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Presentation   of   the   talk 
 

 

 Monadic Second-Order (MSO)  logic  can  express  graph 

properties  and  mappings  from  (labelled)  graphs  to  (labelled) 

graphs. 
 

 Main  facts  :   

     1. MSO  graph  properties  are  FPT   with  respect   to  clique-

width   and   tree-width. 

2. So  are  MSO  counting  and  optimizing  functions. 
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3. MSO  definable  sets  of  graphs  are  recognizable  (by  finite  

congruences, there  is no  good notion of graph automaton). 

4.  Recognizable  sets  behave  well  with respect to the  

equational  sets (which  generalize  context-free  languages). 

5. There  is  no  good notion of automaton-based transducer. 

But  the MSO  definable  transductions  behave well w.r.t. 

equational  and  recognizable  sets (respectively : direct  and  

inverse  preservation  results).   
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      An   overview  chart  
 

Graph                   "Context-free" 

operations             sets  of  graphs 

 

Fixed -parameter tractable 

algorithms            Language  theory 

              for  graphs  

              Recognizable 
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Monadic  2nd-order           Monadic  2nd -order  
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Summary   
 

1)  MSO  logic  without  and  with  edge quantifications. 

2)  MSO  definitions  of orientations. 

3)  MSO  definitions  of  linear orders. 

4)  Other  constructions. 

5)  Open problems. 
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Two   types   of   MSO  formulas  or rather 
two  logical  graph  representations 

 

MSO  formulas            MSO2 formulas  with edge  quantifications  

  = MSO  formulas  over  incidence  graphs 
 
 

G = ( VG , edgG(.,.) )     Inc(G) =  ( VG ∪ EG, incG(.,.) ) 

        for  G  undirected :  incG(e,v)   ⇔    

v  is  a  vertex  ( in VG )  of edge  e  (in  EG ) 
 

FPT   for   clique-width    FPT   for   tree-width 
  

For  G   directed :  Inc(G) =  ( VG ∪ EG, inc1G(.,.), inc2G(.,.) )     (1=tail, 2=head)  
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Typical  MSO  graph  properties  
 

MSO   properties :  3-colorablility   

∃X,Y (”X,Y  are  disjoint”  ∧  ∀u,v { edg(u,v) ⇒  

           [ (u ∈ X  ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧(u ∉ X ∪ Y  ⇒ v ∈  X ∪ Y  ] } ) 
 

 

 Connectedness,  negation of : 

∃Z (∃x ∈ Z  ∧  ∃y ∉   Z  ∧  ∀u,v ( u ∈ Z  ∧  edg(u,v)  ⇒  v ∈  Z )  ) 
 

 

Planarity  (via  two  forbidden  minors  K5 and K3,3 )  

 

Perfectness    (via   forbidden   holes   and   anti-holes) 
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Typical   MSO2  graph  properties 

 

MSO2  property  that  is  not  MSO  :  

has  a  perfect matching   or  

has  a  Hamiltonian  circuit   or   

has  a  spanning   tree   of   degree  < 3 

 

The expressions have the form: 

    “There  exists  a  set  of  edges  that  is …” 
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Monadic  Second-Order  definitions  of  orientations 
 

    Particular  monadic  second-order  transductions: 

G   undirected       G’ ,  orientation   of    G  

 

  Two  cases :  by   MSO   or   by   MSO2   formulas 

 

  All  cases : with parameters   (that  “guess”  an  appropriate  

           coloring  or  spanning  tree  or … ) 
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By   MSO2   formulas  (the  easiest  case, of course) 
 

 

Idea: for a  graph G,  “guess”,  by means  of 2 parameters  (X,  set of 

edges and  Y,  set of vertices), a  depth-first  rooted  spanning forest  F  
(“depth-first”  - or  “normal” -   means  that  every  edge  of   the  graph  links  a  

vertex  and  one  of  its   ancestors   w.r.t.  F). 

  From  F  one  obtains  an  acyclic  orientation  of G.  

  An  additional  parameter  Z   can  specify  the  set  of  edges  “to 

be reversed”. 

