

Special tree-width and the verification

of monadic second-order graph properties
with edge quantifications

Bruno Courcelle

Institut Universitaire de France & Université Bordeaux 1, LaBRI

References : Graph structure and monadic second-order logic, book to be published by
 Cambridge University Press, see : http://www.labri.fr/perso/courcell/ActSci.html

 On the model-checking of monadic second-order formulas

 with edge set quantifications. Discrete Applied Maths, to appear

 2

Main topics of the lecture

 Fixed-parameter tractable model-checking algorithms

 for monadic second-order (MS) sentences on graphs

 with respect to clique-width and tree-width.

 Review of the method and introduction of fly-automata.

 Introduction of special tree-width, a variant of tree-width,

 motivated by the case of MS sentences using

 edge quantifications.

 3

 Two ways of considering graphs

1) A graph (finite, up to isomorphism) is an algebraic object,

 an element of an algebra of graphs
 (Similar to words, elements of monoids)

 2) A graph is a logical structure ;

 graph properties can be expressed by logical formulas
 (FO = first-order, MS = monadic second-order, SO = second-order)

 Consequences:

 a) Language Theory concepts extend to graphs

 b) Algorithmic meta-theorems

 4

An overview chart

Graph "Context-free"

operations sets of graphs

Fixed -parameter tractable

algorithms Language theory

 for graphs

 Recognizable

 sets of graphs

Monadic 2nd-order Monadic 2nd -order

logic transductions

 5

Some algorithmic meta-theorems

 Language Graphs Complexity class

 FO All P

 FO Bounded expansion Linear (2010)

 ∃SO All NP

 MS2 (edge quantif.) Bounded tree-width Linear

 Bounded tree-width LogSpace (2010)

 MS Bounded clique-width Cubic

 Other meta-theorems based on MS logic :

 Labelling schemes (or indexing), Enumeration

 Kernelization (for FPT algorithms)

 6

Summary of lecture

1) Monadic second-order (MS) model checking;

 Expressive power of monadic second-order logic

2) Two graph algebras, tree-width and clique-width

3) Special tree-width (new)

4) Automata constructed from MS formulas

 Case of clique-width

 Case of special tree-width

 Difficulties with tree-width

5) Experiments with fly-automata (joint work with Irène Durand)

 7

1. MS model-checking : the general scheme

 k ϕ (MS formula)

 Automaton Constructor

 Yes

G Graph Analyzer t A(ϕ, k)

 No

 Error : wd(G) > k

Steps done “once for all”, independent of G

A(ϕ,k): finite automaton on terms (wd = tree-width or clique-width or equivalent)

 8

FPT model-checking algorithms

MS formulas MS2 formulas
 using edge quantifications

G = (VG , edgG(.,.).) Inc(G) = (VG ∪ EG, incG(.,.))

 for G undirected : incG(e,v) ⇔

v is a vertex (in VG) of edge e (in EG)

FPT for clique-width FPT for tree-width

 9

Expressive powers of logical languages
(Typical examples)

FO : maximal degree = 4 , diameter < 6 , outdegree < 3.

MS properties that are not FO : 3-colorablility

∃X,Y (”X,Y are disjoint” ∧ ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧(u ∉ X∪Y ⇒ v ∈ X∪Y] })

 Connectedness, negation of :

∃X (∃x ∈ X ∧ ∃y ∉ X ∧ ∀u,v (u ∈ X ∧ edg(u,v) ⇒ v ∈ X))

Planarity (via two forbidden minors K5 and K3,3)

Perfectness (via forbidden holes and anti-holes)

 For a word or a term, membership in a fixed regular language
 (FO property in certain cases)

 10

Expressive powers of logical languages (continued)

MS2 property that is not MS : has a perfect matching or

a Hamiltonian circuit or a spanning tree of degree < 3

SO property that is not MS2 : has a nontrivial automorphism

 For a word, is = anbn for some n (nonregular language).

 11

2. Graph algebras and widths of graphs

Two (not one) and only two robust (in a precise sense) graph

algebras:

the “HR” algebra algebraic characterization of tree-width,

the “VR” algebra definition of clique-width.

