
  

 

 

Special  tree-width  and  the  verification   

of  monadic  second-order  graph  properties  
with  edge   quantifications 

 

Bruno  Courcelle   
 

Institut  Universitaire  de  France  &  Université  Bordeaux 1,  LaBRI  
 
 

References  : Graph  structure  and monadic  second-order  logic, book to be published by 
  Cambridge University Press, see  : http://www.labri.fr/perso/courcell/ActSci.html 

       

   On  the  model-checking  of  monadic second-order formulas   

   with edge set quantifications.    Discrete  Applied  Maths,  to  appear 



 2 

 

Main   topics   of   the  lecture 
 

 Fixed-parameter  tractable  model-checking algorithms   

  for  monadic   second-order  (MS)  sentences  on  graphs 

  with  respect   to  clique-width   and   tree-width. 

  

 Review  of   the  method  and  introduction  of  fly-automata.   

  

 Introduction  of  special tree-width, a  variant  of  tree-width,  

  motivated  by  the  case  of  MS  sentences   using  

  edge  quantifications. 
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    Two  ways   of   considering  graphs       
 

1) A  graph  (finite, up to isomorphism)  is  an  algebraic object,  

   an  element  of  an  algebra  of  graphs  
   (Similar  to  words, elements of monoids) 

 

   2)  A  graph  is  a  logical structure ; 

   graph  properties  can  be  expressed  by  logical  formulas 
   (FO = first-order, MS = monadic second-order, SO = second-order) 
 

 Consequences:  

   a)  Language  Theory   concepts   extend   to  graphs 

   b)  Algorithmic  meta-theorems 
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An   overview  chart  
 

Graph                   "Context-free" 

operations             sets  of  graphs 

 

Fixed -parameter tractable 

algorithms            Language  theory 

              for  graphs  

              Recognizable 

                                 sets of graphs        

Monadic  2nd-order           Monadic  2nd -order  

logic              transductions 
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Some  algorithmic  meta-theorems 
 

 Language     Graphs            Complexity class  

 FO      All         P 

 FO      Bounded  expansion   Linear  (2010)  

 ∃SO           All        NP 

 MS2 (edge quantif.) Bounded  tree-width   Linear 

       Bounded  tree-width   LogSpace  (2010) 

 MS      Bounded  clique-width   Cubic    
  

  Other  meta-theorems  based on MS logic : 

  Labelling schemes (or  indexing),  Enumeration 

  Kernelization  (for  FPT  algorithms) 
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Summary  of  lecture  
 

1)  Monadic second-order  (MS)  model checking; 

 Expressive  power  of  monadic second-order  logic 

2)  Two  graph  algebras, tree-width and clique-width 

3)  Special  tree-width (new) 

4)  Automata  constructed from  MS  formulas 

 Case  of   clique-width 

 Case  of   special  tree-width 

 Difficulties  with  tree-width    

5)  Experiments with fly-automata         (joint work with Irène Durand)
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1.  MS  model-checking :  the general  scheme 
 

   k              ϕ      (MS formula)  

      

             Automaton Constructor  

    

                  Yes  

G                   Graph Analyzer                 t              A(ϕ, k)           

                  No  

       Error : wd(G) > k  
     

Steps       done  “once  for  all”, independent  of G  

A(ϕ,k): finite automaton  on  terms  (wd  = tree-width or clique-width or equivalent) 
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FPT   model-checking   algorithms 

 

MS  formulas             MS2  formulas    
                        using   edge  quantifications 

 

 

G = ( VG , edgG(.,.).)     Inc(G) =  ( VG ∪ EG, incG(.,.) ) 

        for  G  undirected :  incG(e,v)   ⇔    

v  is  a  vertex  ( in VG )  of edge  e  (in  EG ) 

 
 
FPT   for   clique-width    FPT   for   tree-width 
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Expressive  powers  of  logical  languages 
(Typical examples) 

 

FO :  maximal  degree  =  4 , diameter  <  6  ,  outdegree  <  3. 
 

MS  properties  that are  not  FO :  3-colorablility   

∃X,Y (”X,Y  are  disjoint”  ∧  ∀u,v { edg(u,v) ⇒  
           [ (u ∈ X  ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧(u ∉ X∪Y  ⇒ v ∈  X∪Y  ] } ) 
 

 Connectedness,  negation of : 

∃X (∃x ∈ X  ∧  ∃y ∉  X  ∧  ∀u,v (u ∈ X  ∧  edg(u,v)  ⇒  v ∈ X)  ) 
 

Planarity  (via  two  forbidden  minors  K5 and K3,3 )  

Perfectness    (via   forbidden   holes   and   anti-holes) 
 

 For  a  word  or  a  term, membership  in  a  fixed  regular  language 
            (FO  property  in certain cases) 
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Expressive   powers  of  logical  languages    (continued)  
 

 

MS2  property  that  is  not  MS  : has  a  perfect matching   or  

a  Hamiltonian  circuit   or  a  spanning   tree   of   degree  < 3 

 

 

SO  property  that  is  not  MS2  :  has a  nontrivial  automorphism 

 

  For  a  word, is  =  anbn   for  some   n      (nonregular  language). 
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2.  Graph   algebras   and  widths  of  graphs 
 

Two (not one)  and   only   two  robust  (in a precise sense)  graph  

algebras: 

 

the  “HR” algebra     algebraic  characterization  of  tree-width, 

the  “VR” algebra     definition   of  clique-width. 
 

