

On Context-free Graph Grammars

Bruno Courcelle

Université Bordeaux 1, LaBRI, and Institut Universitaire de France

Reference : Graph structure and monadic second-order logic,

book to be published by Cambridge University Press, readable on :

http://www.labri.fr/perso/courcell/ActSci.html

 2

 An overview chart

Graph "Context-free"

operations sets of graphs

Fixed parameter tractable

algorithms Language theory

 for graphs

 Recognizable

 sets of graphs

Monadic 2nd-order Monadic 2nd -order

logic transductions

 3

Grammars as mathematical objects

Linguistics : Chomsky’s Hierarchy (can be refined)

Regular ⊂ Context-free ⊂ Context-sensitive ⊂ Recursively enumerable

Compilation : Programming languages are described by context-free

grammars + constraints (type checking etc …)
 (The official motivation of lots of articles on context-free languages

 unrelated with compilation.)

Other motivations (some will apply to graphs) :

 Counting objects in bijection with the words of a

 context-free unambiguous grammar.

 4

 Finite (compact) description of infinite (finite) sets of words,

 graphs, combinatorial objects.

 Objects come with a structure (a derivation tree) : what is

 important is not the language but the mapping from words

 to derivation trees. These trees are essential in compilation but

 may also be used for drawing graphs generated by a

 context-free graph grammar.

 Inductive proof methods can be based on grammars.
 (Students are reluctant to prove that the grammars they produce are correct,

 but authors too : they never discuss how to prove that a grammar is correct).

 5

 Links with program schemes (formalization of program

 semantics)

-0-

What is a context-free graph grammar ?

What means “ context-free ” ?

1) Some “nonterminal” symbols S can be replaced according to a list of rules.

2) All rules S m can be used independently of the context of S

3) The context is not modified by the replacement.

In context-free grammars, the context is the pair of words around a nonterminal

This “axiomatic” definition can be made formal.

 6

What for graphs ?

Option 1 : Nonterminal vertices.
Application of rule

 S m

The context : A graph

with particular vertices,

those linked to the

nonterminal vertex.

How to link the context C to the replacing graph m ?

By labels attached to vertices and edges, and some complicated mechanisms

Difficulty : How to guarantee context-freeness ?

A nontrivial question (lots of articles) ; below a simple solution.

 7

Option 2 : Nonterminal edges.

All such grammars are context-free.

Drawback : Limited generative power

 8

Example : Series-Parallel graphs.

Graphs with distinguished vertices (boundary vertices or sources) 1 and 2,

generated from e = 1 2 and the operations // (parallel-composition) and

series-composition.

 Equation : S = S // S ∪ S • S ∪ e

 9

Option 3 : Nonterminal hyperedges (even to generate graphs)

Examples : the non-context-free language anbncn is a context-free set of edge

 a a b b c c

labelled graphs : • • • • • • •

Recursive

pictures :

Limitation (all 3 options): All finite (even planar) graphs : not a context-free set.

 10

Equational sets of an algebra = the context-free sets.

Equation systems Context-Free (Graph) Grammars
in an algebraic setting

In the case of words, the set of context-free rules

S → a S T ; S → b ; T → c T T T ; T → a

is equivalent to the system of two set equations:

 S = a S T ∪ { b }

 T = c T T T ∪ { a }

where S is the language generated by S (idem for T and T).

 11

For graphs (or other objects) we consider systems of equations like:

 S = f(k(S), T) ∪ { b }

 T = f(T , f(g(T), m(T))) ∪ { a }

where :

 f is a binary operation,

g, k, m are unary operations on graphs,

a, b denote basic graphs (up to isomorphism).

An equational set is a component of the least (unique) solution of such

an equation system. This is well-defined in any algebra (Least Fixed Point

Theorem).

Many properties are valid at the general algebraic level.

 12

Two graph algebras

HR operations : Hyperedge Replacement hypergraph grammars ;
 (associated complexity measure : tree-width)

Graphs have distinguished vertices called sources, (or terminals or boundary vertices)

pointed to by labels from a finite set : {a, b, c, ..., h}.

Binary operation(s) : Parallel composition

G // H is the disjoint union of G and H and sources with same label are fused.

(If G and H are not disjoint, one first makes a copy of H disjoint from G).

 13

Unary operations :

 Forget a source label
 Forgeta(G) is G without a-source : the source is no longer distinguished ;

(it is made "internal").

 Source renaming :
Rena b(G) exchanges source labels a and b

(replaces a by b if b is not the label of a source)

 Constant symbols denote basic graphs : the connected graphs with at most

 one edge.

Remark : For generating hypergraphs, one takes more constant symbols for

 denoting hyperedges. The operations are the same.

 14

Construction of trees :

 with two source labels, r (root) and n (new root): Fusion of two trees at their roots :

Extension of a tree by parallel composition

with a new edge, forgetting the old root,

making the "new root" as current root :

e = r •_________• n

Renn r (Forgetr (G // e))

 Equation : T = T // T ∪ Ext(T) ∪ r

 15

 Series-parallel graphs,

They are generated by the constant e = 1 2 ,

// (parallel-composition) and series-composition defined from other operations by :

G • H = Forget3(Ren2 3 (G) // Ren1 3 (H))

Example :

 1 • G • H • 2

 3

 1 • • 2

The defining equation (equivalent to the grammar described above) :

S = S // S ∪ S • S ∪ e

 16

VR operations : Another graph algebra
Origin : Vertex Replacement graph grammars

Associated complexity measure: clique-width.