Note : “HR” refers to the “Hyperedge-Replacement (context-free) graph

grammars”; they generate the equational sets of the “HR” algebra;

“VR” refers to the “context-free Vertex-Replacement graph grammars”;

they generate the equational sets of the “VR” algebra

 12

The “HR” algebra and tree-width

Graphs with multiple edges, equipped with distinguished vertices

called sources (or boundary vertices or terminals) pointed to by source

labels from finite sets {a, b, ..., d}.

Binary operation : Parallel composition

 G // H is the disjoint union of G and H, where sources with same

name are fused (If G

and H are not disjoint,

one takes a copy

of H disjoint from G).

 13

Unary operations : Forget a source label

 Forgeta(G) is G without a-source: the source is no longer

a distinguished vertex : it is made "internal".

 Source renaming :

Rena b(G) exchanges source labels a and b

 (replaces a by b if b is not the label of a source)

Nullary operations denote the most elementary graphs :

 the connected graphs with at most one edge.

 14

 Tree-decompositions

a decomposition of width 3

 15

Proposition: A graph has tree-width ≤ k ⇔ it can be constructed

from basic graphs with ≤ k+1 labels by using the operations // ,

Rena b and Forgeta

From an algebraic expression to a tree-decomposition

Example : cd // Rena c (ab // Forgetb(ab // bc))

(the constant ab denotes an edge from source

 a to source b)

The tree-decomposition

associated with this term

 16

The “VR” algebra and clique-width.

Clique-width was originally defined for simple graphs, but we extend

the definitions to graphs with multiple edges.

Graphs are loop-free (just to simplify notation).

They have vertex labels : a,b,c ,... Each vertex has a single label,

and each label designates a set of vertices (not a unique one as in HR)

Binary operation : disjoint union : ⊕

Well-defined up to isomorphism; one takes disjoint copies

 G ⊕ G is not equal to G

 17

Unary operations: Edge addition denoted by Adda,b :

Adda,b(G) is G augmented with undirected edges between every a-labelled

vertex and every b-labelled vertex.

 Multiple edges may be created.

 a a c a a c

b b d b b d

The directed version of Adda,b adds directed edges from every

 a-labelled vertex to every b-labelled vertex.

 18

Vertex relabellings

Relaba b(G) is G with every label a changed into b

Variant : Relab h (G) is G with every label a changed into h(a) for

some function h : C C ; C is the finite set of labels.

Basic graphs
 a : one vertex labelled by a, for each a in C

 ∅ : the empty graph (yes, it will be useful !)

 19

Definition : A graph G (not necessarly simple) has clique-width ≤ k

 ⇔ it can be constructed from basic graphs with the operations

 ⊕, Adda,b, Adda,b , Relaba b and constants a with labels a, b in a

set C of k labels.

 Its (exact) clique-width cwd(G) is the smallest such k.

Note : It is NP-complete to check if cwd(G)=k (input : (G,k)) (Fellows et al.)

Cubic approximation algorithms have been given (Oum, Hlineny, Seymour).

Bounded clique-width : cliques, cographs, distance hereditary graphs, every

class of bounded tree-width

Unbounded clique-width : tournaments, planar graphs (even square grids).

 20

Comparison with tree-width

For G undirected (Corneil and Rotics) :

 cwd(G) < 3 . 2 twd(G)-1

For G directed :

 cwd(G) < 7 . 4 twd(G)-1 - 3 twd(G) < 2 2.twd(G) + 1

 No polynomial bound : cwd(G) < poly(twd(G))

In both cases :

 cwd(G) < pwd(G) + 2

pwd = path-width = tree-width with paths instead of trees

 21

FPT model-checking algorithms

For MS properties, the parameter is clique-width.

For MS2 properties, the parameter is tree-width and cannot be

clique-width.

By Kreutzer, Makowsky et al. MS2 model-checking needs restriction to

bounded tree-width unless P=NP, ETH, Exptime=NExptime etc…

The case of MS2 formulas reduces to that of MS ones:

G of tree-width k > 2 Inc(G) has tree-width k,

 hence, clique-width < 2O(k) (exponential blow-up)

every MS2 property of G is an MS property of Inc(G)

 22

3. Special tree-width

Tree-decompositions

a decomposition of width 3 (= 4 – 1).