 

 Fact:  By means of 3 parameters  X,Y,Z (over  Inc(G) ), one can 

specify by MSO2   formulas   all  orientations  of  a  given graph. 
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Formally : there  are  MSO2   formulas   α(X,Y,Z)   and  β(X,Y,Z,u,v)  such 

that, for every  graph G,  

1)  there exist  X,Y,Z  satisfying  α  in  Inc(G) , meaning  that  X,Y define  a  

depth-first  rooted  spanning  forest  and  Z  is  a  set  of  edges, 

2)  for  every   X,Y,Z  satisfying   α  and  every  two  adjacent vertices  u,v: 

    β(X,Y,Z,u,v)   ⇒  ¬ β(X,Y,Z,v,u),    

  hence,  β(X,Y,Z, .,.)   defines   one   orientation  of  each  edge.   

 

Furthermore, for  every  such  X,Y  and  every  orientation  H  of   G,  there  is  

Z   such   that   β(X,Y,Z, .,.)   defines   the   orientation  H. 
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Consequences : 

 

If  Q  is  an  MSO2   property  of  directed  graphs,  then  the  property  

of  undirected   graphs  G : 

P(G)     ⇔   G   has  an  orientation  satisfying  Q 

is   MSO2.  (False   for  MSO). 

 

Analogy  :  Tree-width  is  invariant   under  changes  of  orientation.  

Here  MSO2   formulas  can  specify  arbitrary  (changes of)  

orientation(s).     

 
 



 13

By   MSO   formulas  :  more  difficult  
 

 

Fact:  No pair of  MSO   formulas  can specify  at  least  one  

orientation  of  any  graph. 
 

Proof : Assume  this  possible  with  p  parameters X1, . . . , Xp.  

Take  a  clique  Kn   with n   >  2p . There  are  adjacent  vertices  u, v  

that  belong   to  the  same  sets  Xi,  hence  

β( X1, . . . , Xp,u,v)   ⇔   β( X1, . . . , Xp,v,u), 

 so that  the  edge  u—v  is  not  oriented  by   β( X1, . . . , Xp,.,.) . 

(There  is  an  automorphism  that  preserves  the  sets  X1, . . . , Xp.) 

 Hence, MSO  orientability  needs  some   combinatorial  conditions. 
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Case  1  :  Defining  an  orientation  of   p-colorable  graphs. 
 

Parameters  X1, . . . , Xp  are  intended  to  specify  a  p-coloring. The 

orientation  is  u  v  if  u ∈ Xi , v ∈ Xj  and  i < j.  

One  defines  particular  orientations,  not  all  of   them. 
 

Remarks : With  4  parameters  (4 colors), one  can  define  some  

orientations  of   each  planar  graph.  With  80  parameters  (80  colors, by 

Raspaud & Sopena), one  can  define  all  orientations  of  each  simple  planar 

graph. (Actually 2 and 7 parameters can encode 4 and 80 colors respectively).  
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Case  2  :  Defining  an  orientation of  indegree  <  p.  
 

Let  m  = 22p(p+1)+1 -1. There  is  a  tournament  T  with  VT = [m]  such 

that  for  every  oriented  graph  H  of  indegree  < p, there  is  a 

homomorphism h: H  T  (by Nesetril et al.).  Such  h  can be specified by 

parameters    X1, . . . , Xm.  

   Then  u    v  ⇔   u ∈ Xi , v ∈ Xj  and  i  j  in T. 
 

Consequence :  Uniform  p-sparsity  of  G  is   MSO  expressible. 

Means : ⎜ EK ⎜ < p. ⎜VK ⎜  for every subgraph K  of  G.     Because   

(by Nash-Williams)  it is equivalent  to the existence of an orientation of 

indegree  <   p.                         (No  MSO  expression  of the definition). 
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Monadic  Second-Order  definitions  of  linear  orders 
 

Facts :  1)  A   linear  order  yields  an  orientation.   
 

2) Impossible   to  define  all  linear  orders, even  with edge 

quantifications. 

Proof :   Counting  argument  by  considering     Pn  for  large  n.  

(n!  linears orders but only  2pn different ones defined from p parameters). 
 

