  

(bottom-up)  deterministic   fly-automaton   A(ϕ(X1,…,Xn))  that  

recognizes: 

L(ϕ(X1,…,Xp)) : =  { t * (V1,…,Vp) ∈ T(F(p) )  /  ( G( t ), (V1,…,Vp) )  =  ϕ } 

 

 

Theorem : For  each  MS-sentence  ϕ,  the  FPT-fly-automaton  A(ϕ)  

accepts  in time   f(ϕ, k).  t           the  terms  t   in  T(Fk)   such that     

G(t )  =  ϕ . 
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The   inductive   construction  of  A(ϕ)  

  

 Atomic   formulas  :  discussed  below.  

 

 For  ∧∧∧∧  and  ∨∨∨∨  : product   of   two  automata with appropriate accepting 

states. 

 For  negation : exchange  accepting / non-accepting  states  

    for   a   complete   deterministic   automaton;  

    determinization  preserves fly-automata.  

(Recall that Fly-automata  are  run deterministically by means of a  

bottom-up computation of  finite sets of states).   
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 Quantifications:  Formulas   are   written   without   ∀  
 

  L(  ∃ Xp+1 . ϕ(X1, ..., Xp+1) )   = pr( L ( ϕ(X1, ..., Xp+1)  ) 

  A(  ∃ Xp+1 . ϕ(X1, ..., Xp+1) )   = pr( A ( ϕ(X1, ..., Xp+1)  ) 
 

where   pr  is  the  “projection”   that  eliminates   the  last  Boolean.         

Yields  a   non-deterministic   automaton even if A( ϕ(X1, ..., Xp+1)  is 

deterministic . 
 

 

 Consequence : Over  a finite signature, the  number of states of 

A( ϕ(X)) is  finite, but is an  h-iterated exponential, where  h  =  maximum   

nesting of negations. (There is no alternative construction, Frick and Grohe, 

2004).   
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Some   tools   for   constructing   automata 
 

 Substitutions   and   inverse  images  (“cylindrifications”). 
 

 1) If   we   know  A( ϕ(X1, X2)) , we can get easily  A( ϕ(X4, X3)): 

   L( ϕ(X4, X3) ) =  h-1 ( L( ϕ(X1, X2))   )     where  

 h   maps  (a , (w1, w2 , w3, w4))   to   (a , (w4, w3))   

 We   take   

    A( ϕ(X4, X3)) =  h-1 ( A( ϕ(X1, X2))  )  

 This  construction preserves  determinism  and  the number  of  states.  

                      Set   term    

     2)  From  A( ϕ(X1, X2)), we  can  get  A(  ϕ ( X3, X1∪∪∪∪ (X2 \ X4 ))  )  by h-1 

 with h  mapping  (a , (w1, w2 , w3, w4))  to  (a , (w3, w1 ∨∨∨∨(w2 ∧∧∧∧ ¬w4 )))   
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   Relativization   to   subsets  by  inverse  images. 

 

 If   ϕ  is  a  closed  formula  expressing  a  graph  property  P, its 

relativization  ϕ [X1]   expresses  that  the  subgraph  induced  on  X1   

satisfies  P.   To construct  it,  we can  replace  recursively  

     ∃ y. θ   by    ∃ y. y ∈ X1  ∧ θ,  etc… 

 However,   there  is  an  easy  transformation of  automata :   

 Let   h   map  (a , 0)   to   ∅∅∅∅    and   (a , 1)   to   a.   

L( ϕ [X1] ) =  h-1 ( L( ϕ) )  

 Hence:   

A( ϕ [X1] ) : =  h-1 ( A( ϕ) )  
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The   inductive   construction  (continued)  
 

Complete   deterministic   FA   for  atomic  formulas  and   basic   graph  

properties :  automaton   over   F(p)  recognizing  the  set of  terms  

     t * (V1,…,Vp)   in   L(ϕ(X1,…,Xp))   
 

Atomic  and   basic  formulas   :   

X1  ⊆  X2 ,    X1 = ∅∅∅∅ ,    Sgl(X1) (X1  is singleton) 

Card p,q (X1) : cardinality of  X1  is  =  p   mod.  q, 

Card < q (X1) : cardinality of  X1  is   <  q. 
 