Graphs are simple, directed or not.

k labels : a , b , c, ..., h. Each vertex has one and only one label ;

a label p may label several vertices, called the p-ports.

One binary operation: disjoint union : ⊕

 17

Unary operations: Edge addition denoted by Add-edga,b

Add-edga,b(G) is G augmented with directed or undirected edges from every

a-port to every b-port.

 H = Add-edga,b(G) ; only 5 new edges added

The number of added edges depends on the argument graph.

 18

Vertex relabellings :
Relaba b(G) is G with every vertex labelled by a relabelled into b

Basic graphs are those with a single vertex.

Example : Cliques have

clique-width 2.

Kn is defined by tn where tn+1 = Relabb a(Add-edga,b(tn ⊕ b))

 19

 Two algebras of graphs HR and VR
 Hence, two notions of context-free sets, defined as the equational sets of

the algebras HR and VR.

 Why not a third algebra ? :

 We have robustness results :
 Independent logical characterizations, stability under certain
 logically defined transductions, generation from trees.

 Which properties follow from the algebraic setting ?

 Answers : Closure under union, // , ⊕ and the unary operations.
 Emptiness and finiteness are decidable (finite sets are computable)
 Parikh's Theorem
 Derivation trees, denotation of generated graphs by terms,
 Upper bounds to tree-width and clique-width.

 20

 Which properties do not hold as we could wish ?

 Answers : The set of all (finite) graphs is neither HR- nor VR-equational.

 Not even is the set of all square grids (planar graphs of degree 4)

 Parsing is sometimes NP-complete.

 Comparison of the two classes :

 Equat(HR) ⊆ Equat(VR)
 = sets in Equat(VR) , all graphs of which are without
 some fixed Kn,n as subgraph.

Kn,p : All edges between a set of n vertices and a set of p vertices.

 21

Compact descriptions of finite sets

Set T2

What do they come from ?

 22

Graphs described by “forbidden subgraphs or minors”

Planar graphs = graphs without

K5 and K3,3 as “minors”

(some notion of subgraph).

Theory developped by Robertson, Seymour and many others.

 In many cases finite but very large numbers of forbidden

configurations.

 Graphs on the torus (“doughnut”) : thousands of forbidden graphs.

 Certainly not random sets.

 Grammars should be able to enlighten the regularities.

 23

The set T2 : the trees that are the forbidden minors for the property

“pathwidth < 2” (graphs having a kind of linear decomposition).

Tk is the corresponding set for “path-width < k” where :

T1 consists of

Tk+1 = S(Tk+1 , Tk+1 , Tk+1)

S(A,B,C) = set of star-compositions :

for all G ∈ A, H ∈ B, K ∈ C.

Each set Tk has more than (k !)2 graphs, all with (5/2).(3k-1) vertices,

but has an HR grammar (equation system) of size O(k).

 24

Other example : the forbidden

induced subgraphs for interval

graphs. There are infinitely

many, but they form an

equational set of

the HR algebra.

Open problem :

Design systematic methods to construct “small” context-free HR- or VR-

grammars (or of other types) to represent sets of forbidden configurations.

Tools : Monadic second-order logic + algebraic notions (equational and

recognizable sets) + graph theoretic arguments.

 25

Inductive proofs based on context-free

grammars / equation systems

Example

T aTb ; T c / T = aTb ∪ c

Property 1 : Every word generated by T has odd length.

From grammar : For every word w in {a,b,c}*, by induction on n

such that T n w (n derivation steps).

From equation system : Let K be the set of words of odd length.

Fact : aKb ⊆ K and c ∈ K.

This gives the result by the Least Fixed-Point Theorem.

 26

Same equation : T = aTb ∪ c

Property 2 : T ⊆ K’ := X* - X*abX* (no factor ab ; X ={a,b,c}*)

False that : a K’ b ⊆ K’

A stronger inductive property is needed. One can use

K” := K’ ∩ (X* - X*a) ∩ (X - bX*)

 27

Theorem : Let G be a context-free grammar defined by equations :

X1 = p1, …, xn = pn.

Let K be a regular language. Then L(G, X1) ⊆ K

⇔ there exist regular languages K1, …, Kn such that :

K1 ⊆ K and pi(K1,…,Kn) ⊆ Ki for each i.

The property L(G, X1) ⊆ K can be proved by lemmas concerning

only regular languages.

A similar situation holds for graphs, where “regular language” is

replaced by “set of graphs characterized by a monadic second-

order sentence.”

 28

Attribute grammars

Motivation from compilation

Nonterminal symbols are equipped with “attributes” taking values in

“types” (integer, real, array, etc…) or “register” (for code generation).

Context-free rules are equipped computation rules of attributes.

Principle : For every derivation tree, the dependency graph of

attributes must have no circuits.

