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Logic  =  Monadic Second-Order  Logic    (MS) 

 Formal  expression of  graph properties 

 And  of  graph  transformations  (MS  transductions) 
 

1) Descriptions  and  algorithmic  constructions  of sets  of minimal 

excluded  minors  and  minimal   induced  subgraphs 

2) Logical  characterizations  of  the  graph hierarchies  based   

      on   tree-width  or  clique-width (or rank-width)  

        short    proofs  of  tree-width  or clique-width  (un)boundedness  

3)   A  linear  hierarchy  of graph classes  based  on  MS  transductions 
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Monadic   Second-Order   Logic   (quick  review) 

 
=  First-order logic on power-set structures  

 
=  First-order logic extended with (quantified) variables  

denoting subsets  of the domains. 
 
MS  (expressible)  properties :   transitive closure,  properties of paths, connectivity,  

 
planarity  (via Kuratowski, uses connectivity),   k-colorability. 
 

Examples  of   formulas   for     G  =  ( VG , edgG(.,.) ), undirected 
 
 

3-colorability : 
∃X,Y (”X,Y  are  disjoint”  ∧  ∀u,v { edg(u,v) ⇒  
                    [(u ∈ X  ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧(u ∈V-(X∪Y)  ⇒ v ∉V-(X∪Y)]} ) 
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Non connectivity : 
∃X ( ∃x ∈ X  ∧  ∃y ∉ X  ∧  ∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∈ X)  ) 

 
Transitive   and   reflexive  closure  :   TC(R ; x, y) :   
 
∀ X { “X is R-closed”  ∧  x ∈ X  ⇒ y ∈ X  } 
        where   “X is R-closed”    is defined  by :  ∀u,v (u ∈ X  ∧  R(u,v) ⇒ v ∈ X)  
 
R  can  be  defined   by  a   formula  ϕR   as  in  : 
∀x,y (x ∈ Y  ∧  y ∈ Y ⇒  TC(“u ∈ Y  ∧ v ∈ Y ∧ edg(u,v)” ; x, y) 
  expressing  that   G[Y ]  is connected       ( Y is free  in  ϕR). 
 
Application :  G   contains   (fixed)   H   as   a   minor  where   VH = {1,…,k} : 
    there  exist  pairwise  disjoint  vertex   sets   X1,…, Xk 

in   G  such   that   each   G[Xi]   is   connected  and,  whenever   
if  i -- j  in   H,  there  is  an  edge  between   Xi  and   Xj  in  G. 
 

Consequence  :  planarity  is  MS-expressible  (no minor  K5  or  K3,3). 
 



 6 

Edge  set  quantifications  increase   the  expressive power   
 

Incidence  graph  of  G  undirected,  Inc(G)  =  ( VG ∪ EG, incG(.,.)) 
 
incG(v,e)   ⇔   v  is  a  vertex  of  edge  e. 
 
Monadic second-order   formulas  written  with  inc   can  use  quantifications   

on  sets  of  edges  : they  define   MS2 –expressible  graph properties. 

 
 The existence  of  a  perfect  matching  or  of a   Hamiltonian circuit  or of a 

spanning tree of degree  < 3    is   MS2 -expressible  but   not   MS-expressible. 

 
Definition : A  set   graphs  L  is  MS1-definable  if   L = { G  finite  /    G  ⎜=  ϕ}.   

It is MS2 –definable  if  L  =  { G   finite  /    Inc(G)  ⎜=  ϕ  }.   

(for  a  fixed  MS   sentence     (formula  without  free  variables)   ϕ ). 
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Two  descriptions  of  graph  properties 

 

MS1 :  MS sentences  interpreted  on   FPT   verification   

structure    (VG , edgG (.,.) )            parameter   clique-width 

(allows  only  vertex  set  quantifications) 
 

MS2 :  MS sentences  interpreted  on   FPT   verification  

incidence   graphs : (VG ∪ EG, incG(.,.))       parameter  tree-width 
  
(allows  vertex  and  edge  set  quantifications) 

 

MS  logic  is  interesting   with  conditions like  bounded tree-width  

or  bounded  clique-width         (3-colorability  is  MS  but  NP-complete).
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Algebraic  view  of   graph   decompositions 
 

Graph  operations  characterizing  tree-width  
 

Graphs have  distinguished vertices called sources  (or terminals or boundary vertices) 

pointed  to  by  labels  from  a  finite set  :    {a, b, c,  ..., h}. 