3) Impossible   to  define  with  fixed  MSO2   formulas  a  linear  order 

on each  graph. 

Proof :  Assume  this  possible  with  p  parameters  and  consider an 

edgeless   graph  with   n  vertices,  n  >  2p.   Same  argument  based 

on  automorphisms  as  for orientations. 
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By   MSO2   formulas  (the  easiest  case) 

 

Case 1 : Rooted trees of degree < d. 

With  d  parameters (defining sets of edges), a  formula  can order the 

successors of every node. Another one  can  order lexicographically 

the  access  paths  to  nodes. 

 

Case 2 : Graphs  with  a   spanning  tree  of  degree  < d. 

One  parameter  can  choose  such a  tree,  and  we use  Case 1. 

 

In particular:  Cliques :  d = 1;  

   3-connected  planar graphs : d = 3, (by Barnette). 
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                Now  some  necessary  conditions. 
 

 

 

 Basic “separation”  condition:  If  an  MSO2   formula  β  of  quantifier-

height  h  and  using  p  parameters orders a graph G, this graph has  

<  f(h, p)  connected  components  for  some  fixed  function  f. 

 

Proof sketch  : Let  G  with  connected  components  C1, …, CN,  and 

chosen  p parameters.  Let  ui  be  a vertex  of  Ci.   

  Whether   β(X1, …, Xp, ui, uj)  is  true  depends  (by a fixed function)  

on   (Θi, Θj , { Θk / k ≠ i,j } ) where  Θi  is  the  “h-theory”  of  ui  in  Ci   

i.e.,  the  finite  set  of  formulas  γ(X1, …, Xp, w)  of  quantifier-height   

<  h   true  in  Ci  with  ui  as  value  of  w. 



 19

  Again:  Whether   β(X1, …, Xp, ui, uj)  is  true  depends  only  on   

(Θi, Θj , { Θk / k ≠ i,j } )  where  Θi  is  the  “h-theory”  of  ui  in  Ci.   

  If N  >  some  f(h, p),  there   are  ui  and  uj   with  same “h-

theories” and  thus  β(X1, …, Xp, ui, uj)   ⇒   β(X1, …, Xp, uj, ui);  ui  

and  uj  are not  ordered.          (We use logic, not only automorphisms).  

 

 Generalized necessary “separation”  condition  SEP:  If  a  class  of  

graphs  is  MSO2   orderable,  there  is  a   function  g  on  integers  

such  that  for every  graph  G  and  every  set   X  of  k  vertices the 

graph  G – X  has   <  g(k)  connected components. (Formally :  G   ∈  

Sep(g). )  
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This  condition  is  necessary  but  not  sufficient.  

 

Counter example: the graphs   K n, 22
n   

 

Proof:   

Not  MSO2   orderable by  easy argument using  automorphisms. 

 

Fact: If  f  is a strictly increasing function,  then the graphs  K n, f(n)  

are in Sep(f ).   
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Question :  Which additional  condition  makes  it  sufficient ? 

 

Answer 1 : Excluding  Kp,p  as  a  minor.   

 

Remark:  By  using  a  different  logic  (First-order logic  with  least 

fixed-points  over  sets  of  k-tuples), M. Grohe can order  the graphs of 

every  class  that excludes  a  minor  and  he  gets a  logic  that 

captures  PTIME  on  these  classes  (LICS 2010). 
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Proof   sketch :  Let  G  connected  without   Kp,p  as  a  minor  satisfy  

SEP  for some function g. 

 Let T be a depth-first   spanning  

tree (chosen by  some parameter). 

 We  must order  the  

successors  of  every node  x   of  T. 
  
If  C  is  a  “successor component”  

of  x, let   Anc(C ) = (y1, …, yq). 

1) We  order  lexicographically 

w.r.t.  Anc(C)  the successors  of  x. 
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We  need  to  order  two components  with same  ancestor list. 

Let Anc(C ) = (y1, …, yq). 
 

2)  If q > p, there  are  less than    p  successor  components  of  x   

with same  ancestor list (otherwise  Kp,p  is  a  minor  of G); with  p-1  

parameters,  one  can  order   them      (as for trees of bounded degree). 