Note : “HR” refers  to  the  “Hyperedge-Replacement (context-free) graph 

grammars”; they  generate   the  equational sets  of  the  “HR” algebra; 
 

“VR” refers  to   the  “context-free Vertex-Replacement graph grammars”;  

they  generate  the  equational  sets  of  the  “VR” algebra 
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The  “HR”   algebra   and   tree-width 
 

Graphs  with  multiple  edges, equipped  with  distinguished vertices 

called sources (or boundary  vertices or terminals) pointed  to  by source  

labels  from  finite sets   {a, b, ..., d}. 
 

Binary  operation  : Parallel  composition 

 G // H    is  the  disjoint  union  of  G  and  H, where  sources  with  same  

name  are   fused   (If  G  

and   H  are  not disjoint,  

one  takes  a  copy  

of  H  disjoint   from  G). 
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Unary operations  :  Forget   a   source  label  
 

       Forgeta(G)   is   G  without  a-source:  the  source  is  no  longer   

a  distinguished  vertex  :  it  is  made  "internal". 

 

 Source  renaming : 
 

Rena         b(G)   exchanges   source   labels  a   and   b     

      (replaces  a  by  b   if  b  is  not  the label  of  a  source) 
 

Nullary  operations   denote   the   most  elementary   graphs :  

 the   connected  graphs  with  at  most  one edge.  
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     Tree-decompositions     
 

 

 

 

 

 

 

 
 

 

a   decomposition   of   width   3
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Proposition:  A  graph  has  tree-width  ≤  k  ⇔  it  can  be  constructed   

from  basic  graphs  with   ≤  k+1  labels  by  using  the  operations  // , 

Rena     b  and  Forgeta 
 

From  an  algebraic  expression  to  a   tree-decomposition 

Example : cd // Rena       c (ab // Forgetb(ab // bc))  
 

(the constant  ab  denotes  an  edge  from  source  

 a   to  source  b) 

 

The   tree-decomposition              

associated   with   this  term 
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The   “VR”   algebra   and   clique-width. 
 

Clique-width was originally defined for simple graphs, but we extend 

the definitions  to  graphs  with  multiple edges. 

Graphs  are  loop-free                 (just  to  simplify  notation).  

They  have vertex  labels :  a,b,c ,... Each  vertex  has  a  single  label, 

and each  label  designates  a set  of  vertices   (not a  unique one as  in  HR) 
 

Binary  operation : disjoint union :   ⊕    

Well-defined  up   to  isomorphism;  one  takes  disjoint   copies  

     G ⊕ G   is  not  equal   to   G  
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Unary  operations:  Edge addition      denoted  by  Adda,b  : 

Adda,b(G)   is  G  augmented  with undirected  edges  between   every   a-labelled 

vertex   and   every   b-labelled  vertex.     

 Multiple   edges  may  be  created. 

 
      a                   a                   c          a                   a                     c 
 

     
b        b                    d            b                     b                        d                   

The directed  version  of   Adda,b   adds   directed  edges   from   every  
 

 a-labelled  vertex    to   every  b-labelled  vertex. 
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Vertex  relabellings  
 

Relaba       b(G)   is    G  with  every   label  a   changed  into    b 
 

Variant : Relab h (G)  is   G  with  every  label  a  changed  into   h(a)  for  

some  function  h : C     C ;               C   is   the   finite   set   of   labels. 
  

 

Basic graphs  
   a  :  one  vertex  labelled  by   a,   for  each   a  in   C 

  

   ∅ :   the  empty  graph   (yes, it  will  be   useful ! ) 
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Definition :  A  graph   G   (not  necessarly  simple)   has   clique-width   ≤   k   

 ⇔  it  can  be  constructed  from  basic  graphs  with  the  operations  

 ⊕, Adda,b, Adda,b ,  Relaba        b  and constants a  with  labels  a, b  in  a  

set   C   of   k   labels. 
 

     Its  (exact)   clique-width   cwd(G)  is   the   smallest   such   k. 

 

Note : It is NP-complete  to  check  if  cwd(G)=k   (input : (G,k) ) (Fellows et al.) 