Binary operation(s)  :  Parallel  composition 

G // H     is  the  disjoint  union of  G  and  H  ;  sources  with  same  label  are   fused.  

(If G  and  H are  not disjoint, one  first  makes  a  copy of  H disjoint from  G). 
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Unary operations   :    

 Forget   a   source   label  
       Forgeta(G)   is  G  without  a-source : the  source  is  no longer distinguished ;  

(it  is  made  "internal"). 

       Source renaming : 
Rena     b(G)  exchanges  source  labels  a  and  b     

(replaces  a  by  b   if  b is not  the  label of  a  source) 
 

 Constant symbols  denote  basic  graphs  :  the connected graphs with at most  

                  one edge.  

 An  algebra  of  graphs  the   “tree-width”    algebra   
  

 

Proposition :  A  graph  has  tree-width  <  k  ⇔  it is defined by a term  

that  uses  <  k+1  source  labels. 
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 Example :   Directed   series-parallel graphs 
They  are generated  by  the  constant   e   = 1           2 ,  

//  (parallel-composition)  and   series-composition   defined  from other operations by : 

 

G • H =  Forget3(Ren2        3 (G) // Ren1      3 (H)) 

Example  :  

 

  1 •        G              •        H                            •  2 

        3 

 

   1   •                   • 2 

 

The  defining  equation  (S   is  the  set  of  series-parall  graphs)  : 

S  =   S // S    ∪     S • S   ∪   e 
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Graph  operations  defining  clique-width 
Graphs are simple, directed  or  not.   

k   labels  :  a , b , c,  ..., h.   Each  vertex  has one  and  only  one  label ;  

a  label  p  may  label   several  vertices, called  the   p-ports. 

 

One  binary operation:   disjoint  union    :   ⊕ 

Unary  operations:  Edge addition denoted  by  Add-edga,b 
 

Add-edga,b(G)   is  G  augmented   

with  directed  or  undirected edges   

from every   a-port   to  every  b-port. 
The  number  of added edges  depends   

on  the  argument graph. 

          H = Add-edga,b(G) ; only 5  new edges added 
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Vertex  relabellings :  
Relaba       b(G)  is  G  with  every  a –port    made  into a  b-port 

 

Basic graphs   are  those  with  a  single  vertex. 

 

Another  algebra  of  graphs :  the  “clique-width”  algebra. 

 

Definition  : A  graph  has  clique-width  <  k  ⇔  it is defined by a term    

that  uses   <   k    labels. 
 

Example : Cliques   have  

clique-width  2. 

Kn  is   defined  by  tn  where   tn+1  =    

Relabb      a( Add-edga,b(tn ⊕ b)) 
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The problem  of  checking  if  G  has  clique-width  <  k  is   

NP-complete  (Fellows et al.) (input  is  (G,k)  ) 
 

The  equivalent  notion  of  rank-width  has good combinatorial and 

algorithmic  properties; it has also an algebraic characterization  with  

more  complicated  operations        (compositions  of  clique-width operations).   

 

Defined first for undirected graphs (Oum and Seymour), but extended to 

directed  ones  (Kanté). 
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From  both  algebras, we get : 

 

1)  linear  notations  for finite  graphs, 

 

2)  finite  descriptions  of  (certain) infinite  sets  of finite  graphs 

and  compact  descriptions  of  (certain) finite  sets  of finite  graphs, 

by means of  Equation Systems  (defining  the  equational sets  of 

the  corresponding  algebras). 
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Examples  of  equational  sets of graphs   
 

In  the  “tree-width”  algebra : 

Series-parallel  :  S  =   S // S    ∪     S • S   ∪   e 

Biconnected outerplanar  :               ( u  =  undirected  edge)  

B =  fg1(fg2( u // Q)),     Q  =  u // Q   ∪    Q • Q   ∪   u 

In  the  “clique-width”  algebra : 

Cographs  :   C =  C  ⊕  C  ∪ C  ⊗ C   ∪  1 

 G ⊗ H  = Relab2      1( Add-edg1,2(G  ⊕  Relab1      2 (H)))   (complete join) 

Threshold  graphs :  T =  T ⊕ 1   ∪  T ⊗ 1   ∪   1 
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    Equational  sets  in  algebras  in general 

 
We   consider   systems  of  equations  where  S, T  define  sets of graphs  or … 

S  =  f( k( S ), T  )      ∪    { b } 

T  =  f( T , f( g(T ), m( T )))  ∪         { a } 

and : 

 f      is  a  binary  operation,   

g, k, m    are  unary  operations,   

a, b     denote   basic  objects      ( e.g.  graphs   up  to  isomorphism).  
 

