

Logical Descriptions of Graph Hierarchies

and of many other things

Bruno Courcelle

Université Bordeaux 1, LaBRI, & Institut Universitaire de France

Reference : Graph structure and monadic second-order logic,

Book to be published by Cambridge University Press, readable on :

http://www.labri.fr/perso/courcell/ActSci.html

 2

A chart of main notions

Graph Equational

operations sets of graphs

Fixed parameter tractable

algorithms Applications to

 graph theory

Monadic 2nd-order Monadic 2nd -order

logic transductions

 3

Logic = Monadic Second-Order Logic (MS)

 Formal expression of graph properties

 And of graph transformations (MS transductions)

1) Descriptions and algorithmic constructions of sets of minimal

excluded minors and minimal induced subgraphs

2) Logical characterizations of the graph hierarchies based

 on tree-width or clique-width (or rank-width)

 short proofs of tree-width or clique-width (un)boundedness

3) A linear hierarchy of graph classes based on MS transductions

 4

Monadic Second-Order Logic (quick review)

= First-order logic on power-set structures

= First-order logic extended with (quantified) variables

denoting subsets of the domains.

MS (expressible) properties : transitive closure, properties of paths, connectivity,

planarity (via Kuratowski, uses connectivity), k-colorability.

Examples of formulas for G = (VG , edgG(.,.)), undirected

3-colorability :
∃X,Y (”X,Y are disjoint” ∧ ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧(u ∈V-(X∪Y) ⇒ v ∉V-(X∪Y)]})

 5

Non connectivity :
∃X (∃x ∈ X ∧ ∃y ∉ X ∧ ∀u,v (u ∈ X ∧ edg(u,v) ⇒ v ∈ X))

Transitive and reflexive closure : TC(R ; x, y) :

∀ X { “X is R-closed” ∧ x ∈ X ⇒ y ∈ X }
 where “X is R-closed” is defined by : ∀u,v (u ∈ X ∧ R(u,v) ⇒ v ∈ X)

R can be defined by a formula ϕR as in :
∀x,y (x ∈ Y ∧ y ∈ Y ⇒ TC(“u ∈ Y ∧ v ∈ Y ∧ edg(u,v)” ; x, y)
 expressing that G[Y] is connected (Y is free in ϕR).

Application : G contains (fixed) H as a minor where VH = {1,…,k} :
 there exist pairwise disjoint vertex sets X1,…, Xk

in G such that each G[Xi] is connected and, whenever
if i -- j in H, there is an edge between Xi and Xj in G.

Consequence : planarity is MS-expressible (no minor K5 or K3,3).

 6

Edge set quantifications increase the expressive power

Incidence graph of G undirected, Inc(G) = (VG ∪ EG, incG(.,.))

incG(v,e) ⇔ v is a vertex of edge e.

Monadic second-order formulas written with inc can use quantifications

on sets of edges : they define MS2 –expressible graph properties.

 The existence of a perfect matching or of a Hamiltonian circuit or of a

spanning tree of degree < 3 is MS2 -expressible but not MS-expressible.

Definition : A set graphs L is MS1-definable if L = { G finite / G ⎜= ϕ}.

It is MS2 –definable if L = { G finite / Inc(G) ⎜= ϕ }.

(for a fixed MS sentence (formula without free variables) ϕ).

 7

Two descriptions of graph properties

MS1 : MS sentences interpreted on FPT verification

structure (VG , edgG (.,.)) parameter clique-width

(allows only vertex set quantifications)

MS2 : MS sentences interpreted on FPT verification

incidence graphs : (VG ∪ EG, incG(.,.)) parameter tree-width

(allows vertex and edge set quantifications)

MS logic is interesting with conditions like bounded tree-width

or bounded clique-width (3-colorability is MS but NP-complete).

 8

Algebraic view of graph decompositions

Graph operations characterizing tree-width

Graphs have distinguished vertices called sources (or terminals or boundary vertices)

pointed to by labels from a finite set : {a, b, c, ..., h}.

Binary operation(s) : Parallel composition

G // H is the disjoint union of G and H ; sources with same label are fused.

(If G and H are not disjoint, one first makes a copy of H disjoint from G).

 9

Unary operations :

 Forget a source label
 Forgeta(G) is G without a-source : the source is no longer distinguished ;

(it is made "internal").

 Source renaming :
Rena b(G) exchanges source labels a and b

(replaces a by b if b is not the label of a source)

 Constant symbols denote basic graphs : the connected graphs with at most

 one edge.