Cubic  approximation algorithms have been given (Oum, Hlineny, Seymour). 
 

Bounded  clique-width : cliques, cographs, distance hereditary graphs, every 

class of bounded tree-width 

Unbounded clique-width : tournaments, planar graphs (even square grids). 
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Comparison  with  tree-width 
 

For  G  undirected     (Corneil and Rotics) : 

   cwd(G)  <  3 . 2 twd(G)-1 

 

For  G  directed : 

   cwd(G)  <  7 . 4 twd(G)-1  -   3 twd(G) <  2 2.twd(G) + 1   
 
 No  polynomial  bound :  cwd(G)  <  poly(twd(G)) 

 

In  both  cases :   

   cwd(G)  <  pwd(G) + 2  
 

pwd  =  path-width  =  tree-width  with  paths  instead of  trees
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FPT  model-checking  algorithms 
  

For  MS  properties, the  parameter  is  clique-width. 

For  MS2  properties, the  parameter  is  tree-width  and  cannot  be  

clique-width.  

By Kreutzer, Makowsky et al. MS2 model-checking needs restriction to  

bounded   tree-width  unless  P=NP,  ETH,  Exptime=NExptime   etc… 

 

The  case  of  MS2  formulas  reduces  to  that  of  MS  ones: 

G  of  tree-width  k  >  2   Inc(G)  has   tree-width k, 

    hence,  clique-width  <  2O(k)     (exponential  blow-up) 

every  MS2   property  of  G  is  an  MS   property   of  Inc(G) 
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3.  Special  tree-width 
 

Tree-decompositions       
 

 

 

 

 

 
 

 

 

 

 

 

 

 

a  decomposition  of  width  3  (= 4 – 1). 
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 Definition: Special tree-width  is the minimal width of a special tree-

decomposition  (T,f)  where : 

  (a) T  is  a  rooted  tree, 

  (b)  the  set  of  nodes  whose  boxes   

contain any vertex  is  a  directed  path 

 

Motivations : (1)  Comparison  with 

 clique-width    (no  exp. blow-up) 

 

(2) The  automata   for  checking   

adjacency  are  exponentially  smaller  

than  for  bounded tree-width 



 24

Properties  of  special  tree-width 
   

   twd = tree-width ;  pwd  =  path-width ; sptwd = special tree-width ;  

                                cwd =  clique-width. 

 1)   twd(G)  < sptwd(G)  <   pwd(G)     
 

 2)  cwd(G)  <  sptwd(G)  +  2       (for   G   simple). 

  whereas  cwd(G)  <  2 2.twd(G) + 1        (exponential   is  not avoidable) 

 

3) sptwd(G)  <  20 (twd(G)+1). MaxDegree(G)  
        (for  a  set  of  graphs of  bounded  degree, bounded  special  tree-width 

     is   equivalent   to  bounded  tree-width). 
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  4)  Trees  have  special  tree-width  1 (=  tree-width)  but   

        graphs  of  tree-width  2  have  unbounded   special   tree-width. 
   

 

5)  The class  of  graphs  of  special  tree-width  <  k  is closed  under: 

  -  reversals  of  edge  directions,  

  -  taking  topological  minors    (subgraphs and  smoothing vertices) 

   but   not  under   taking  minors. 
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Graphs  of  tree-width  2  have  unbounded  special  tree-width 

Proof sketch: If   G ⊗ *   (= G  augmented  with a  universal  vertex *)  has  

special  tree-width  k,  then  it  has  path-width  <   k.    

 

Let  G   be  any   tree :  G ⊗ *   has   tree-width  2.  

If  G ⊗ *   has  special  tree-width  <  k,  then  G  has    path-width  <  k.  

But  trees  have   unbounded   path-width, hence graphs  of  tree-width  2 have 

unbounded  special tree-width.  
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Terms   that   characterize  special   tree-width; 

and construction of automata  for  MS2 properties. 
 

Definition: Special  terms   

They  use  the  graph  operations  that  define clique-width for graphs  with  

multiple  edges                 (Key  point : no “vertex fusion”  is  needed)  

 1) The  set   C  of  labels  contains  ⊥           (to  mean  “terminated vertex”) 

 2) Operations   Relab a         c   and   Adda,b  only  if  a, b  ≠   ⊥ 

 3) Subterms  define  graphs  with   <  1  vertex  labelled  by  a  if  a  ≠  ⊥ 

 4) Adda,b (t)    allowed   as  subterm  only  if  G(t)  has  one  vertex  x  labelled  

by  a  and  one  vertex   y   labelled  by   b.  Similar  definitions   for  directed 

graphs. 
 Edges  are  added  “one  by  one”  and  are  in  bijection  with  the  occurrences  of  the  

operations   Adda,b  ,  that  can  define  multiple edges.  
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Proposition:   (1)  G  has  special  tree-width  <   k  ⇔  it  is defined  by  a 

special  term   using  <  k + 2  labels  (including the  particular  label  ⊥ )  