An  equational  set  is  a component  of  the  least   solution  of  such  

an  equation system.  

This  is   well-defined  in  any  algebra :  Least Fixed Point Theorem.   
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 For   graphs,  some  facts   do   not   hold   as   we   could  wish: 
 
 
 1) The  set  of  all  (finite)  graphs  is  not  equational  (both algebras). 
 
 
 2)  Neither  are  the  sets  of  planar graphs  and  of  square  grids. 
 

   
 3)  Parsing  is  sometimes  NP-complete   

     (checking clique-width, cyclic band-width at most 2) 

 



 18

 
 
Theorem : (1) For each k, the  set  TWD( < k )  of graphs  of  tree-

width < k  is  equational in  the “tree-width”-algebra, and  every  

“tree-width”-equational  set  has  bounded  (“boundable”)  tree-width. 

          (2)  Analogous  facts   for  clique-width. 

 

Filtering  Theorems  : (1) If  L  is  “tree-width”-equational, and  K is 

MS2-definable, then  L ∩ K   is  (effectively)  “tree-width”-equational. 

   (2)  If  L  is  “clique-width”-equational, and  K is MS1-

definable, then    L ∩ K   is  (effectively)  “clique-width”-equational. 
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Examples  of   compact  descriptions  of  finite  sets 
 

Set  T2  

 

 

 

 

 

 

 

 
What  do  they  come  from ? 
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T2 = the trees that are the minimal  excluded minors for the class  of 

graphs  of   path-width  < 2.   
 

Tk   is  the  corresponding   set   for   path-width < k  where   (Kajitani et al.)  : 
 

T1   consists  of  

Tk+1   =  S(Tk+1 , Tk+1 , Tk+1 ) 
 

S(A,B,C)  = set  of   star-compositions  :  

for all   G  ∈  A,   H  ∈  B,   K  ∈  C.  

 

Each  set  Tk  has  more  than ( k ! )2 graphs, all with (5/2).(3k-1) vertices,  

but  has  an  equation system  over  the “tree-width”-algebra  of  size  O(k) 
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 The  obstruction  set  of  each  minor-closed  class is finite (Graph 

Minor Theorem)   but  in  many  (most ?)  cases,  very large and  difficult  

to  compute. 

 

 Graphs  on   the  torus  : thousands  of  graphs  in the obstruction. 

  

 They are  not  random  sets.  

 A  list  of  10 000  graphs  produced  by  a  computer  is  of  little  use. 

 Grammars  should  be  able  to  enlighten   the  regularities. 
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Logical  and  equational   description  of  obstructions 
 

1) Let   C  be  minor-closed  and  characterized  by an  MS2 sentence  ϕ  (not  

constructed  from  the obstructions), then the obstruction set Ω(C) is  chara-

cterized  by  the  MS2  sentence  ψ   saying   that  : 

  G     ⎜=    ¬ ϕ  and   for every vertex  u,  G - u   ⎜=   ϕ  and  

     for every edge  e ,  G - e    ⎜=  ϕ    and 

                             for every edge  e ,  G / e    ⎜=  ϕ                 (G / e = contraction of e). 

2) Although we know  that  ψ  characterizes  finitely  many graphs, no algorithm can 

list  them  just  from the input  ψ. 

3) For  each  k, one can construct  (using ψ)  the finite set  Ω(C)  ∩  TWD( < k ).  

4) From  an upper  bound  to  the  tree-width  of  Ω(C), we can  compute  this  set 



 23

5) At  3)  one can  construct  an  equation  system  for  Ω(C)  ∩  TWD( < k).  

     But   we  have  no  guarantee  it  will  be readable. 