 An algebra of graphs the “tree-width” algebra

Proposition : A graph has tree-width < k ⇔ it is defined by a term

that uses < k+1 source labels.

 10

 Example : Directed series-parallel graphs
They are generated by the constant e = 1 2 ,

// (parallel-composition) and series-composition defined from other operations by :

G • H = Forget3(Ren2 3 (G) // Ren1 3 (H))

Example :

 1 • G • H • 2

 3

 1 • • 2

The defining equation (S is the set of series-parall graphs) :

S = S // S ∪ S • S ∪ e

 11

Graph operations defining clique-width
Graphs are simple, directed or not.

k labels : a , b , c, ..., h. Each vertex has one and only one label ;

a label p may label several vertices, called the p-ports.

One binary operation: disjoint union : ⊕

Unary operations: Edge addition denoted by Add-edga,b

Add-edga,b(G) is G augmented

with directed or undirected edges

from every a-port to every b-port.
The number of added edges depends

on the argument graph.

 H = Add-edga,b(G) ; only 5 new edges added

 12

Vertex relabellings :
Relaba b(G) is G with every a –port made into a b-port

Basic graphs are those with a single vertex.

Another algebra of graphs : the “clique-width” algebra.

Definition : A graph has clique-width < k ⇔ it is defined by a term

that uses < k labels.

Example : Cliques have

clique-width 2.

Kn is defined by tn where tn+1 =

Relabb a(Add-edga,b(tn ⊕ b))

 13

The problem of checking if G has clique-width < k is

NP-complete (Fellows et al.) (input is (G,k))

The equivalent notion of rank-width has good combinatorial and

algorithmic properties; it has also an algebraic characterization with

more complicated operations (compositions of clique-width operations).

Defined first for undirected graphs (Oum and Seymour), but extended to

directed ones (Kanté).

 14

From both algebras, we get :

1) linear notations for finite graphs,

2) finite descriptions of (certain) infinite sets of finite graphs

and compact descriptions of (certain) finite sets of finite graphs,

by means of Equation Systems (defining the equational sets of

the corresponding algebras).

 15

Examples of equational sets of graphs

In the “tree-width” algebra :

Series-parallel : S = S // S ∪ S • S ∪ e

Biconnected outerplanar : (u = undirected edge)

B = fg1(fg2(u // Q)), Q = u // Q ∪ Q • Q ∪ u

In the “clique-width” algebra :

Cographs : C = C ⊕ C ∪ C ⊗ C ∪ 1

 G ⊗ H = Relab2 1(Add-edg1,2(G ⊕ Relab1 2 (H))) (complete join)

Threshold graphs : T = T ⊕ 1 ∪ T ⊗ 1 ∪ 1

 16

 Equational sets in algebras in general

We consider systems of equations where S, T define sets of graphs or …

S = f(k(S), T) ∪ { b }

T = f(T , f(g(T), m(T))) ∪ { a }

and :

 f is a binary operation,

g, k, m are unary operations,

a, b denote basic objects (e.g. graphs up to isomorphism).

An equational set is a component of the least solution of such

an equation system.

This is well-defined in any algebra : Least Fixed Point Theorem.

 17

 For graphs, some facts do not hold as we could wish:

 1) The set of all (finite) graphs is not equational (both algebras).

 2) Neither are the sets of planar graphs and of square grids.

 3) Parsing is sometimes NP-complete

 (checking clique-width, cyclic band-width at most 2)

 18

Theorem : (1) For each k, the set TWD(< k) of graphs of tree-

width < k is equational in the “tree-width”-algebra, and every

“tree-width”-equational set has bounded (“boundable”) tree-width.

 (2) Analogous facts for clique-width.

Filtering Theorems : (1) If L is “tree-width”-equational, and K is

MS2-definable, then L ∩ K is (effectively) “tree-width”-equational.

 (2) If L is “clique-width”-equational, and K is MS1-

definable, then L ∩ K is (effectively) “clique-width”-equational.

 19

Examples of compact descriptions of finite sets

Set T2

What do they come from ?

 20

T2 = the trees that are the minimal excluded minors for the class of

graphs of path-width < 2.

Tk is the corresponding set for path-width < k where (Kajitani et al.) :

T1 consists of

Tk+1 = S(Tk+1 , Tk+1 , Tk+1)

S(A,B,C) = set of star-compositions :

for all G ∈ A, H ∈ B, K ∈ C.

