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Grammars   as   mathematical   objects 
  

Linguistics :  Chomsky’s Hierarchy                   (can be refined ) 

Regular  ⊂  Context-free  ⊂  Context-sensitive ⊂  Recursively  enumerable  

 

Compilation : Programming languages are described  by context-free 

grammars   +  constraints        (type checking etc …) 
  (The  official  motivation of lots of articles  on  context-free   languages 

             unrelated   with  compilation.) 

 

Other  motivations  (some  will  apply  to  graphs) : 

  Counting objects in bijection with the words of a  

  context-free   unambiguous   grammar. 
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  Finite (compact) description of infinite (finite) sets of words,  

  graphs, combinatorial objects.   

 

  Objects  come  with a structure (a derivation tree) : what is  

  important is  not the language but the mapping from words  

  to derivation trees. These trees  are  essential  in  compilation  but  

  may  also  be  used  for drawing graphs generated by a  

  context-free graph grammar. 

 

  Inductive  proof  methods  can  be  based  on  grammars.  
  (Students are reluctant to prove that the grammars they produce are correct, 

   but authors too : they never discuss how  to  prove that a grammar is correct). 
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  Links with  program  schemes  (formalization of program  

  semantics)  

-0- 

 

What  is  a  context-free  graph  grammar ? 
 

What  means “ context-free ” ? 

1) Some “nonterminal” symbols  S  can be replaced according to a list of rules. 

2) All  rules  S     m  can be used  independently  of  the  context  of   S 

3) The  context  is  not  modified  by  the  replacement. 

 
In  context-free grammars, the context is the  pair of  words  around a  nonterminal 

 

This  “axiomatic”  definition  can  be  made  formal.   
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What  for   graphs ? 
 

Option   1  :  Nonterminal  vertices. 
Application  of  rule   

      S      m  

 

The context : A  graph   

with  particular  vertices,  

those linked  to  the  

nonterminal  vertex. 

How  to  link  the  context  C  to  the  replacing  graph  m ? 

By  labels  attached  to  vertices  and  edges, and some complicated mechanisms 

Difficulty :  How  to  guarantee  context-freeness ?  

A nontrivial  question  (lots of articles)  ; below   a simple solution. 
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Option   2  :  Nonterminal  edges. 
 

All  such  grammars  are  context-free. 

 

 

 

 

 

 

 

 

 

Drawback :  Limited  generative  power  

 



 8 

Example :  Series-Parallel  graphs. 

 
Graphs  with  distinguished  vertices  (boundary vertices  or  sources)  1  and  2,   

generated from  e   = 1             2    and  the operations //  (parallel-composition)  and  

series-composition.   

 

 

 

 

 

 

 

  Equation :       S  =   S // S    ∪     S • S   ∪   e 
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Option  3  :  Nonterminal  hyperedges              (even  to  generate  graphs)  
 

Examples  :  the non-context-free  language  anbncn is a context-free set of edge  

        a          a           b           b          c             c 

labelled graphs :  •                       •            •            •            •            •              • 

 

Recursive   

pictures : 

 

 

 

 

 

Limitation (all 3 options): All finite (even planar)  graphs : not a  context-free  set. 
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Equational   sets  of  an algebra  =  the  context-free  sets. 
 

Equation systems     Context-Free  (Graph)  Grammars   
in an algebraic  setting 

 
In the case of  words,   the  set of context-free  rules  

S  → a S T ;    S  → b  ;  T  → c T T T ;   T  → a 
 

is equivalent to  the system  of  two set  equations: 

    S  =  a S T     ∪    { b }  

    T  =  c T T T      ∪        { a } 

 

where S  is the language generated  by   S      (idem for T and T). 
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For  graphs  (or  other  objects)  we  consider   systems  of  equations  like: 

  S  =  f( k( S ), T  )      ∪  { b }  

  T  =  f( T , f( g(T ), m( T )))  ∪   { a } 

where : 

 f      is a binary operation,   

g, k, m    are unary operations on  graphs,   

a, b     denote  basic graphs  (up  to  isomorphism).  

 

An  equational  set  is  a component  of  the  least  (unique)  solution  of  such  

an  equation system. This  is   well-defined  in  any  algebra (Least Fixed Point 

Theorem).   

Many  properties  are  valid  at  the  general  algebraic  level. 
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Two   graph   algebras 
 

HR  operations :   Hyperedge Replacement hypergraph grammars ;  
       (associated   complexity  measure   :   tree-width) 

 

Graphs have  distinguished vertices called sources, (or terminals or boundary vertices) 

pointed  to  by  labels  from  a  finite set  :    {a, b, c,  ..., h}. 

Binary operation(s)  :  Parallel  composition 

G // H     is  the  disjoint  union of  G  and  H  and sources  with  same  label  are   fused.  