   

 Applications    (remain  “theoretical”  because  computations  are intractable) : 

         (AGK = Adler, Grohe, Kreutzer  2008) 

  For each  k, n : 

  Graphs of path-width  <  k             ( Kabanets 1997,  AGK) 

  Graphs of tree-width   <  k    (AGK) 

  Graphs of tree-depth   <   k    (below) 

  Graphs  of  n-depth  tree-width  < k   (below) 

  Graphs  embeddable  on  a surface   (AGK) 

  Apex  graphs  over  a minor-closed  class  with  known obstruction set   (AGK) 

  Union  of  2  minor-closed  classes  with  known obstruction sets.  (AGK) 
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Induced   subgraph   obstructions 
 

Hereditary  classes C (closed under induced subgraphs) may have  

infinite induced subgraph obstruction sets Σ(C) showing  some 

“regularities” 

  

 Examples                  bounds  on   the  corresponding  sets   Σ 

 Chordal  graphs                 tree-width  < 2   “twd”-equational 

 Perfect  graphs       clique-width  <  4        “cwd”-equational 

 Interval  graphs       tree-width  < 3    “twd”-equational 

 Comparability  graphs    clique-width  <  ? < 10     “cwd”-equational 

 

  Equation   systems  are  able   to  capture  their  regularities. 
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Theorem  :  Let  C  be  a  hereditary  class  of graphs. 

1) If  C  is  MS1-definable, then Σ(C)  ∩ CWD(< k)  is  “cwd”-equational. 

2) If  C  is  MS2-definable, then Σ(C)  ∩  TWD(< k)  is  “twd”-equational.    
 

 

 As  for  minor-closure, from  an  MS1  or  MS2  sentence  that characterizes  

C,  one  can  build  an  MS1  or  MS2  sentence   that  characterizes  Σ(C). 

 One  uses  then  the  Filtering Theorems : equational  sets  filtered  by  MS  

properties. 
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Application   to  interval  graphs   (the  intersection graph  of a set  of  

                intervals of  integers) 
B. & L. characterize  them as “chordal with no asteroidal triple”:   

  this is MS1 expressible. 

From  this  characterization,  the  obstructions   have   tree-width  <  5 

 

In principle,  one   could   

construct  a  “twd” - equation  

system   defining  these  graphs,  

known   from   B.&L.  and   

of  tree- width   <  3 
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Other  applications  
 

An algorithm  can  construct  the  finite set Σ(C)  if  C is  a  hereditary  and 

MS1 - definable   class   of  cographs. 

 

Finite  because  cographs are well-quasi-ordered for induced subgraph 

inclusion    (Damaschke, 1990) 

Cographs  have  clique-width  2,  hence  Σ(C)   has cwd < 3. 

Examples  : 1)  Threshold graphs (Σ = { P4,  C4,  K2 ⊕ K2 }) 

  2)  Cographs  with “modular  decomposition tree”  of  height  <  k. 

       3) “Semi-threshold”  :  T  =  T ⊕ T   ∪  T ⊗ 1   ∪   1 
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Open  problems  :  
 

(1) Find in such a way the set Σ(Comparability Graphs), an infinite set 

identified  by  Gallai  that  is   “cwd”-equational.  

(2) Treat  related  classes  of  partially  ordered  sets. 

(3) Design systematic methods to construct “small” “twd”- or “cwd”-

equation systems,  (or equation systems of other types)  to 

represent  finite  and  infinite  obstruction  sets. 

 

Tools : Monadic  second-order  logic  +  algebraic notions (equational and 

recognizable sets )  +  graph  theoretic  arguments. 
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Monadic  second-order  transductions 
 

 Transformations  of  graphs  ( more generally  of  relational  structures) 

specified  by  MS1  (or  MS2)  formulas. 

 There  are  2  representations  for  an  input  graph and  2  for  the  

output,  hence   4   types  of  graph  transductions,   denoted   by  : 

MS1,1   (or  MS  to simplify),  MS1,2,   MS2,1   and  MS2,2 

MSi,o   means  i = type of representation of  input, o = type of repres. of output. 