Each set Tk has more than (k !)2 graphs, all with (5/2).(3k-1) vertices,

but has an equation system over the “tree-width”-algebra of size O(k)

 21

 The obstruction set of each minor-closed class is finite (Graph

Minor Theorem) but in many (most ?) cases, very large and difficult

to compute.

 Graphs on the torus : thousands of graphs in the obstruction.

 They are not random sets.

 A list of 10 000 graphs produced by a computer is of little use.

 Grammars should be able to enlighten the regularities.

 22

Logical and equational description of obstructions

1) Let C be minor-closed and characterized by an MS2 sentence ϕ (not

constructed from the obstructions), then the obstruction set Ω(C) is chara-

cterized by the MS2 sentence ψ saying that :

 G ⎜= ¬ ϕ and for every vertex u, G - u ⎜= ϕ and

 for every edge e , G - e ⎜= ϕ and

 for every edge e , G / e ⎜= ϕ (G / e = contraction of e).

2) Although we know that ψ characterizes finitely many graphs, no algorithm can

list them just from the input ψ.

3) For each k, one can construct (using ψ) the finite set Ω(C) ∩ TWD(< k).

4) From an upper bound to the tree-width of Ω(C), we can compute this set

 23

5) At 3) one can construct an equation system for Ω(C) ∩ TWD(< k).

 But we have no guarantee it will be readable.

 Applications (remain “theoretical” because computations are intractable) :

 (AGK = Adler, Grohe, Kreutzer 2008)

 For each k, n :

 Graphs of path-width < k (Kabanets 1997, AGK)

 Graphs of tree-width < k (AGK)

 Graphs of tree-depth < k (below)

 Graphs of n-depth tree-width < k (below)

 Graphs embeddable on a surface (AGK)

 Apex graphs over a minor-closed class with known obstruction set (AGK)

 Union of 2 minor-closed classes with known obstruction sets. (AGK)

 24

Induced subgraph obstructions

Hereditary classes C (closed under induced subgraphs) may have

infinite induced subgraph obstruction sets Σ(C) showing some

“regularities”

 Examples bounds on the corresponding sets Σ

 Chordal graphs tree-width < 2 “twd”-equational

 Perfect graphs clique-width < 4 “cwd”-equational

 Interval graphs tree-width < 3 “twd”-equational

 Comparability graphs clique-width < ? < 10 “cwd”-equational

 Equation systems are able to capture their regularities.

 25

Theorem : Let C be a hereditary class of graphs.

1) If C is MS1-definable, then Σ(C) ∩ CWD(< k) is “cwd”-equational.

2) If C is MS2-definable, then Σ(C) ∩ TWD(< k) is “twd”-equational.

 As for minor-closure, from an MS1 or MS2 sentence that characterizes

C, one can build an MS1 or MS2 sentence that characterizes Σ(C).

 One uses then the Filtering Theorems : equational sets filtered by MS

properties.

 26

Application to interval graphs (the intersection graph of a set of

 intervals of integers)
B. & L. characterize them as “chordal with no asteroidal triple”:

 this is MS1 expressible.

From this characterization, the obstructions have tree-width < 5

In principle, one could

construct a “twd” - equation

system defining these graphs,

known from B.&L. and

of tree- width < 3

 27

Other applications

An algorithm can construct the finite set Σ(C) if C is a hereditary and

MS1 - definable class of cographs.

Finite because cographs are well-quasi-ordered for induced subgraph

inclusion (Damaschke, 1990)

Cographs have clique-width 2, hence Σ(C) has cwd < 3.

Examples : 1) Threshold graphs (Σ = { P4, C4, K2 ⊕ K2 })

 2) Cographs with “modular decomposition tree” of height < k.

 3) “Semi-threshold” : T = T ⊕ T ∪ T ⊗ 1 ∪ 1

 28

Open problems :

(1) Find in such a way the set Σ(Comparability Graphs), an infinite set

identified by Gallai that is “cwd”-equational.

(2) Treat related classes of partially ordered sets.

(3) Design systematic methods to construct “small” “twd”- or “cwd”-

equation systems, (or equation systems of other types) to

represent finite and infinite obstruction sets.

Tools : Monadic second-order logic + algebraic notions (equational and

recognizable sets) + graph theoretic arguments.