 23

 Definition: Special tree-width is the minimal width of a special tree-

decomposition (T,f) where :

 (a) T is a rooted tree,

 (b) the set of nodes whose boxes

contain any vertex is a directed path

Motivations : (1) Comparison with

 clique-width (no exp. blow-up)

(2) The automata for checking

adjacency are exponentially smaller

than for bounded tree-width

 24

Properties of special tree-width

 twd = tree-width ; pwd = path-width ; sptwd = special tree-width ;

 cwd = clique-width.

 1) twd(G) < sptwd(G) < pwd(G)

 2) cwd(G) < sptwd(G) + 2 (for G simple).

 whereas cwd(G) < 2 2.twd(G) + 1 (exponential is not avoidable)

3) sptwd(G) < 20 (twd(G)+1). MaxDegree(G)
 (for a set of graphs of bounded degree, bounded special tree-width

 is equivalent to bounded tree-width).

 25

 4) Trees have special tree-width 1 (= tree-width) but

 graphs of tree-width 2 have unbounded special tree-width.

5) The class of graphs of special tree-width < k is closed under:

 - reversals of edge directions,

 - taking topological minors (subgraphs and smoothing vertices)

 but not under taking minors.

 26

Graphs of tree-width 2 have unbounded special tree-width

Proof sketch: If G ⊗ * (= G augmented with a universal vertex *) has

special tree-width k, then it has path-width < k.

Let G be any tree : G ⊗ * has tree-width 2.

If G ⊗ * has special tree-width < k, then G has path-width < k.

But trees have unbounded path-width, hence graphs of tree-width 2 have

unbounded special tree-width.

 27

Terms that characterize special tree-width;

and construction of automata for MS2 properties.

Definition: Special terms

They use the graph operations that define clique-width for graphs with

multiple edges (Key point : no “vertex fusion” is needed)

 1) The set C of labels contains ⊥ (to mean “terminated vertex”)

 2) Operations Relab a c and Adda,b only if a, b ≠ ⊥

 3) Subterms define graphs with < 1 vertex labelled by a if a ≠ ⊥

 4) Adda,b (t) allowed as subterm only if G(t) has one vertex x labelled

by a and one vertex y labelled by b. Similar definitions for directed

graphs.
 Edges are added “one by one” and are in bijection with the occurrences of the

operations Adda,b , that can define multiple edges.

 28

Proposition: (1) G has special tree-width < k ⇔ it is defined by a

special term using < k + 2 labels (including the particular label ⊥)

 (2) cwd(G) < sptwd(G) + 2

We will compare:

 path-width and clique-width,

 tree-width and clique-width,

 special tree-width and clique-width

 29

Comparing path-width and clique-width :

cwd (G) < pwd(G) + 2

 Idea : By traversing bottom-up the path
 decomposition, by using 4 colors + ⊥,

 the clique-width operations can

 add, one by one, new vertices

 (using ⊕ i) and new edges (using Adda,b

 or Adda,b).

 ⊥ is for “terminated vertices”.

 30

 For tree-width : cwd(G) < 2 2.twd(G) + 1

 Because of vertex 3, common to two “son boxes”, of the tree-dec,

 the previous method does not work. (It does not allow fusion of vertices).

 If a box of the tree-decomposition has k vertices, then 2k-1 labels are

 necessary to specify how the vertices below it are linked to its vertices.

 (22k – 1 for directed graphs).

 31

 For special tree-width (as for path-width) : cwd(G) < sptwd(G)+2

The red dotted edges
 are not incident.

 Two “brother” boxes

 (b, e) are disjoint.

 This is

 the characteristic

 property of special

 tree-decompositions

 32

 Special tree-width is interesting for model-checking of

 MS2 properties (as we will see) but the parsing problem

 is open :

Can one find an O(ng(k)) algorithm ?:

 - that reports that the input graph G (with n vertices) has special

tree-width more than k or

 - outputs a special tree-decomposition witnessing that the special

tree-width of G is < f(k) (for a fixed function f hopefully not

exponential).