 

 I  will  mainly  compare  MS-transductions, for  graphs   G  handled  as  

(VG, edgG)  and   MS2,2-transductions, for  graphs  G  represented  by   

their  incidence   graphs  =  (VG U EG , incG) 
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Main  Results   (to   be   made   more  precise) :  
 

(1)  MS-transductions  preserve  bounded  clique-width  and  “clique-

width”-equational sets 

 

(2)  MS2,2-transductions  preserve  bounded tree-width  and  “tree-width”-

equational sets 
  

Meaning :   Robustness   of   the  graph  hierarchies  based  on  clique-
width  and  tree-width. 
  
 
 The   word  “transduction”  comes  from  Formal  Language  Theory ; 

My  aim  is   to  extend  FLT  to graphs and other  combinatorial  objects. 



 31

Definitions  

Σ  =  finite set of relation symbols ( R )  with fixed arities  (ρ( R) ). 

 
STR(Σ):  finite  Σ-relational  structures  S  =  < DS ,  (RS)R ∈Σ >,   
           RS  relation  on  DS   of  arity  ρ( R) 
 
An   MS   transduction   is   a   partial   function   

τ  : STR(Σ) X “data”   STR(Γ)       specified   by   MS  formulas. 

    
Basic case : τ  : STR(Σ)   STR(Γ) ;  T =  τ (S)   is  defined  “inside”  S  
by  MS  formulas.  
 
 
Examples :  The  edge  complement ; the  transitive  closure of  a directed graph. 
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Next  case :   T =  τ (S, “data”)   ;  the  “data”  is  a  tuple  X1, …,Xp   of  
subsets  of the  domain  of  S ; these  sets  are  called  the  parameters. 
Parameters   X1, …,Xp   are  constrained  to   satisfy  an  MS   property. 

 

Examples :  (G, {u})  ⎜            the  connected  component  containing  u. 
 
 

(G,X,Y,Z)  ⎜            the  minor  of  G  having   vertex  set  X,   
        resulting  from the  contraction  of   the  edges   
        of  Y  and  the  deletion of  the  edges and vertices 
        of   Z. (It   is   of   type   MS2,2). 

 
  In the  second  example, no  two  vertices  of  X  should be   linked  by  a  

            path   of   edges  in  Y. 

    
τ (S)  : =   the  set of all  T  =  τ (S, X1, …,Xp)    

          for all  “good”  tuples  of  parameters. 
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General case :    T   is   defined   as   above     inside  
S ⊕ S ⊕ ... ⊕ S :   disjoint   copies  of   S   with  "marked"   

                 equalities  of  copied   elements  
 
      1,2      2,3 
   *   *   * 
 
   *   *   * 
 
   *   *   * 
 
 
   *   *   * 
 
     S ⊕ S ⊕ S 
  
 

Composition  Theorem  :  The  composition  of   two   MS   transductions  

is  an  MS  transduction. 
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Example 1 :  From  a  term  to  a cograph 

Terms  are  written  with  ⊕  (disjoint union),  ⊗  (complete join)  and  constants  

x,y,z, …   denoting 

vertices  x,y,z …. 
 

 

 

 

 

  

 Vertices  =  {x,y,z,u,v,w } =  occurrences  of  constants  in  the  term. 

 Two  vertices  are  adjacent  if  and  only  if  their  least  common  ancestor    is  

 labelled  by  ⊗     (like  y  and  z , or  u   and  w). 

 These  conditions  can  be expressed by  MS  formulas  on  the  labelled  tree. 
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Example 2 :  From  a  tree   to   

 its   incidence  graph 

 (also   a   tree)  
 
 
 
 
 
 
           Tree   T             Inc(T)  
 

T = < N, edg>   ;  we  use  parameter { r }  to   make  T  rooted and directed   
 

τ(T, { r }  )  =  < N  U  (N - { r }  ) x { 1 }  , inc(.,.)  > 
 

inc(x,y)   is  defined  by  :  
x = (y,1)  ∨  ∃ z  [  x = (z,1) ∧ edg(y,z)   

∧    “y  is  on  the  path  from  r  to  z” ] 

From  trees  ( or terms )  to  graphs  :  

 MS1,1  =  MS2,1     and     MS1,2  =  MS2,2 .  
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 MS1,1 - transductions  and  MS2,2 – transductions    are  incomparable      

 
 Why ?  For  expressing  graph  properties,  MS2  logic   is  more  powerful   

than   MS1  logic    (the  “ordinary”  MS  logic). 