 29

Monadic second-order transductions

 Transformations of graphs (more generally of relational structures)

specified by MS1 (or MS2) formulas.

 There are 2 representations for an input graph and 2 for the

output, hence 4 types of graph transductions, denoted by :

MS1,1 (or MS to simplify), MS1,2, MS2,1 and MS2,2

MSi,o means i = type of representation of input, o = type of repres. of output.

 I will mainly compare MS-transductions, for graphs G handled as

(VG, edgG) and MS2,2-transductions, for graphs G represented by

their incidence graphs = (VG U EG , incG)

 30

Main Results (to be made more precise) :

(1) MS-transductions preserve bounded clique-width and “clique-

width”-equational sets

(2) MS2,2-transductions preserve bounded tree-width and “tree-width”-

equational sets

Meaning : Robustness of the graph hierarchies based on clique-
width and tree-width.

 The word “transduction” comes from Formal Language Theory ;

My aim is to extend FLT to graphs and other combinatorial objects.

 31

Definitions

Σ = finite set of relation symbols (R) with fixed arities (ρ(R)).

STR(Σ): finite Σ-relational structures S = < DS , (RS)R ∈Σ >,
 RS relation on DS of arity ρ(R)

An MS transduction is a partial function

τ : STR(Σ) X “data” STR(Γ) specified by MS formulas.

Basic case : τ : STR(Σ) STR(Γ) ; T = τ (S) is defined “inside” S
by MS formulas.

Examples : The edge complement ; the transitive closure of a directed graph.

 32

Next case : T = τ (S, “data”) ; the “data” is a tuple X1, …,Xp of
subsets of the domain of S ; these sets are called the parameters.
Parameters X1, …,Xp are constrained to satisfy an MS property.

Examples : (G, {u}) ⎜ the connected component containing u.

(G,X,Y,Z) ⎜ the minor of G having vertex set X,
 resulting from the contraction of the edges
 of Y and the deletion of the edges and vertices
 of Z. (It is of type MS2,2).

 In the second example, no two vertices of X should be linked by a

 path of edges in Y.

τ (S) : = the set of all T = τ (S, X1, …,Xp)

 for all “good” tuples of parameters.

 33

General case : T is defined as above inside
S ⊕ S ⊕ ... ⊕ S : disjoint copies of S with "marked"

 equalities of copied elements

 1,2 2,3
 * * *

 * * *

 * * *

 * * *

 S ⊕ S ⊕ S

Composition Theorem : The composition of two MS transductions

is an MS transduction.

 34

Example 1 : From a term to a cograph

Terms are written with ⊕ (disjoint union), ⊗ (complete join) and constants

x,y,z, … denoting

vertices x,y,z ….

 Vertices = {x,y,z,u,v,w } = occurrences of constants in the term.

 Two vertices are adjacent if and only if their least common ancestor is

 labelled by ⊗ (like y and z , or u and w).

 These conditions can be expressed by MS formulas on the labelled tree.

 35

Example 2 : From a tree to

 its incidence graph

 (also a tree)

 Tree T Inc(T)

T = < N, edg> ; we use parameter { r } to make T rooted and directed

τ(T, { r }) = < N U (N - { r }) x { 1 } , inc(.,.) >

inc(x,y) is defined by :
x = (y,1) ∨ ∃ z [x = (z,1) ∧ edg(y,z)

∧ “y is on the path from r to z”]

From trees (or terms) to graphs :

 MS1,1 = MS2,1 and MS1,2 = MS2,2 .

 36

 MS1,1 - transductions and MS2,2 – transductions are incomparable

 Why ? For expressing graph properties, MS2 logic is more powerful

than MS1 logic (the “ordinary” MS logic).

 For building graphs with MS2,2 - transductions, we have more possibilities

of using the input graph, but we want more for the output : to specify

each edge as a copy of some vertex or some edge of the input graph.

 Transitive closure is MS1,1 but not MS2,2

 Edge subdivision is MS2,2 but not MS1,1

Proofs : Easy since, if S is transformed into T by an MS-transduction :

 ⎜ DT ⎜ < k. ⎜ DS ⎜ for fixed k

 37

Robustness results : Preservation of widths

For every class of graphs C :

 1) If C has tree-width < k and τ is an MS2,2 – transduction,
 then τ (C) has tree-width < fτ(k)
 Follows from :

 C has bounded tree-width ⇔ C ⊆ τ(Trees) for some
MS2,2 – transduction τ (the proof is constructive in both directions)

 2) If C has clique-width < k and τ is an MS1,1 – transduction,
 then τ (C) has clique-width < gτ(k).