Note: We can use the algorithms producing path-decompositions

 33

4. Automata for MS model-checking

 k ϕ

 Automaton constructor

 Yes

G Graph analyzer t A(ϕ, k)

 No

 Error : wd(G) > k

Steps done “once for all”, independent of G

A(ϕ, k): automaton on terms (wd = tree-width or clique-width or equivalent)

 34

4.1 Construction of A(ϕ, k) for “clique-width” terms

k = the number of vertex labels = the bound on clique-width

F = the corresponding set of operations and constants :

 a , ∅ , ⊕ , Adda,b , Relab a b

G(t) = the graph defined by a term t in T(F).

Its vertices are (in bijection with) the occurrences of the constants

in t that are not ∅

 35

Example :

 Graph G(t)

 Term t

 36

 Terms are equipped with Booleans that encode assignments of

vertex sets V1,…,Vn to the free set variables X1,…,Xn of MS formulas
(formulas are written without first-order variables):

 1) we replace in F each constant a by the constants

 (a, (w1,…,wn)) where wi ∈ {0,1} : we get F(n)

 (only constants are modified);

 2) a term s in T(F(n)) encodes a term t in T(F) and an

 assignment of sets V1,…,Vn to the set variables X1,…,Xn :

 if u is an occurrence of (a, (w1,..,wn)), then

 wi = 1 if and only if u ∈ Vi .

 3) s is denoted by t * (V1,…,Vn)

 37

Example (continued) :

 V1 = {1,3,4}, V2 = {2,3}

 Term t * (V1,V2)

 38

 By an induction on ϕ, we construct for each ϕ(X1,…,Xn) a finite

(bottom-up) deterministic automaton A(ϕ(X1,…,Xn), k) that recognizes:

L(ϕ(X1,…,Xn)) : = { t * (V1,…,Vn) ∈ T(F(n)) / (G(t), (V1,…,Vn)) ⎜ = ϕ }

Theorem : For each sentence ϕ, the automaton A(ϕ, k) accepts in

time f(ϕ, k). ⎜ t ⎜ the terms t in T(F) such that G(t) ⎜ = ϕ

 It gives a fixed-parameter linear model-checking algorithm for input

t, and a fixed-parameter cubic one if the graph has to be parsed.

(The parameter is clique-width, or, for undirected graphs, the equivalent graph

complexity measure rank-width)

 39

The inductive construction of A(ϕ, k) :

 Atomic formulas : discussed below.

 For ∧ and ∨ : product of two complete automata

 (deterministic or not)

 For negation : exchange accepting / non-accepting states

 for a complete deterministic automaton

 40

 Quantifications: Formulas are written without ∀

 L(∃ Xn+1 . ϕ(X1, ..., Xn+1)) = pr(L (ϕ(X1, ..., Xn+1))

 A(∃ Xn+1 . ϕ(X1, ..., Xn+1)) = pr(A (ϕ(X1, ..., Xn+1))

where pr is the “projection” that eliminates the last Boolean.

One obtains a nondeterministic automaton.

oOo

 The number of states is an h-iterated exponential,

 where h = maximum nesting of negations.

 41

Tools for constructing automata

 Substitutions and inverse images (“cylindrifications”).

 1) If we know A(ϕ(X1, X2)) , we can get easily A(ϕ(X4, X3)):

 L(ϕ(X4, X3)) = h-1 (L(ϕ(X1, X2))) where

 h maps (a , (w1, w2 , w3, w4)) to (a , (w4, w3))

 We take

 A(ϕ(X4, X3)) = h-1 (A(ϕ(X1, X2)))

 This construction preserves determinism and the number of states.
 Set term

 2) From A(ϕ(X1, X2)), we can get A(ϕ (X3, X1∪ (X2 \ X4))) by h-1

 with h mapping (a , (w1, w2 , w3, w4)) to (a , (w3, w1 ∨(w2 ∧ ¬w4)))

 42

 Relativization to subsets by inverse images.

 If ϕ is a closed formula expressing a graph property P, its

relativization ϕ [X1] to X1 expresses that the subgraph induced on

X1 satisfies P. To construct it, we replace recursively

 ∃ y. θ by ∃ y. y ∈ X1 ∧ θ, etc…

 However, there is an easy transformation of automata :

 we let h map (a , 0) to ∅ and (a , 1) to a.