Rather than giving (too strong) syntactic restrictions guaranteeing

that, the non-circularity test is performed after attribute

dependencies are defined.

 29

Example :

S variable

S S + S

Two attributes and their depencies.

The dependency graph for

the expression :

x + y + z
(x,y,z are variables).

 30

The Hyperedge Replacement grammar generating the

dependencies for all words generated by S.

 31

The non-circularity checking algorithm
 (exponential in extreme cases but practically usable)

There is a circularity if some

dependency graph of T has a path

from b to x (“root attributes”)

and some dependency graph

of U has one from a to y.

The algorithm constructs, for each nonterminal, the finite set of

possible “types of dependencies”

between its root attributes.

For T we may have :

 32

Generalization

To all HR and VR graph grammars,

To all properties expressed in monadic second-order logic
 (extending the non-circularity question),

Auxiliary properties (extending the possible “types” of dependencies)

i.e., “stronger inductive assertions” can be generated by an algorithm,
(no need to “guess” the right inductive property).

Consequence : linear time verification from the “derivation tree”.

Difficulties : 1) Huge numbers of auxiliary properties.

 2) Parsing is sometimes NP-complete, anyway difficult.

 33

Other examples of inductive proofs

Example : Series-parallel graphs

1) G, H connected implies : G // H and G • H are connected, (induction)

e is connected (basis) : ⇒ All series-parallel graphs are connected.

2) It is not true that :

G and H planar implies : G//H is planar (K5 = H//e).

A stronger property for induction :

G has a planar embedding with the sources in the same “face”

⇒ All series-parallel graphs are planar.

 34

Inductive computation : Test for 2-colorability of series-parallel graphs

Not all series-parallel graphs are 2-colorable. Example : K3

G, H 2-colorable does not imply that G//H is 2-colorable (because K3 = P3//e).

One can check 2-colorability with 2 auxiliary properties :

 Same(G) = G is 2-colorable with sources of the same color,
Diff(G) = G is 2-colorable with sources of different colors

by using rules :
 Diff(e) = True ; Same(e) = False

Same(G//H) ⇔ Same(G) ∧ Same(H)
Diff(G//H) ⇔ Diff(G) ∧ Diff(H)

Same(G•H) ⇔ (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H))
Diff(G•H) ⇔ (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧ Same(H))

We can compute for every SP-term t, by induction on the structure of t the pair of
Boolean values (Same(Val(t)) , Diff(Val(t))).

 We get the answer for G = Val(t) (the graph that is the value of t) regarding 2-
colorability.

 35

Application 1 : Linear algorithm

For every SP-term t, we can compute, by running a finite deterministic bottom-
automaton on t, the pair of Boolean values (Same(Val(t)) , Diff(Val(t))).

 We get the answer for G = Val(t) (the graph that is the value of t) regarding
2-colorability.

Example : σ at node u means that Same(Val(t/u)) is true, σ that it is false,
δ that Diff (Val(t/u)) is true, etc… Computation is done bottom-up with the rules :

 The graph is not 2-colorable.

 36

Application 2 : Equation system for 2-colorable series-parallel graphs

We let Sσ,δ be the set of series-parallel graphs that satisfy Same (σ) and Diff (δ)
Sσ,δ be the set of those that satisfy Same and not Diff , etc …

From the equation : S = S // S ∪ S • S ∪ e we get the equation system :

 37

In equation

Sσ,δ is in all terms of the righthand side. Hence, it defines (least solution)
the empty set. This proves (a small theorem) :

Fact : No series-parallel graph satisfies Same and Diff.

We can simplify the system {(a), (b), (c), (d)} into :

By replacing Sσ,δ by Tσ, Sσ,δ by Tδ, by using commutativity of // , we get the system

 (defining 2-colorable series-parallel graphs)

 38

Recognizability and inductive properties

Definitions : A set P of properties on an F-algebra M is F-inductive
if, for every p ∈ P and f ∈ F, there exists a (known) Boolean formula
B such that :

p(fM(a,b)) = B[…,q(a),…,q'(b),….] for all a and b in M

 (here q, q' ∈ P , q(a),…, q(b) ∈ {True, False}) .

 A subset L of M is recognizable if and only if it is the set of

elements that satisfy a property belonging to a finite inductive set P of

properties.

 This generalizes the characterization of regular languages in

terms of finite congruences (or of their finite syntactical monoid).

 39

Inductive properties and automata on terms

The simultaneous computation of m inductive properties can be implemented

by a finite deterministic bottom-up automaton with 2m states, running on terms t.

This computation takes time O(⎜t ⎜): the key to fixed-parameter tractable

algorithms

An inductive set of properties can be effectively constructed (at least

theoretically) from every monadic-second order formula.

 Open Problem : How to make this technique usable ?

 One idea is to design logical languages with “strong primitives”

in order to express useful graph properties with few quantifications.

 40

 Conclusion

Graph Context-free

operations sets of graphs

Fixed parameter tractable

algorithms Language theory

 for graphs

 Recognizable

 sets of graphs

Monadic 2nd-order Monadic 2nd -order

logic transductions