 For  building graphs   with   MS2,2 - transductions, we  have more  possibilities  

of  using  the  input graph, but  we  want  more   for  the output :  to  specify  

each  edge  as  a copy  of  some  vertex  or  some  edge  of  the  input  graph. 

 
 Transitive  closure  is   MS1,1  but     not   MS2,2  
 
 Edge  subdivision   is   MS2,2    but      not  MS1,1 
 
Proofs : Easy  since,  if   S   is  transformed  into  T  by  an  MS-transduction   : 
 

        ⎜ DT ⎜   <   k.  ⎜ DS ⎜       for  fixed  k 
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Robustness  results :  Preservation  of  widths 
 
For   every  class  of  graphs  C  : 
 

 1)   If  C  has  tree-width  <  k  and  τ  is  an   MS2,2 – transduction,  
     then  τ (C)  has  tree-width  <  fτ(k) 
   Follows from  : 

 C   has  bounded  tree-width   ⇔    C   ⊆  τ(Trees)  for  some     
MS2,2 – transduction   τ   (the  proof  is  constructive  in  both  directions) 
              

  2)  If  C  has  clique-width  <  k  and  τ  is  an   MS1,1 – transduction,  
     then  τ (C)  has  clique-width   <  gτ(k).    

Follows from  : 

 C  has  bounded  clique-width  ⇔   C   ⊆  τ(Trees)  for  some     
MS1,1 – transduction  τ     (the proof  is  constructive ) 
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Proof sketch for the  logical  characterization  of  bounded  clique-width  
 

1)  A  k-clique-width  term  is   a   rooted  binary   tree  with  each node  labelled  

by  one  of   the   finitely  many  operations  symbols  using  labels  1,…,k. 

 

2)  For each  k,  an  MS-transduction  can  construct  the  defined  graph  from  

this labelled tree.      (Extension  of  the proof  given  for  cographs.) 

Hence : If  a  graph class  C   has  clique-width  <  k ,   then  C  ⊆ τk(Trees)  

for  some    MS– transduction  τk.      

 The  converse  uses  technical  tools  from model theory      (Fefermann-Vaught) 

 
 
The  proofs  for  tree-width  are  similar.
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 Gives  easy  proofs  (but  no  good  bounds)  of  facts  like : 
 
  1)  If  C  has  bounded tree-width,  its  line  graphs  have  bounded  clique-width. 
 
  2)  If  C  (directed graphs)  has  bounded tree-width  or  clique-width, the   

transitive  closures  of  its  graphs  have  bounded  clique-width. 
 

  3)  If  C  (directed graphs)  has  bounded clique-width, the  transitive  reductions  

of  its  graphs  have bounded  clique-width.  
  (Not  trivial  because  clique-width  is  not  monotone  for  subgraph  inclusion).  
 

  4)  The  set  of  chordal  graphs  has  unbounded  clique-width   
   (because  an  MS transduction  can  define  all  graphs  from  chordal 

    graphs,  and  graphs  have  unbounded clique-width). 

 

  5)  k-leaf powers  and  similar  “power”  graphs  of trees have bounded  cwd
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   6)  Circle  graphs 
 
  
 
 
 
 
 
 
 
 
 
   Chord  diagram   Δ     Circle  graph G(Δ)  
 
Thm: Graphs  Δ  have  bounded tree-width  ⇔  G(Δ)  have  bounded clique-width  
 1)   MS1,1   transduction   from   G(Δ)    to   Δ ; 
 2)   Use  “split decomposition” (Cunningham);   MS1,1  transduction  from  
prime  circle  graphs  to  their  unique  chord  diagrams.
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Logical  characterizations  of  equational  sets 

 
 C  is  “tree-width” –equational   ⇔    C   =  τ(Trees)  for  some     

 MS2,2 – transduction   τ       (For  bounded  tree-width  we have  ⊆) 

           
   

 C  is  “clique-width” –equational  ⇔   C  =  τ(Trees)  for  some     

MS1,1 – transduction  τ      

 

 Consequences  :  Closure   of   equational  sets  under  the  

 corresponding  transductions.    
      (Extend  robustness   results   for   bounded  widths).



 42

 

  Encoding  powers  of  graph  classes via  MS  transductions 
 
 An   MS-transduction  τ  defines  a  graph  H  inside  a  graph G   

with  help  of  parameters  (sets  of  vertices  or  edges  of   G).   