 

    (2)  cwd(G)  <  sptwd(G) + 2 
 

 

We  will  compare:   

  path-width and clique-width, 

  tree-width and clique-width, 

  special  tree-width  and clique-width 
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Comparing  path-width  and  clique-width : 

cwd (G)  <   pwd(G)  + 2 

                   
        Idea : By  traversing  bottom-up  the  path 
                                                             decomposition,  by using  4  colors  +  ⊥, 

                         the  clique-width   operations   can 

                                        add,   one  by  one,  new  vertices  

                                        (using   ⊕  i )  and  new edges (using  Adda,b    

                                         or  Adda,b ). 

       ⊥   is   for   “terminated   vertices”. 
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    For   tree-width :   cwd(G)  <  2 2.twd(G) + 1 
     

 

 

 

 

 

 

 
 

 Because  of  vertex  3, common  to  two  “son boxes”,  of  the  tree-dec,  

 the  previous  method  does  not   work.      (It does not allow fusion of vertices). 

 If  a  box  of  the  tree-decomposition  has  k  vertices, then  2k-1   labels are  

 necessary  to  specify  how  the vertices  below  it  are linked to its vertices. 

 (22k – 1  for  directed  graphs). 
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 For  special tree-width  (as for path-width) : cwd(G)  <  sptwd(G)+2 
                

The  red  dotted  edges 
               are  not  incident. 

                 

                    
               Two “brother” boxes 

               (b, e) are  disjoint.   

               This is 

               the characteristic  

               property of  special 

               tree-decompositions  
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 Special  tree-width   is  interesting  for  model-checking  of   

 MS2  properties  (as  we will  see)  but  the   parsing  problem   

 is  open : 
 

Can one find  an  O( ng(k) ) algorithm ?: 

   - that  reports  that   the  input  graph  G  (with n vertices)   has  special 

tree-width  more  than  k  or  

 - outputs  a  special tree-decomposition  witnessing  that  the  special 

tree-width of  G  is   <  f(k)    (for  a  fixed  function  f   hopefully  not  

exponential).  

 

Note:  We  can  use  the  algorithms  producing  path-decompositions 
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4.   Automata   for  MS  model-checking 
 

   k              ϕ 

      

             Automaton constructor  

    

                  Yes  

G                   Graph analyzer                 t              A(ϕ, k)           

                  No  

       Error : wd(G) > k  
     

Steps       done  “once  for  all”, independent  of G  

A(ϕ, k):  automaton  on  terms   (wd  = tree-width  or  clique-width or equivalent) 
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4.1  Construction   of   A(ϕ, k)    for    “clique-width”   terms 
 

 

k  = the number  of  vertex  labels  =  the  bound  on  clique-width 

 

F  =  the  corresponding  set  of  operations  and  constants : 

       a  , ∅ ,  ⊕ , Adda,b ,  Relab a         b  

 

G(t)  =  the  graph  defined  by  a  term  t  in  T(F).   

 

Its  vertices  are  (in bijection with)  the  occurrences  of  the  constants  

in  t  that  are  not  ∅ 
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Example : 
 

 

 

 

 

 

 

             

                         Graph  G(t)    
 

 

 

       

      Term   t      
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 Terms  are equipped  with  Booleans  that  encode  assignments  of  

vertex  sets  V1,…,Vn  to  the  free  set variables  X1,…,Xn  of   MS formulas   
(formulas   are   written   without   first-order  variables): 

  1) we   replace  in   F  each  constant   a   by   the   constants    

  (a, (w1,…,wn))  where   wi ∈ {0,1}  :   we   get   F(n)    

          (only constants  are  modified); 

  2) a  term   s  in  T(F(n) )  encodes  a   term  t   in  T(F)  and  an  

 assignment  of  sets  V1,…,Vn   to  the set variables  X1,…,Xn :   

   if   u  is  an  occurrence  of  (a, (w1,..,wn)),  then    

   wi  =  1  if  and  only  if    u  ∈  Vi . 

  3)  s  is  denoted  by  t * (V1,…,Vn)    
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Example   (continued) : 

 

 

 

 

 

               V1  =  {1,3,4},  V2  =  {2,3}   

 

 

 

 

 

   Term   t * (V1,V2)       
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 By an induction  on  ϕ,  we  construct  for  each  ϕ(X1,…,Xn)   a  finite  

(bottom-up)  deterministic  automaton   A(ϕ(X1,…,Xn), k)  that  recognizes: 

L(ϕ(X1,…,Xn)) : =  { t * (V1,…,Vn) ∈ T(F(n) )  /  ( G( t ), (V1,…,Vn) )  ⎜ =  ϕ } 

 

Theorem : For  each  sentence  ϕ,  the  automaton  A(ϕ, k)  accepts  in 

time   f(ϕ, k). ⎜ t  ⎜   the  terms  t   in  T(F)   such that    G(t)  ⎜ =  ϕ    
 

 

 It gives  a  fixed-parameter  linear  model-checking  algorithm  for input  

t, and  a  fixed-parameter  cubic  one  if  the  graph  has  to  be  parsed.  