L(ϕ [X1]) = h-1 (L(ϕ))

 Hence:

A(ϕ [X1]) : = h-1 (A(ϕ))

 43

The inductive construction (continued) :

 Complete deterministic automata for atomic formulas and basic graph

properties : automaton over F(n) recognizing the set of terms

 t * (V1,…,Vn) in L(ϕ(X1,…,Xn))

 Intuition : in all cases, the state at node u represents a finite

information q(u) about the graph G(t / u) and the restriction of

(V1,…,Vn) to the vertices below u (vertices = leaves)

 1) if u = f(v,w), we want that q(u) is defined from q(v) and q(w)

by a fixed function : the transition function ;

 2) whether (G(t), V1,…,Vn) satisfies ϕ(X1,…,Xn) must be

checkable from q(root), giving the accepting states.

 44

Atomic formulas (1) : edg(X1,X2) for directed edges

 Vertex labels are from a set C of k labels.

 edg(X1,X2) means : X1 = { x } ∧ X2 = { y } ∧ x y

 k2+k+3 states : 0, Ok, a(1), a(2), ab, Error, for a,b in C , a ≠ b

 Meaning of states (at node u in t ; its subterm t/u defines G(t/u) ⊆ G(t)).

 0 : X1 = ∅ , X2 = ∅

 Ok Accepting state : X1 = {v} , X2 = {w} , edg(v,w) in G(t/u)

 a(1) : X1 = {v} , X2 = ∅ , v has label a in G(t/u)

 a(2) : X1 = ∅ , X2 = {w} , w has label a in G(t/u)

 ab : X1 = {v} , X2 = {w} , v has label a, w has label b (hence v ≠ w)
 and ¬edg(v,w) in G(t/u)

 Error : all other cases

 45

 Transition rules

 For the constants based on a :

 (a,00) 0 ; (a,10) a(1) ; (a,01) a(2) ; (a,11) Error

 For the binary operation ⊕: r

 (p,q,r are states) p q

 If p = 0 then r := q

 If q = 0 then r := p

 If p = a(1), q = b(2) and a ≠ b then r := ab

 If p = b(2), q = a(1) and a ≠ b then r := ab

 Otherwise r : = Error

 46

 For unary operations Adda,b r

 p

 If p = ab then r := Ok else r : = p

 For unary operations Relaba b

 If p = a(i) where i = 1 or 2 then r : = b(i)

 If p = ac where c ≠ a and c ≠ b then r : = bc

 If p = ca where c ≠ a and c ≠ b then r : = cb

 If p = Error or 0 or Ok or c(i) or cd or dc where c ≠ a

 then r : = p

 47

Other atomic or basic formulas (2)

X1 ⊆ X2 , X1 = ∅ , Single(X1),

Card p,q (X1) : cardinality of X1 is p modulo q,

Card < q (X1) : cardinality of X1 is < q.

 Easy constructions with small numbers of states : 2, 2, 3, q, q+1.

 48

Sizes of some deterministic automata : k = bound on clique-width

 Property Partition
(X1,…,Xp)

edg(X,Y) NoEdge

Connected,

NoCycle
for degree <p

Path(X,Y) Connected,

Nocycle

Number of
states
N(k)

2

k2+k+3

2k

2O(p.k.k)

2O(k.k)

O(k)
 22

For connectedness, the minimal (deterministic) automaton has
 k/2

more than 22 states.

Other constructions yield nondeterministic automata for connectedness and
for its negation with 2O(k.k) states

 49

Difficulties in practice :

Parsing : construction of terms (based on tree-decompositions or other

graph decompositions). The linear-time exact parsing algorithm by

Bodlaender (for tree-width) and the cubic approximate parsing algorithm by

Hlineny & Oum (for clique-width via rank-width) are not implementable.

 Bodlaender reports about usable algorithms for (non-random) graphs with

50 vertices and tree-width < 35

Specific algorithms : (1) Flow-graphs of structured programs have tree-width

at most 6 and tree-decompositions are easy from the parse trees of

programs (Thorup).