(If G  and  H are  not disjoint, one  first  makes  a  copy of  H disjoint from  G). 
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Unary operations   :    

 Forget   a   source   label  
       Forgeta(G)   is  G  without  a-source : the  source  is  no longer distinguished ;  

(it  is  made  "internal"). 

       Source renaming : 
Rena     b(G)  exchanges  source  labels  a  and  b     

(replaces  a  by  b   if  b is not  the  label of  a  source) 
 

 Constant symbols denote basic graphs : the connected graphs with at most  

                  one edge.  
 

 

 

Remark : For generating hypergraphs,  one takes more constant symbols  for  

  denoting  hyperedges.   The   operations  are  the  same. 
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Construction  of  trees : 

 with two source labels, r  (root) and n  (new root):  Fusion of two trees at their roots  :  

 

Extension of a tree by parallel composition 

with a new edge,  forgetting the old root, 

making   the "new root" as current root :  

e  =  r  •_________•  n 

Renn      r  (Forgetr (G // e )) 

 

 Equation :   T  =   T // T    ∪     Ext(T)    ∪   r 
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       Series-parallel graphs,  

They  are generated  by  the  constant   e   = 1           2 ,  

//  (parallel-composition)  and   series-composition   defined  from other operations by : 

 

G • H =  Forget3(Ren2        3 (G) // Ren1      3 (H)) 

Example  :  

 

  1 •        G              •        H                            •  2 

        3 

 

   1   •                   • 2 

 

The  defining  equation  (equivalent  to  the  grammar  described  above ) : 

S  =   S // S    ∪     S • S   ∪   e 
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VR    operations :   Another  graph  algebra  
Origin : Vertex Replacement graph grammars  

Associated complexity measure: clique-width.  
 

Graphs are simple, directed  or  not.   

k   labels  :  a , b , c,  ..., h.   Each  vertex  has one  and  only  one  label ;  

a  label  p  may  label  several  vertices, called  the   p-ports. 

 

One  binary operation:   disjoint  union    :   ⊕ 
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Unary  operations:  Edge addition denoted  by  Add-edga,b 
 

Add-edga,b(G)   is  G  augmented  with  directed  or  undirected edges  from every   

a-port   to  every  b-port. 

 

 

      H = Add-edga,b(G) ; only 5  new edges added  

The  number  of added edges  depends  on  the  argument graph. 
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Vertex  relabellings :  
Relaba       b(G)  is  G  with  every  vertex  labelled  by  a   relabelled  into  b 

 

Basic graphs   are  those  with  a  single  vertex. 

 

Example : Cliques have  

clique-width 2.  
 

 

 

 

 

 

Kn  is   defined  by tn where  tn+1  =   Relabb      a( Add-edga,b(tn ⊕ b)) 
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 Two  algebras  of  graphs    HR  and  VR    
 Hence, two  notions  of  context-free  sets, defined as the equational  sets  of 

the algebras  HR  and VR. 
 

 Why not a third algebra ? :   
 

  We  have  robustness results  : 
  Independent  logical  characterizations, stability  under  certain   
  logically  defined  transductions,  generation  from trees. 
 
 Which properties  follow  from the  algebraic  setting  ? 

 
  Answers : Closure  under  union, // ,  ⊕  and  the unary operations. 
   Emptiness and finiteness are decidable (finite  sets  are  computable) 
   Parikh's  Theorem 
   Derivation  trees, denotation of generated graphs by terms, 
   Upper bounds  to  tree-width  and  clique-width. 
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 Which  properties  do  not  hold  as  we  could  wish ? 
 
  Answers : The set of all (finite) graphs is neither  HR-  nor VR-equational. 
 
        Not even is the set of all square grids (planar graphs of degree 4) 
 
        Parsing  is  sometimes  NP-complete. 
 
 
 Comparison  of the two classes : 
 
 Equat(HR)  ⊆  Equat(VR)   
    =    sets  in  Equat(VR) ,  all graphs  of  which  are  without   
     some fixed  Kn,n  as  subgraph. 

 
Kn,p  :  All  edges  between a set of  n  vertices and a set  of  p  vertices.
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Compact  descriptions  of  finite  sets 
 

Set  T2  

 

 

 

 

 

 

 

 
What  do  they  come  from ? 
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Graphs  described  by  “forbidden  subgraphs or  minors”  
 

Planar graphs  =  graphs  without 

K5 and  K3,3  as  “minors”  

(some notion of subgraph). 

 

Theory developped  by  Robertson, Seymour  and  many others. 
 

 In many cases finite but very large numbers of forbidden 

configurations. 

 Graphs  on the  torus  (“doughnut”) : thousands  of  forbidden  graphs. 

 Certainly not  random  sets.  