(The parameter is clique-width, or, for undirected graphs, the equivalent  graph  

complexity  measure   rank-width) 
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The  inductive  construction  of  A(ϕ, k) : 

  

 Atomic  formulas  :  discussed  below.  

 

 For  ∧  and   ∨  :  product  of   two  complete  automata  

             (deterministic  or  not) 

 

 For  negation : exchange  accepting / non-accepting  states  

       for   a   complete   deterministic   automaton 
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 Quantifications:  Formulas   are   written   without   ∀  
 

  L(  ∃ Xn+1 . ϕ(X1, ..., Xn+1) )   = pr( L ( ϕ(X1, ..., Xn+1)  ) 

  A(  ∃ Xn+1 . ϕ(X1, ..., Xn+1) )   = pr( A ( ϕ(X1, ..., Xn+1)  ) 
 

where   pr  is  the  “projection”   that  eliminates   the  last  Boolean.         

One   obtains   a   nondeterministic   automaton. 
    

oOo 
 

 The number  of  states   is   an   h-iterated   exponential,  

 where  h  =  maximum   nesting   of   negations.  
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Tools   for  constructing  automata 
 

 Substitutions   and  inverse  images  (“cylindrifications”). 
 

 1) If   we   know  A( ϕ(X1, X2)) , we can get easily  A( ϕ(X4, X3)): 

   L( ϕ(X4, X3) ) =  h-1 ( L( ϕ(X1, X2))   )     where  

 h   maps  (a , (w1, w2 , w3, w4))   to   (a , (w4, w3))   

 We  take   

    A( ϕ(X4, X3)) =  h-1 ( A( ϕ(X1, X2))  )  

 This  construction preserves  determinism  and  the number  of  states.  
                      Set   term    

     2)  From  A( ϕ(X1, X2)), we  can  get  A(  ϕ ( X3, X1∪ (X2 \ X4 ))  )  by h-1 

 with h  mapping  (a , (w1, w2 , w3, w4))  to  (a , (w3, w1 ∨(w2 ∧ ¬w4 )))   
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   Relativization   to   subsets   by   inverse   images. 

 

 If   ϕ  is  a  closed  formula  expressing  a  graph  property  P, its 

relativization  ϕ [X1]  to  X1  expresses  that  the  subgraph  induced  on  

X1   satisfies  P.   To construct  it,  we  replace  recursively  

     ∃ y. θ   by    ∃ y. y ∈ X1  ∧ θ, etc… 

 However,  there  is  an  easy  transformation of automata :   

 we let   h   map  (a , 0)   to   ∅    and   (a , 1)   to   a.   

L( ϕ [X1] ) =  h-1 ( L( ϕ) )  

 Hence:   

A( ϕ [X1] ) : =  h-1 ( A( ϕ) )  
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The   inductive  construction  (continued) :   
 

 Complete   deterministic   automata  for  atomic  formulas  and   basic   graph  

properties :    automaton   over   F(n)  recognizing  the  set of  terms  

     t * (V1,…,Vn)  in  L(ϕ(X1,…,Xn))   
 

 Intuition :  in all cases,  the  state  at  node  u  represents  a  finite  

information   q(u)   about   the  graph  G(t / u)  and  the restriction of 

(V1,…,Vn)   to   the   vertices   below   u     (vertices  =  leaves) 

 1)  if  u =  f(v,w),   we  want  that  q(u)  is  defined  from  q(v)  and  q(w)  

by   a   fixed   function  :    the  transition  function ;  

 2)  whether  (G(t), V1,…,Vn)   satisfies   ϕ(X1,…,Xn)  must   be  

checkable  from  q(root),  giving   the accepting states.  



 44

Atomic  formulas  (1)  :   edg(X1,X2)  for  directed  edges    
 

 Vertex   labels   are   from    a   set    C   of   k  labels.  

 edg(X1,X2)  means :   X1  = { x }  ∧  X2 = { y }    ∧   x                y 

 k2+k+3   states  :  0, Ok, a(1), a(2), ab, Error,      for a,b  in   C , a  ≠  b 

 Meaning  of  states (at  node  u  in  t ; its subterm  t/u  defines    G(t/u)  ⊆  G(t) ).  