 (2) For certain graph classes of bounded clique-width defined by

forbidden induced subgraphs, optimal clique-width terms can be

constructed in polynomial time (by using modular decomposition).

 50

 The sizes of the automata A(ϕ, k).

 They may be too large to be practically compiled.

 The construction by induction on the structure of ϕ may need

intermediate automata of huge size, even if the unique minimal

deterministic automaton equivalent to A(ϕ ,k) has a manageable

number of states.

 51

Examples : Soguet et al. using MONA have constructed automata for the

following cases ; no success for clique-width 4 :

 Clique-width 2 Clique-width 3

 MaxDegree<3 91 states Space-Out

 Connected 11 states Space-Out

 IsConnComp(X) 48 states Space-Out

 Has<4-VertCov 111 states 1037 states

 HasClique > 4 21 states 153 states

 2-colorable 11 states 57 states

 Examples of automata too large to be constructed, i.e., “compiled”, even

“directly”, without using the general construction.

 for k = 2 : 4-colorability, 3-acyclic-colorability, NoCycle (i.e., is a forest)

 for k = 5 : 3-colorability, clique

 for k = 4 : connectedness.

 52

This is not avoidable :

 The number of states of A(ϕ , k) is bounded by an h-iterated

exponential where h is the number of quantifier alternations of ϕ .

 There is no alternative construction giving an upper bound with a

bounded nesting of exponentiations (Meyer & Stockmeyer, Weyer, Frick & Grohe).

 53

 Remedy : using fly-automata.
 States and transitions are not listed in huge tables.

 They are specified (in uniform ways for all k) by “small” programs.

 Example of a state for connectedness :

 q = { {a}, {a,b}, {b,c,d}, {b,d,f } },

 a,b,c,d,f are vertex labels; q is the set of types of

 the connected components of the current graph.

 Some transitions :

 Adda,c : q { {a,b,c,d}, {b,d,f } },

 Relaba b: q { {b}, {b,c,d}, {b,d,f } }

 Transitions for ⊕ : union of sets of types.

 54

This method works for formulas with no quantifier alternation but

using the “basic formulas”.

 Examples : p-acyclic colorability

 ∃ X1,…,Xp (Partition(X1,…,Xp) ∧ NoEdge(X1) ∧ ∧ NoEdge(Xp) ∧ ...

 ∧ NoCycle(Xi ∪ Xj) ∧)

 with NoCycle(Xi ∪ Xj) for every i < j.

Minor inclusion : H simple, loop-free. Vertices(H) = { v1,…,vp }

 ∃X1,…,Xp (Disjoint(X1,…,Xp) ∧ Conn(X1) ∧ ... ∧ Conn(Xp) ∧ ...
 ... ∧ Link(Xi , Xj) ∧ ...)

 with Link(Xi , Xj) for each edge vi ---- vj of H ; means that
 there exists an edge between Xi and Xj, and Conn(Xi)
 means that Xi induces a connected graph.

 55

 Some experiments with fly-automata (by Irène Durand, LaBRI)

 3-colorability of the 6 x 300 grid (of clique-width 8) in less than 2
hours,

 4-acyclic-colorability of the Petersen graph (clique-width 7) in 17
minutes.

 (3-colorable but not acyclically;
 red and green vertices
 induce a cycle).

 56

New tool : Annotations

 At some positions in the given term, we attached some (finite)

contextual information.

Example :

 At position u in a term t, we attach the set

 ADDt(u) = the set of pairs (a,b) such that some operation

 Addc,d above u (hence, in its “context”) adds edges between the

 (eventual) vertices below u labelled by a and b.

 These sets can be computed in linear time by means of a top-down

 traversal of t.

 57

 Certain automata on annotated terms may have less states.

Example : edg(X1, X2) : 2k+3 states instead of k2 +k +3 (cf. page 44):

 0, Ok, a(1), a(2), Error, for a in C.

 Transitions for ⊕ annotated by R : ⊕,R r

 (p, q, r are states) p q

 If p = 0 then r := q ; if q = 0 then r := p ;

 if p = a(1), q = b(2) and (a , b) ∈ R ∧ then r := Ok ;

 and if (a , b) ∉ R ∧ then r := Error ;

 if p = b(2), q = a(1) : idem ;

 otherwise r : = Error.