 Say  H  is  encoded  in  G :  the encoding  is  represented  by  the 

parameters  and  τ  is  the  decoding   function.  

 

 The encoding  powers  of graph classes  C   and   D   can be 

compared as follows : 

 
  C  <  D    if   C   ⊆  τ( D)    for some  MS  transduction  τ  
 
 We  get  a  quasi-order  on  graph  classes. 
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 We   consider   MS2,2 - transductions :  (formulas  use  edge  set  
quantifications  and  must  construct  incidence  graphs  as  outputs.) 
 

 

 For  graph  classes  C   and   D   we   let : 
 
 C  <  D if   C   ⊆   τ( D)  for  some  MS2,2 -transduction  τ  
 
 C  ≡ D  if  C  <  D  and  D  <  C  
 
 C  <  D if   C  <  D   and    C  ≡ D   
 C  <c  D if  C  <  D  and  there is  no  E   with   C  <  E  <  D 
 
 What   is  the structure  of  <c   (the covering relation of  < )  ? 
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With help of  “Graph  Minors  1  and  5 ” : 
   { • }  <  Paths  <c  Trees <c  Grids   
 
These    classes encode   respectively   : 

finite sets,   
sets of graphs  of  bounded path-width,  
sets of graphs  of  bounded tree-width,   
all  sets  of   graphs . 
 
Proof   :  Trees <c  Grids.   
 
If  a  graph  class  C  has  bounded  tree-width, it  is   <   Trees. 
 
If C   has  unbounded  tree-width, it contains  all  grids as  minors, 

hence :  Grids  <  C  and  Grids ≡  C,  because  Graphs   <   Grids 
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Proof   :  All  graphs   <   Grids  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

A  monadic  second-order  transduction  using  parameters  X,Y,Z  

can  transform   all   grids  into   all  incidence   graphs   Inc(G).
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More  difficult :   What   is   below    Paths ? 
       
 
Answer                          (A. Blumensath  and   B. C., Logic  Colloquium  2008) 
 
 

{ • }  <c T2   <c  … Tn  <c  Tn+1<c … < Paths  <c Trees <c Square  grids   
 
 
where  Tn  is  the  class  of  rooted  trees  of  height  at   most  n  (and 
unbounded  degree). 
 
 
Idea :   Tn   encodes   the classes  of  graphs having tree-decompositions  

of  height  at  most  n  and  width  at   most k   (for all   k). 
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Definition :   n-depth tree-width  of  G  =  twdn(G) =  minimal width  of a 

tree-decomposition  of  G   of   height  at   most   n. 
 

Related  notion :  tree-depth                   (Nesetril , Ossona  de  Mendez). 

td(G)  =   minimal   k  such  that  each  conn.  comp.  of  G  has  a    

 depth-first  (normal)   spanning  tree  of   height  at   most   k. 
 

Some  properties  of  these  variants   of    tree-width : 

 1) pwd(G)  <  n.(twdn(G) +1)  

 2) If  G  is  a  minor  of  H :   twdn(G)  <  twdn(H) ,  td(G)  <  td(H)   

 3) td(G)  <  n   implies   twdn(G)   <  n, 

 4) twdn(G)   <  k  implies   td(G)  <  n.k    
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  Excluded Path Theorem   
(cf.  Excluded Tree  and  Grid  Theorems  of  GM1  and  GM5) 
   

 A  class   of   graphs  C  excludes   some   path  as  a  minor   

  (equivalently, as  a  subgraph) 

  ⇔   for some n,  C  has   bounded   n-depth tree-width 

   ⇔   C  has   bounded   tree depth. 

  

 We  use  n-depth  tree-width  rather  than  tree-depth   to characterize   

the  graph classes encoded  by  trees  of  each height 
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Logical  properties  of  n-depth  tree-width. 
 

Proposition  :   For each  n  and   k, there exists  an   MS2,2 -transduction 

that  maps  every  graph  of  n-depth  tree-width  at  most k  to  all  its   

strict tree-decompositions  of height at most  n  and  width at most k   
 

(strict =  with  certain  connectivity properties ; every  tree-decomposition  can be made  

strict  without  increasing  height  and  width). 
 