 0   : X1 = ∅  , X2 = ∅   

 Ok        Accepting   state :    X1 = {v}  , X2 = {w}  ,  edg(v,w)  in  G(t/u)   

 a(1) : X1 = {v}  , X2 = ∅ ,  v  has  label  a  in  G(t/u)   

 a(2)  : X1 = ∅  , X2 = {w}  ,  w  has  label  a  in  G(t/u)   

 ab  : X1 = {v}  , X2 = {w}  , v  has  label  a, w  has  label  b  (hence v ≠  w) 
             and  ¬edg(v,w)   in  G(t/u)    

 Error   : all  other  cases
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 Transition  rules  

 For  the  constants  based on    a : 

 (a,00)   0  ;  (a,10)   a(1)  ;  (a,01)    a(2)  ;    (a,11)    Error 
 

 For  the  binary  operation  ⊕:      r 

 (p,q,r  are  states)        p             q  

 

  If  p = 0  then  r := q  

  If  q = 0  then  r := p 

  If  p = a(1),  q =  b(2)  and  a  ≠  b   then   r  := ab 

  If  p = b(2),  q =  a(1)  and  a  ≠  b   then   r  := ab 

  Otherwise  r  : =  Error 
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 For  unary  operations   Adda,b            r      
 

                 p     

  If  p = ab   then  r  :=  Ok   else  r  : =  p 

 

 For  unary  operations   Relaba       b  

 

  If   p = a(i) where   i = 1 or 2       then     r : = b(i)  

  If   p =  ac   where  c ≠ a  and  c  ≠  b    then     r : =  bc      

  If   p =  ca   where  c ≠ a  and  c  ≠  b   then     r : =  cb       

  If   p =  Error  or  0  or  Ok  or  c(i)  or  cd   or  dc   where   c ≠ a   

            then     r : = p   
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Other  atomic  or  basic  formulas   (2)  
 

X1  ⊆  X2 ,    X1 = ∅ ,    Single(X1), 

Card p,q (X1) : cardinality of  X1  is   p   modulo  q, 

Card < q (X1) : cardinality of  X1  is   <  q. 
 

 

 Easy constructions with  small  numbers  of  states : 2,  2,  3,  q,  q+1. 
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Sizes  of  some  deterministic  automata  : k = bound  on  clique-width 
 

 

  Property  Partition 
(X1,…,Xp) 

edg(X,Y) NoEdge

  

Connected,

NoCycle 
for degree <p

Path(X,Y) Connected, 

Nocycle 

Number  of
states 
N(k) 

 

2 

 

k2+k+3

 

2k 

 

2O(p.k.k) 

 

2O(k.k) 

O(k) 
   22 

 
For  connectedness,  the  minimal  (deterministic)  automaton  has   
        k/2   

more  than   22       states.  
 
Other  constructions  yield   nondeterministic  automata  for connectedness and 
for its negation  with  2O(k.k) states 
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Difficulties  in   practice :           
 

Parsing  :  construction  of  terms (based  on  tree-decompositions  or other  

graph  decompositions).  The  linear-time  exact  parsing  algorithm  by  

Bodlaender (for  tree-width)  and  the  cubic  approximate  parsing  algorithm  by  

Hlineny & Oum (for  clique-width  via  rank-width)  are  not  implementable. 
 

  Bodlaender   reports  about  usable   algorithms  for  (non-random)  graphs  with  

50  vertices  and  tree-width < 35  
 

Specific  algorithms : (1)  Flow-graphs of  structured  programs  have  tree-width  

at  most 6  and  tree-decompositions  are  easy  from  the  parse  trees  of  

programs  (Thorup). 

  (2)  For certain graph classes  of  bounded  clique-width  defined  by  

forbidden  induced  subgraphs,  optimal  clique-width  terms  can  be  

constructed  in  polynomial  time  (by  using  modular  decomposition). 
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 The  sizes  of  the  automata  A(ϕ, k). 
  

     They  may  be  too  large  to  be  practically  compiled. 

  The  construction  by  induction  on  the  structure  of  ϕ  may  need  

intermediate  automata  of  huge  size, even  if   the  unique  minimal  

deterministic   automaton equivalent  to   A(ϕ ,k)   has  a  manageable  

number of  states.   
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Examples :  Soguet  et  al.  using   MONA  have constructed  automata   for   the 

following  cases ;  no success  for  clique-width  4  : 

       Clique-width 2      Clique-width  3  

  MaxDegree<3    91   states     Space-Out 

  Connected       11   states              Space-Out 

  IsConnComp(X)       48   states                 Space-Out 

  Has<4-VertCov  111 states    1037    states 

  HasClique > 4         21 states    153      states 

  2-colorable               11   states     57       states 
  
 Examples  of  automata  too  large  to  be  constructed,  i.e.,  “compiled”, even 

“directly”, without using the general construction. 

 for  k = 2 :  4-colorability, 3-acyclic-colorability, NoCycle    (i.e., is a forest)  

 for  k = 5 :   3-colorability, clique 

 for  k = 4  :   connectedness.  
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This   is   not   avoidable :  
 

  The  number  of  states  of  A(ϕ , k)   is  bounded  by  an  h-iterated  

exponential  where  h  is  the  number  of  quantifier alternations  of  ϕ .  