Follows from :

 C has bounded clique-width ⇔ C ⊆ τ(Trees) for some
MS1,1 – transduction τ (the proof is constructive)

 38

Proof sketch for the logical characterization of bounded clique-width

1) A k-clique-width term is a rooted binary tree with each node labelled

by one of the finitely many operations symbols using labels 1,…,k.

2) For each k, an MS-transduction can construct the defined graph from

this labelled tree. (Extension of the proof given for cographs.)

Hence : If a graph class C has clique-width < k , then C ⊆ τk(Trees)

for some MS– transduction τk.

 The converse uses technical tools from model theory (Fefermann-Vaught)

The proofs for tree-width are similar.

 39

 Gives easy proofs (but no good bounds) of facts like :

 1) If C has bounded tree-width, its line graphs have bounded clique-width.

 2) If C (directed graphs) has bounded tree-width or clique-width, the

transitive closures of its graphs have bounded clique-width.

 3) If C (directed graphs) has bounded clique-width, the transitive reductions

of its graphs have bounded clique-width.
 (Not trivial because clique-width is not monotone for subgraph inclusion).

 4) The set of chordal graphs has unbounded clique-width
 (because an MS transduction can define all graphs from chordal

 graphs, and graphs have unbounded clique-width).

 5) k-leaf powers and similar “power” graphs of trees have bounded cwd

 40

 6) Circle graphs

 Chord diagram Δ Circle graph G(Δ)

Thm: Graphs Δ have bounded tree-width ⇔ G(Δ) have bounded clique-width
 1) MS1,1 transduction from G(Δ) to Δ ;
 2) Use “split decomposition” (Cunningham); MS1,1 transduction from
prime circle graphs to their unique chord diagrams.

 41

Logical characterizations of equational sets

 C is “tree-width” –equational ⇔ C = τ(Trees) for some

 MS2,2 – transduction τ (For bounded tree-width we have ⊆)

 C is “clique-width” –equational ⇔ C = τ(Trees) for some

MS1,1 – transduction τ

 Consequences : Closure of equational sets under the

 corresponding transductions.
 (Extend robustness results for bounded widths).

 42

 Encoding powers of graph classes via MS transductions

 An MS-transduction τ defines a graph H inside a graph G

with help of parameters (sets of vertices or edges of G).

 Say H is encoded in G : the encoding is represented by the

parameters and τ is the decoding function.

 The encoding powers of graph classes C and D can be

compared as follows :

 C < D if C ⊆ τ(D) for some MS transduction τ

 We get a quasi-order on graph classes.

 43

 We consider MS2,2 - transductions : (formulas use edge set
quantifications and must construct incidence graphs as outputs.)

 For graph classes C and D we let :

 C < D if C ⊆ τ(D) for some MS2,2 -transduction τ

 C ≡ D if C < D and D < C

 C < D if C < D and C ≡ D
 C <c D if C < D and there is no E with C < E < D

 What is the structure of <c (the covering relation of <) ?

 44

With help of “Graph Minors 1 and 5 ” :
 { • } < Paths <c Trees <c Grids

These classes encode respectively :

finite sets,
sets of graphs of bounded path-width,
sets of graphs of bounded tree-width,
all sets of graphs .

Proof : Trees <c Grids.

If a graph class C has bounded tree-width, it is < Trees.

If C has unbounded tree-width, it contains all grids as minors,

hence : Grids < C and Grids ≡ C, because Graphs < Grids

 45

Proof : All graphs < Grids

A monadic second-order transduction using parameters X,Y,Z

can transform all grids into all incidence graphs Inc(G).

 46

More difficult : What is below Paths ?

Answer (A. Blumensath and B. C., Logic Colloquium 2008)

{ • } <c T2 <c … Tn <c Tn+1<c … < Paths <c Trees <c Square grids

where Tn is the class of rooted trees of height at most n (and
unbounded degree).

Idea : Tn encodes the classes of graphs having tree-decompositions

of height at most n and width at most k (for all k).

 47

Definition : n-depth tree-width of G = twdn(G) = minimal width of a

tree-decomposition of G of height at most n.

Related notion : tree-depth (Nesetril , Ossona de Mendez).

td(G) = minimal k such that each conn. comp. of G has a

 depth-first (normal) spanning tree of height at most k.