 

Remark  :   The  obstruction  sets  of  graphs    for  n-depth  tree-width   <  k  are  

computable  from each pair   n,  k    because  we have  monadic  second-order 

characterizations of these classes  and   bounds  on   the   tree-widths  of  the 

obstruction  sets.  

   The same  holds  for   the  property  “ tree-depth   <  k” . 
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In  the  hierarchy : 

{ • }  <c T2   <c  … <c Tn  <c … < Paths  <c Trees <c Grids 
 

each  level  Tn  encodes  the  sets  of  graphs  of  bounded  n-depth   tree-width. 

 

Proofs to be done  : 

1) Tn   <   Paths 

 Trees  of  height  n  can be encoded  as  sequences over [n]  and  

decoded  by  MS-transductions. 

1 2 333 2 33 2 2 33   encodes   the   tree : 

1 

2        2       2       2 

3 3 3  3  3            3   3 
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2) Tn   <  Tn+1   
One cannot  define  by an MS-transduction  all  trees  of height  n+1  from  all  trees  of 

height  n. 

The (technical) proof uses  analysis of  MS definable relations on trees  and some counting 

arguments. 
Case  n = 2.  

Trees of height  2  correspond  (via MS transductions)  to sets  (without relations).  

If  a k-copying MS-transduction  with p parameters  transforms  sets  into  trees, these trees have less  

than  k.2p  internal nodes. We cannot get all trees of height 3  from sets  by  a single  MS-transduction. 

 

3) Hence, we  cannot  have    Tn  ≡  Paths 
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“Dichotomy arguments” : 

1) Let  C   be a  set  of  bounded  pathwidth  (i.e.,  C  <  Paths ): 

 Either : it contains all  paths as minors,  then  C  ≡  Paths 

 Or : (Excluded Path Thm)  twdn (C) is bounded  and  C  <  Tn   for some n  
 

 

2) Let  C   be a  set  of  n-depth  tree-width  <   k  (C  <  Tn ): 

 Either : for all m, there is  G  in  C  s.t., for each  n-depth  tree-dec. U 

   of width  k  of  G , the tree U contains  T(n,m)   (T(n,m) = the m-ary   

   complete tree  of  height n)  and then  Tn  <  C      (because  n-depth tree-

    decompositions  of   width  k  are  definable  by   MS transductions) 

      Or :  for  some m, every G  in  C   has an n-depth  tree-dec.  U of width 

k, s.t. U does not contain T(n,m).  By  contracting  some  edges of U, one  

gets  an (n-1)-depth  tree-dec. of G of width  m.(k+1), hence  C  <  Tn-1. 
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Open  question :  What  about   the  hierarchy  based  for  

            MS1,1 – transduction ? 

Theorem   (B.C.  &  Oum, 2007)  : 

There  exists  an MS1,1 - transduction (using even cardinality set 

predicates)  that  transforms  every  set  of  undirected  graphs of 

unbounded  rank-width  into  the  set  of  all  square  grids. 

       (Uses  vertex-minors  instead of minors) 

 We  need  a  result  corresponding  to  GM1 about “linear  rank-width”  

and  excluding  a  forest  as  a  vertex-minor. 

 We  need  also  something  like “n-depth rank-width” and  

constructions   by   MS  tranductions   of  appropriate  rank-

decompositions. 
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Conclusion : The  overview  chart 

 

Graph                        Equational  

operations             sets  of  graphs 

 

Fixed   parameter  tractable 

algorithms             Language  theory 

                      for  graphs  

              Recognizable 

                                 sets of graphs        

Monadic  2nd-order           Monadic  2nd -order  

                                       logic               transductions  
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Appendix  :      The   fundamental   property   of   MS   transductions : 

 

     S   ⎜             τ (S) 
 

     τ #(ψ)             ⎜  ψ 
 

Every  MS   formula  ψ  has  an  effectively  computable   
backwards  translation  τ #(ψ), an MS formula, such that : 

 

S   ⎜=  τ #(ψ)    if   and  only  if    τ (S)   ⎜=  ψ 
 

 The verification of  ψ  in  the object  structure τ(S)  reduces  to  the  
verification  of  τ #(ψ)   in  the  given  structure  S     
 (because  S  contain all the  necessary  information  to  describe  τ(S) ;   
 the MS properties  of τ(S) are expressible by MS formulas in S ).  
 

 
 