 There  is  no  alternative  construction  giving  an  upper bound  with  a  

bounded  nesting  of  exponentiations     (Meyer & Stockmeyer, Weyer, Frick & Grohe).  
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 Remedy :  using  fly-automata.   
 States  and  transitions  are  not  listed  in  huge  tables.   
 

 They  are  specified  (in uniform ways for all  k)  by  “small”  programs. 
 

 Example   of  a  state  for  connectedness : 

  q = { {a}, {a,b}, {b,c,d}, {b,d,f } },                    

   a,b,c,d,f  are  vertex labels; q  is  the  set  of  types  of   

   the  connected  components  of  the  current  graph. 

 Some  transitions :               

  Adda,c :    q            { {a,b,c,d}, {b,d,f } },                    

  Relaba       b: q            { {b}, {b,c,d}, {b,d,f } }   

  Transitions   for  ⊕ :  union  of  sets  of  types.  
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This  method  works  for  formulas  with  no  quantifier  alternation but  

using  the “basic formulas”. 
 

 Examples :  p-acyclic  colorability   
 

 ∃ X1,…,Xp (Partition(X1,…,Xp)  ∧  NoEdge(X1)  ∧ ..... ∧  NoEdge(Xp)  ∧ ... 

   ........... ∧  NoCycle(Xi ∪ Xj)  ∧ ......  ) 
 

 with   NoCycle(Xi ∪ Xj)  for  every  i < j. 
 

Minor inclusion : H  simple, loop-free.  Vertices(H)  =  { v1,…,vp }  
 

 ∃X1,…,Xp (Disjoint(X1,…,Xp)  ∧  Conn(X1)  ∧ ... ∧  Conn(Xp)  ∧ ... 
   ...  ∧  Link(Xi , Xj)  ∧ ...  ) 
 

    with   Link(Xi , Xj)  for  each edge   vi ---- vj  of  H ; means that  
  there   exists  an  edge  between  Xi   and   Xj, and   Conn(Xi)     
  means    that  Xi    induces   a   connected   graph. 
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 Some  experiments  with  fly-automata   (by Irène  Durand, LaBRI) 
 
 
 3-colorability  of  the 6 x 300  grid  (of clique-width  8)  in less than 2 
hours, 
 
 4-acyclic-colorability of the Petersen  graph  (clique-width 7)  in  17  
minutes. 
 
 (3-colorable but not acyclically;  
 red  and  green  vertices  
 induce a cycle). 
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New   tool :  Annotations 
 

 At   some  positions  in   the  given  term,  we  attached  some  (finite)  

contextual  information. 

Example : 

 At  position  u  in  a  term  t, we  attach  the  set   

 ADDt(u)  =   the  set  of  pairs  (a,b)  such  that  some  operation   

 Addc,d  above  u  (hence, in  its  “context”)  adds   edges   between  the   

 (eventual)  vertices   below   u   labelled  by  a   and   b. 

 

 These   sets   can  be  computed  in  linear time  by means  of  a  top-down   

 traversal  of  t.
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 Certain   automata  on  annotated  terms  may  have  less  states.  

Example :  edg(X1, X2)  : 2k+3  states  instead  of  k2 +k +3         (cf. page  44): 

     0, Ok, a(1), a(2), Error,      for a  in   C. 

 

 Transitions   for   ⊕  annotated   by   R :    ⊕,R                r 

 (p, q, r  are  states)        p                  q  

 

  If  p = 0   then  r := q  ;  if  q = 0   then  r := p  ; 

  if  p = a(1),  q =  b(2)  and  (a , b ) ∈ R  ∧  then   r  := Ok ; 

           and  if  (a , b )  ∉ R  ∧  then  r  := Error ; 

  if  p = b(2),  q =  a(1)  :  idem ; 

  otherwise  r  : =  Error. 
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Other   examples : 

 

 For   Clique(X)   meaning   that   X   induces  a  clique :  

        2 k  +  2   states   instead  of  2 O(k.k) . 

 

 For   Connectedness  :  same   states   but   they  “shrink”  quicker  :  

    cf.  the   rules  for  Add a,c   on   page   53. 
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4.2  Automata  for  the  model-checking  of  MS2  formulas 
 

We  need : 

 1) Terms   to  represent  graphs, over  appropriate  operations. 

 2)  A  representation  of  vertices  and  edges  by  occurrences  of 

operations  and constants  in  these terms. 