Some properties of these variants of tree-width :

 1) pwd(G) < n.(twdn(G) +1)

 2) If G is a minor of H : twdn(G) < twdn(H) , td(G) < td(H)

 3) td(G) < n implies twdn(G) < n,

 4) twdn(G) < k implies td(G) < n.k

 48

 Excluded Path Theorem
(cf. Excluded Tree and Grid Theorems of GM1 and GM5)

 A class of graphs C excludes some path as a minor

 (equivalently, as a subgraph)

 ⇔ for some n, C has bounded n-depth tree-width

 ⇔ C has bounded tree depth.

 We use n-depth tree-width rather than tree-depth to characterize

the graph classes encoded by trees of each height

 49

Logical properties of n-depth tree-width.

Proposition : For each n and k, there exists an MS2,2 -transduction

that maps every graph of n-depth tree-width at most k to all its

strict tree-decompositions of height at most n and width at most k

(strict = with certain connectivity properties ; every tree-decomposition can be made

strict without increasing height and width).

Remark : The obstruction sets of graphs for n-depth tree-width < k are

computable from each pair n, k because we have monadic second-order

characterizations of these classes and bounds on the tree-widths of the

obstruction sets.

 The same holds for the property “ tree-depth < k” .

 50

In the hierarchy :

{ • } <c T2 <c … <c Tn <c … < Paths <c Trees <c Grids

each level Tn encodes the sets of graphs of bounded n-depth tree-width.

Proofs to be done :

1) Tn < Paths

 Trees of height n can be encoded as sequences over [n] and

decoded by MS-transductions.

1 2 333 2 33 2 2 33 encodes the tree :

1

2 2 2 2

3 3 3 3 3 3 3

 51

2) Tn < Tn+1
One cannot define by an MS-transduction all trees of height n+1 from all trees of

height n.

The (technical) proof uses analysis of MS definable relations on trees and some counting

arguments.
Case n = 2.

Trees of height 2 correspond (via MS transductions) to sets (without relations).

If a k-copying MS-transduction with p parameters transforms sets into trees, these trees have less

than k.2p internal nodes. We cannot get all trees of height 3 from sets by a single MS-transduction.

3) Hence, we cannot have Tn ≡ Paths

 52

“Dichotomy arguments” :

1) Let C be a set of bounded pathwidth (i.e., C < Paths):

 Either : it contains all paths as minors, then C ≡ Paths

 Or : (Excluded Path Thm) twdn (C) is bounded and C < Tn for some n

2) Let C be a set of n-depth tree-width < k (C < Tn):

 Either : for all m, there is G in C s.t., for each n-depth tree-dec. U

 of width k of G , the tree U contains T(n,m) (T(n,m) = the m-ary

 complete tree of height n) and then Tn < C (because n-depth tree-

 decompositions of width k are definable by MS transductions)

 Or : for some m, every G in C has an n-depth tree-dec. U of width

k, s.t. U does not contain T(n,m). By contracting some edges of U, one

gets an (n-1)-depth tree-dec. of G of width m.(k+1), hence C < Tn-1.

 53

Open question : What about the hierarchy based for

 MS1,1 – transduction ?

Theorem (B.C. & Oum, 2007) :

There exists an MS1,1 - transduction (using even cardinality set

predicates) that transforms every set of undirected graphs of

unbounded rank-width into the set of all square grids.

 (Uses vertex-minors instead of minors)

 We need a result corresponding to GM1 about “linear rank-width”

and excluding a forest as a vertex-minor.

 We need also something like “n-depth rank-width” and

constructions by MS tranductions of appropriate rank-

decompositions.

 54

Conclusion : The overview chart

Graph Equational

operations sets of graphs

Fixed parameter tractable

algorithms Language theory

 for graphs

 Recognizable

 sets of graphs

Monadic 2nd-order Monadic 2nd -order

 logic transductions

 55

Appendix : The fundamental property of MS transductions :

 S ⎜ τ (S)

 τ #(ψ) ⎜ ψ

Every MS formula ψ has an effectively computable
backwards translation τ #(ψ), an MS formula, such that :

S ⎜= τ #(ψ) if and only if τ (S) ⎜= ψ

 The verification of ψ in the object structure τ(S) reduces to the
verification of τ #(ψ) in the given structure S
 (because S contain all the necessary information to describe τ(S) ;
 the MS properties of τ(S) are expressible by MS formulas in S).