� Easy constructions with small numbers of states independent on F:  

  respectively  2,  2,  3,  q,  q+1. 
 

Example :  for  X1  ⊆  X2 ,  the term  must have  no  constant  (a, 10).
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Atomic  formula  :   edg(X1,X2)   for  directed  edges    
 

 edg(X1,X2)  means :   X1  = { x }  ∧∧∧∧  X2 = { y }    ∧∧∧∧   x                y 

 The  restriction  to  a  set  C   of   k   labels  uses  k2+k+3   states  :   

 0, Ok, a(1), a(2), ab, Error,      for a,b  in   C , a  ≠  b 

 Meaning  of  states (at  node  u  in  t ; its subterm  t/u  defines  G(t/u)  ⊆  G(t) ).  

 0   : X1 = ∅  , X2 = ∅   

 Ok        Accepting   state :    X1 = {v}  , X2 = {w}  ,  edg(v,w)  in  G(t/u)   

 a(1) : X1 = {v}  , X2 = ∅ ,  v  has  label  a  in  G(t/u)   

 a(2)  : X1 = ∅  , X2 = {w}  ,  w  has  label  a  in  G(t/u)   

 ab  : X1 = {v}  , X2 = {w}  , v  has  label  a, w  has  label  b  (hence v ≠  w) 

             and  ¬edg(v,w)   in  G(t/u)    

 Error   : all  other  cases
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 Transition  rules  

 For  the  constants  based  on  a : 

 (a,00)  � 0  ;  (a,10) �  a(1)  ;  (a,01)  �  a(2)  ;    (a,11)  �  Error 

 

 For  the  binary  operation  ⊕⊕⊕⊕::::                        r    
    (p,q,r  are  states)                             p             q  

 

  If  p = 0  then  r := q  

  If  q = 0  then  r := p 

  If  p = a(1),  q =  b(2)  and  a  ≠  b   then   r  := ab 

  If  p = b(2),  q =  a(1)  and  a  ≠  b   then   r  := ab 

  Otherwise  r  : =  Error 

 



18 
 

 

 For  unary  operations   Adda,b            r      
 

                 p     

  If  p = ab   then  r  :=  Ok   else  r  : =  p 

 

 For  unary  operations   Relaba       b  

 

  If   p = a(i) where   i = 1 or 2       then     r : = b(i)  

  If   p =  ac   where  c ≠ a  and  c  ≠  b    then     r : =  bc      

  If   p =  ca   where  c ≠ a  and  c  ≠  b   then     r : =  cb       

  If   p =  Error  or  0  or  Ok  or  c(i)  or  cd   or  dc   where   c ≠ a   

            then     r : = p   
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 Number  of  states  of   some   deterministic   FA   
 
     restricted to k labels ; k =  bound   on  clique-width. 

 

 

 

 

  Property  Partition 
(X1,…,Xp) 

edg(X,Y) NoEdge 

  

Connected, 

NoCycle 

for degree <d 

Path(X,Y) Connected, 

Nocycle 

Number  of 
states 
N(k) 

 

2 

 

k2+k+3 

 

2k 

 

2O(d.k.k) 

 

2O(k.k) 

O(k) 

   22 

 
 

 We construct directly FA for important graph properties : NoEdge, 

Connectedness, NoCycle, Path(X,Y)  (there is a path with vertices in Y between the 

two vertices of X). 
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 This  construction   works  well  for  formulas  with  no  quantifier  

alternation,   but   that  use  “powerful  atomic  formulas”. 
 