 2.1 :  For “clique-width”  terms : we have no good representation of 

edges  because  each  occurrence  of  Adda,b   may  add simultaneously  

an  unbounded  number  of  edges. 

 2.2 :  For special  terms : each  edge   is  produced  by  a  unique 

occurrence  of  Adda,b.  This  gives  what  we  want  for  graphs of 

bounded  special   tree-width  (but  not  for bounded tree-width). 
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Using  special  terms : 
 

           The  leaves  represent the   

           vertices. 
 

           The nodes labelled  Adda,b 

           and  Adda,c   represent  the 

           edges ; each  occurrence 

           of  Adda,b  represents one of 

           the two parallel edges 
 

           The  automata  for  edg(X,Y)   

           and  inc(X,Y)  (incidence) have  

O(k2)  and O(k)  states respectively  for  sptwd  at  most  k. 
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  2.3 :  Case  of   terms  characterizing  tree-width 

 

First  idea : make  them  into  “clique-width terms”  for  the  incidence  

graph.   But: 

 clique-width  <   2O(tree-width)       too  large  automata. 

 

Second  idea :  handling  them  “directly”, as  for “clique-width terms”   

 

 The difficulty  is  to  have   a  bijection  between  nodes  in  the  term  

and  the  vertices  and  edges  of   the  graph. 
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        First    possibility 

 

Vertices  are  in bijection with   

the occurrences of Forget  operations.  

The  edges  are  at   the  leaves   

of   the  tree,  below   the  nodes   

representing  their ends.  

 

The   automaton   for  edg(X,Y)   

has   2Θ (k.k)    states  (compare   with  O(k2 )  for  sptwd). 

Too  bad for a  basic  property ! 
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 Second    possibility 
 

 

Vertices  are  at  the  leaves,  

the  edges  are  at  nodes  close  to   

those  representing  their  ends.  

Because   of   //  which  fuses  some  

vertices,   each  vertex   is   

represented   by  several  leaves. 
 

On  the  figure, vertex  a   is  

represented  by  two  leaves. 
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Equality  of  vertices  is  an   equivalence  relation   ~   on  leaves.   

 

Hence:    there exists  a   set of vertices  X  such  that …   

is   expressed  by: 
     there  exists  a  set  of  leaves  X, saturated  for   ~  such that … 
 

Same   exponential  blow  up  as  with  the second  possibility. 
 

The  responsible  is  //   (that  is  not   needed   for  representing    

special  tree-decompositions).    
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An   improvement   using  annotations   
 

 Undirected  graphs  of  tree-width  <  k-1  are  denoted  by  terms  over  

the operations of  the  HR  algebra :  //, Forgeta  and the constants a, ab  

for  a,b  ∈  [k]={1,…,k},   without   renamings   of   labels. 
 

 The   vertices  are  in   bijection  with   the  occurrences  of  the  Forget  

operations.   
 

 The  annotation :  at  each occurrence  u  of  Forgeta   representing  a  

vertex x  is  attached  the  set  of  labels b  such  that  the  first 

occurrence  of  Forgetb   above  u  represents  a  vertex  adjacent  to  x. 

 The   automaton  for  edg(X,Y)  has  22k +2 states  (instead of  2Θ (k.k) ).  
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 Remarks : 

  incidence  : in(X,Y)  uses  k2  +  3  states  (for  undirected  graphs) 

(only  k+3  states  for  directed graphs). 
  

  adjacency :  edg(X,Y),   can  be  written  ∃ Z ( in(Z,X)  ∧   in(Z,Y) )  

     (for   undirected  graphs)   which   gives  a  deterministic   

      automaton   with  2O(k.k)   states.   

    

  With  this  annotation,  incidence  and  adjacency  are  handled   

   separately   on  “redundant”   representations  of   graphs  by  

   terms. 
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Conclusions 
 

  1.  Using  automata  for  model-checking  of  MS  sentences  on  

graphs  of  bounded  tree-width  or  clique-width  is  not  hopeless  if  we 

use fly-automata, built  from  (possibly  non-deterministic)  “small”  

automata  for  basic  graph  properties  (and their  negations), and  for  

sentences  without  quantifier alternation  (in order  to  keep  flexibility,  by  

allowing  variations  on  the  input  sentences). 
 

  2.  More  tests  on  significant  examples  are  necessary,  and also  

comparison  (theory  and  practice)  with  other  approaches : games,  

monadic  Datalog,  specific  problems,  “Boolean  width”. 
 

  3. Can  one  adapt  fly-automata  to  counting  and  optimization  

problems? 
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  4. Special  tree-width  is  less  powerful  than  tree-width,  but   

the  constructions  of  automata  are  simpler.  The  parsing  problem  

is  open. 

  

  5.  In  many  cases  (in particular  bounded  degree)   special  

tree-width  is  linearly  bounded  in  tree-width. 
 

  