 Grammars  should  be  able  to  enlighten   the  regularities. 
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The set T2 : the trees that are the forbidden minors for the property  

“pathwidth  < 2”   (graphs  having  a  kind  of  linear  decomposition). 

Tk  is   the corresponding  set  for   “path-width < k”  where : 

 
T1   consists  of  

 

Tk+1   =  S(Tk+1 , Tk+1 , Tk+1 ) 
 

S(A,B,C)  = set of    star-compositions  :  

for all   G  ∈  A,   H  ∈  B,   K  ∈  C.  

 

Each  set  Tk  has  more  than ( k ! )2 graphs, all with (5/2).(3k-1) vertices,  

but  has  an  HR   grammar  (equation system)  of  size  O(k). 
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Other example : the forbidden  

induced subgraphs for interval                

graphs. There are infinitely  

many, but they  form  an  

equational   set  of   

the  HR  algebra. 

 

 

Open problem : 

Design systematic methods to construct “small” context-free HR- or VR- 

grammars (or of other types)  to represent sets of forbidden configurations. 

Tools : Monadic second-order logic  +  algebraic notions (equational and 

recognizable sets )  +  graph  theoretic  arguments. 
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Inductive  proofs  based  on  context-free 

grammars  /  equation systems 
 

Example  

T  aTb  ;   T  c       /      T  =  aTb   ∪   c 

Property 1 : Every word  generated  by  T  has  odd  length. 

From  grammar : For every word  w  in  {a,b,c}*, by  induction on n   

such  that  T  n  w                 ( n  derivation steps). 
 

From equation system :  Let K  be  the  set  of  words  of  odd length. 

Fact  :     aKb  ⊆  K    and    c ∈  K.  
 

This   gives  the   result   by   the  Least  Fixed-Point  Theorem. 
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Same  equation :   T  =  aTb   ∪   c 

 

Property 2 :  T   ⊆   K’  :=  X* - X*abX*      ( no factor ab ; X ={a,b,c}* ) 

 

False   that :    a K’ b   ⊆    K’ 

 

A  stronger  inductive  property  is  needed.  One   can   use 

 

K” := K’  ∩  ( X* - X*a )  ∩  ( X - bX* ) 
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Theorem : Let G be a  context-free  grammar defined  by equations :  

X1 = p1, …, xn = pn. 

Let  K  be  a  regular  language.     Then      L(G, X1)  ⊆  K  

⇔    there  exist  regular  languages  K1, …, Kn  such  that : 

K1  ⊆  K   and   pi(K1,…,Kn  )  ⊆  Ki   for    each   i. 

 

The property L(G, X1)  ⊆  K can  be  proved  by  lemmas  concerning  

only  regular  languages. 
 

A  similar situation holds for graphs, where “regular language”  is 

replaced  by “set of graphs characterized by a monadic second-

order sentence.” 
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Attribute grammars 
 

Motivation  from compilation 

Nonterminal symbols are equipped with “attributes” taking values in 

“types” (integer, real, array, etc…) or “register” (for code generation). 

Context-free  rules  are  equipped  computation  rules  of  attributes. 

 

Principle : For  every  derivation tree, the dependency graph of 

attributes  must  have  no  circuits. 

Rather than giving (too strong) syntactic restrictions guaranteeing 

that, the non-circularity test is performed after attribute 

dependencies  are  defined. 
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Example : 

S  variable 

S   S + S 

Two  attributes  and  their depencies. 

 

The  dependency  graph  for 

the   expression  : 

x + y + z 
(x,y,z   are  variables). 
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The   Hyperedge   Replacement   grammar   generating   the 

dependencies  for  all  words  generated  by  S. 
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The  non-circularity  checking  algorithm 
      (exponential  in  extreme  cases  but  practically  usable) 

 
There is  a  circularity  if   some  

dependency  graph  of  T  has a path 

from  b  to  x  (“root  attributes”)  

and  some dependency  graph  

of  U   has  one  from  a  to  y. 

 

The  algorithm  constructs, for each nonterminal,  the  finite  set  of  

possible  “types  of  dependencies” 

between its root attributes.   

For  T  we may have : 
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Generalization  
 

To   all   HR   and   VR   graph grammars, 

To  all  properties  expressed  in  monadic second-order  logic  
       (extending  the  non-circularity  question), 

Auxiliary  properties  (extending   the   possible  “types”  of   dependencies) 

i.e., “stronger  inductive assertions”   can  be  generated  by  an  algorithm,  
( no need   to  “guess”  the  right  inductive  property). 

 

Consequence  :  linear  time  verification  from  the “derivation tree”. 

Difficulties :   1)  Huge  numbers of  auxiliary  properties. 