 58

Other examples :

 For Clique(X) meaning that X induces a clique :

 2 k + 2 states instead of 2 O(k.k) .

 For Connectedness : same states but they “shrink” quicker :

 cf. the rules for Add a,c on page 53.

 59

4.2 Automata for the model-checking of MS2 formulas

We need :

 1) Terms to represent graphs, over appropriate operations.

 2) A representation of vertices and edges by occurrences of

operations and constants in these terms.

 2.1 : For “clique-width” terms : we have no good representation of

edges because each occurrence of Adda,b may add simultaneously

an unbounded number of edges.

 2.2 : For special terms : each edge is produced by a unique

occurrence of Adda,b. This gives what we want for graphs of

bounded special tree-width (but not for bounded tree-width).

 60

Using special terms :

 The leaves represent the

 vertices.

 The nodes labelled Adda,b

 and Adda,c represent the

 edges ; each occurrence

 of Adda,b represents one of

 the two parallel edges

 The automata for edg(X,Y)

 and inc(X,Y) (incidence) have

O(k2) and O(k) states respectively for sptwd at most k.

 61

 2.3 : Case of terms characterizing tree-width

First idea : make them into “clique-width terms” for the incidence

graph. But:

 clique-width < 2O(tree-width) too large automata.

Second idea : handling them “directly”, as for “clique-width terms”

 The difficulty is to have a bijection between nodes in the term

and the vertices and edges of the graph.

 62

 First possibility

Vertices are in bijection with

the occurrences of Forget operations.

The edges are at the leaves

of the tree, below the nodes

representing their ends.

The automaton for edg(X,Y)

has 2Θ (k.k) states (compare with O(k2) for sptwd).

Too bad for a basic property !

 63

 Second possibility

Vertices are at the leaves,

the edges are at nodes close to

those representing their ends.

Because of // which fuses some

vertices, each vertex is

represented by several leaves.

On the figure, vertex a is

represented by two leaves.

 64

Equality of vertices is an equivalence relation ~ on leaves.

Hence: there exists a set of vertices X such that …

is expressed by:
 there exists a set of leaves X, saturated for ~ such that …

Same exponential blow up as with the second possibility.

The responsible is // (that is not needed for representing

special tree-decompositions).

 65

An improvement using annotations

 Undirected graphs of tree-width < k-1 are denoted by terms over

the operations of the HR algebra : //, Forgeta and the constants a, ab

for a,b ∈ [k]={1,…,k}, without renamings of labels.

 The vertices are in bijection with the occurrences of the Forget

operations.

 The annotation : at each occurrence u of Forgeta representing a

vertex x is attached the set of labels b such that the first

occurrence of Forgetb above u represents a vertex adjacent to x.

 The automaton for edg(X,Y) has 22k +2 states (instead of 2Θ (k.k)).

 66

 Remarks :

 incidence : in(X,Y) uses k2 + 3 states (for undirected graphs)

(only k+3 states for directed graphs).

 adjacency : edg(X,Y), can be written ∃ Z (in(Z,X) ∧ in(Z,Y))

 (for undirected graphs) which gives a deterministic

 automaton with 2O(k.k) states.

 With this annotation, incidence and adjacency are handled

 separately on “redundant” representations of graphs by

 terms.

 67

Conclusions

 1. Using automata for model-checking of MS sentences on

graphs of bounded tree-width or clique-width is not hopeless if we

use fly-automata, built from (possibly non-deterministic) “small”

automata for basic graph properties (and their negations), and for

sentences without quantifier alternation (in order to keep flexibility, by

allowing variations on the input sentences).

 2. More tests on significant examples are necessary, and also

comparison (theory and practice) with other approaches : games,

monadic Datalog, specific problems, “Boolean width”.

 3. Can one adapt fly-automata to counting and optimization

problems?

 68

 4. Special tree-width is less powerful than tree-width, but

the constructions of automata are simpler. The parsing problem

is open.

 5. In many cases (in particular bounded degree) special

tree-width is linearly bounded in tree-width.