 Examples :  p-acyclic  colorability   
 

 ∃ X1,…,Xp (Partition(X1,…,Xp)  ∧∧∧∧  NoEdge(X1)  ∧∧∧∧ ... ... ... ..... .. .. .. ∧∧∧∧     NoEdge(Xp)  ∧∧∧∧ .. .. .. ......    
            ........... ........... ........... ........... ∧∧∧∧     NoCycle(Xi ∪∪∪∪ Xj)     ∧∧∧∧ ......  ......  ......  ......  ) 

 

  

Minor  inclusion : H  simple, loop-free.  Vertices(H)  =  { v1,…,vp }  
 

 ∃X1,…,Xp (Disjoint(X1,…,Xp)  ∧∧∧∧  Conn(X1)  ∧∧∧∧ ... ... ... ... ∧  ∧  ∧  ∧     Conn(Xp)  ∧ ∧ ∧ ∧ ............    
            ...  ...  ...  ...  ∧ ∧ ∧ ∧  Link(Xi , Xj)  ∧  ∧  ∧  ∧ ...  ...  ...  ...  ) 
 

     
 Existence   of  “holes”   :  odd  induced  cycles  (to  check  perfectness ; one 

checks  “anti-holes”  on  the  edge-complement  of  the  given  graph).  



21 
 

 
Some   experiments  using  FA    (by Irène  Durand, LaBRI) 

 
 
 3-colorability  of  the  6 x 300  grid  (of clique-width  8)  in  less  than  2 
hours, 
 
 4-acyclic-colorability  of  the  Petersen  graph  (clique-width 7)  in  17  
minutes. 
 
 (3-colorable but not acyclically;  

 red  and  green  vertices  

 induce  a  cycle). 
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The  McGee graph 

 

24 vertices on the external cycle. 

 

Defined by a term  

with 10 labels (optimal ?) 

of size  99  and  height 76. 

 

It  is  3-acyclically  colourable. 

Checked  in  11 hours with  

an annotated  term  

(a preprocessing defined below). 



Recursively  defined  graphs 

 

 Verification of 4-colorability 

i term dag 
9 88 mn 1.5  mn 
20 ?? 4  mn 
30 ?? 146  mn 
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Other  tool :  Annotations 

 

 At   some  positions  in   the  given  term,  we  attached  some  (finite)  

contextual  information. 

Example : 

 At  position  u  in  a  term  t, we  attach  the  set   

 ADDt(u)  =   the  set  of  pairs  (a,b)  such  that  some  operation   

 Addc,d  above  u  (hence, in  its  “context”)  adds   edges   between  the   

 (eventual)  vertices   below   u   labelled  by  a   and   b. 

 

 These   sets   can  be  computed  in  linear time  by means  of  a  top-down   

 traversal  of  t.
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 Certain   automata  on  annotated  terms  may  have  less  states.  

Example :  edg(X1, X2)  : 2k+3  states  instead  of  k2 +k +3      : 

     0, Ok, a(1), a(2), Error,      for a  in   C. 

 

 Transitions   for   ⊕⊕⊕⊕        annotated   by   R : : : :                ⊕⊕⊕⊕,R                r    
    (p, q, r  are  states)                             p                  q  

 

  If  p = 0   then  r := q  ;  if  q = 0   then  r := p  ; 

  if  p = a(1),  q =  b(2)  and  (a , b ) ∈ R  ∧  then   r  := Ok ; 

           and  if  (a , b )  ∉ R  ∧  then  r  := Error ; 

  if  p = b(2),  q =  a(1)  :  idem ; 

  otherwise  r  : =  Error. 
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Other   examples : 

 

 For   Clique[X]  meaning that  X  induces  a  clique :  

        2 k  +  2   states   instead  of  2 O(k.k) . 

 

 For   Connectedness  :  same   states   but   they  “shrink”  quicker  :  

    cf.  the   rules  for  Add a,c   in the first part of the lecture. 

 

Recall the example state   :  q = { {a}, {a,b}, {b,c,d}, {b,d,f } }. 

And the transition :               

  Adda,c :    q             { {a,b,c,d}, {b,d,f } }.                    

 