    2)  Parsing  is  sometimes  NP-complete, anyway difficult. 
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Other  examples  of  inductive  proofs  
 

Example : Series-parallel graphs 
 

1)  G, H connected implies :  G // H   and   G • H   are  connected, (induction) 

e   is connected (basis) :    ⇒      All  series-parallel graphs are connected. 

 

2)     It is not true that : 

G  and  H  planar  implies :  G//H  is   planar   (K5 = H//e). 

 

A stronger property  for  induction :  

G  has  a  planar embedding  with  the  sources  in  the  same  “face”  

⇒      All  series-parallel graphs  are planar.  
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Inductive  computation  :  Test   for  2-colorability  of  series-parallel  graphs 

Not  all  series-parallel   graphs  are  2-colorable.  Example :  K3 
 

G, H  2-colorable does not  imply  that   G//H  is  2-colorable  (because  K3 = P3//e). 
 

One  can  check  2-colorability  with  2  auxiliary  properties : 
 

    Same(G) =  G is 2-colorable with sources of the same color, 
Diff(G) =  G is 2-colorable with sources  of different colors 

by  using rules :  
    Diff(e) =  True  ;  Same(e) = False 
 

Same(G//H)  ⇔ Same(G) ∧ Same(H) 
Diff(G//H) ⇔  Diff(G) ∧  Diff(H) 
 

Same(G•H)  ⇔  (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H)) 
Diff(G•H)  ⇔  (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧  Same(H)) 

 

 

We can compute  for  every SP-term t, by  induction  on  the structure of  t  the  pair  of 
Boolean values  (Same(Val(t)) ,  Diff(Val(t)) ).   

 

 We  get  the answer  for  G = Val(t)  (the graph  that  is  the value  of t )  regarding 2-
colorability. 
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Application  1  : Linear  algorithm 
 

For every SP-term t, we can compute, by running a finite deterministic bottom- 
automaton  on   t,  the  pair  of   Boolean  values   (Same(Val(t)) ,  Diff(Val(t)) ).   

 

 We  get  the answer  for  G  = Val(t)   (the graph  that  is  the  value  of  t )  regarding 
2-colorability. 
 

Example : σ  at node u means that  Same(Val(t/u)) is true, σ   that it is false,   
δ  that  Diff (Val(t/u)) is true, etc… Computation is  done bottom-up  with  the  rules : 
 
            
 
 
 
 
 
 
 
 
 
 
 The  graph   is   not   2-colorable. 



 36

Application 2  :  Equation  system  for  2-colorable  series-parallel  graphs 
 
We  let  Sσ,δ  be the set of series-parallel  graphs  that  satisfy  Same (σ)  and  Diff  (δ) 
Sσ,δ  be  the set   of   those that satisfy  Same  and not   Diff , etc  … 
 
From the equation :  S  =  S // S  ∪ S • S  ∪  e     we  get  the equation  system : 
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In equation 

 

 
Sσ,δ    is  in  all  terms  of the  righthand side. Hence, it  defines  (least solution)   
the  empty set.  This  proves  (a  small  theorem) : 
 
Fact : No  series-parallel graph  satisfies  Same  and   Diff. 
 

We can simplify the system {(a), (b), (c), (d)}    into : 

 

 

 

 

 

By replacing  Sσ,δ  by  Tσ, Sσ,δ by Tδ, by  using commutativity  of  // , we get   the  system  

               (defining  2-colorable  series-parallel  graphs) 
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Recognizability  and  inductive  properties  
 

Definitions : A  set  P  of  properties  on  an  F-algebra  M  is  F-inductive   
if,  for  every  p ∈ P  and  f ∈ F, there exists a  (known)   Boolean formula  
B  such that  : 
 

p(fM(a,b) )  =  B[…,q(a),…,q'(b),….]  for  all  a  and  b in M 
   

   (here  q, q' ∈ P ,  q(a),…, q(b) ∈ {True, False} ) . 
 

 A  subset  L of  M  is recognizable  if and only if  it is the set of 

elements  that satisfy a property belonging to a finite inductive set  P  of 

properties.   

 

 This  generalizes  the  characterization of   regular  languages  in  

terms  of  finite  congruences  (or  of  their  finite syntactical  monoid). 
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Inductive  properties  and  automata  on  terms 

 

The simultaneous computation of m inductive properties can be implemented 

by a finite deterministic bottom-up  automaton  with 2m states, running on terms  t.  

 

This computation  takes  time O( ⎜t ⎜): the key  to  fixed-parameter tractable 

algorithms 
 

 

An inductive set of properties can be effectively constructed (at least 

theoretically)  from every monadic-second order formula. 
 

 Open  Problem : How  to  make  this  technique  usable ? 

 One  idea is to design  logical  languages  with “strong  primitives”  

in order  to  express  useful  graph  properties  with  few  quantifications. 
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 Conclusion   
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