 3)   If q <  p, there  are  <  g(p+1)   successor  components  of  x   with 

same  list  of  ancestors (we  use  SEP  by  deleting x, y1, …, yq)   with 

g(p+1)   parameters, one can order them. 
 

  Finally, we order lexicographically the access paths to the nodes of 

T (the vertices  of G).  
   

  If G is not connected, it  has   <  g(0)   connected components.  
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Improvement  :  

  If  G   has  no  minor  Kp,p  and  Sep(G,p) < d ,  then  

Sep(G, k)  < (p+d).k.2k  for every k > p. 

 

  Hence,  a  class  without  Kp,p  as a minor  is   an  MSO2 –orderable 

if and only if  Sep(G,p)  is  bounded  for  G  in  this  class.    

   

  (The  combinatorial  condition  need  not  consider Sep(G,k)  for all 

values of k, but only k = p.) 

 

Question  : Can one replace “excluding  Kp,p”  by “r-sparse”? 

No: Consider the incidence graphs of  Kn,f(n)  with f not “elementary”. 
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Answer 2,  about dense  graphs. 

  A  set  of   complete  bipartite  graphs  Km,n  with m > n  is   

  MSO2 –orderable  ⇔  

  it satisfies   m  <  an   for some  a        ⇔  

  it satisfies  SEP(λk. ak)  for  some  a. 

 

 Hence, for cographs, SEP   does  not  imply   MSO2–orderability. 
 

Question :  Find  necessary and sufficient conditions  for a  set  of   

cographs   to  be  MSO2 –orderable.   
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Answer  3,  about split  graphs  (particular chordal graphs). 

Similar fact: 

  A  set  of  split   graphs  is  MSO2–orderable  ⇔   

  it satisfies  SEP(λk. ak)  for  some  a.  

Again :  SEP   does  not  imply   MSO2–orderability. 

 

  There exists an  MSO2–orderable set of chordal graphs that is  not 

included in SEP(λk. ak)  for  any  a. (We build graphs G such that 

Sep(G,k) = k! ). 
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Linear  ordering  by   MSO   formulas. 
 

 

Observation :  Cliques  are   MSO2 –orderable   but   not   

MSO–orderable   (for MSO, they are equivalent to  edgeless  graphs). 

 

  Hence, we need  a stronger combinatorial  condition than SEP. 

 

  SEP  is based  on  vertex  separators  (cf. tree-decompositions). 

 

  We will introduce certain edge-separations by complete bipartite 

graphs  (cf. the definition  of  clique-width). 
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Definition 1 :  A  family  of  associative  and  commutative  “clique-

width”  operations. 

  G, H  simple,  undirected  graphs  with  vertex  labels  in [k], 

  R  ⊆  [k] x [k], symmetric,   

  G ⊗R H   is  G ⊕  H  with  edges  between  every vertex  of   G   

  labelled  by  a  and  every   

  vertex  of  H  labelled   

  by  b  such  that  (a,b)  ∈  R. 

 

 

  Example:  G ⊗R H ⊗R K   

  R = {(a,b),(b,a)} 
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Definition 2 :  Let  G  simple  and  undirected. 

  Cut(G,k)   is the maximum number  n of  graphs H1, …, Hn   with  

labels  in  [k], such  that   (just another way  to  split  graphs): 
 

G =  H1 ⊗R … ⊗R Hn   for  some  R  symmetric  ⊆   [k] x [k]. 

 

  G  ∈  CUT(g)   if   Cut(G,k)  <  g(k)  for  every  k. 

 

A  necessary  condition 

 

Proposition  :  Let  G  be  simple, undirected,  MSO-ordered by a 

formula  with  p  parameters  and  quantifier-height  h. 

  Then  Cut(G,k)   <  f(k, p, h). 
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Proposition  :  CUT(g)  ⊆  SEP(g’)    where  g’(k) = g(k+2k), 

    i.e.   CUT  ⇒  SEP. 

Conversely, 
 

Proposition  :  If  G  is  uniformly  q-sparse : 

G  ∈  SEP(f)   ⇒   G  ∈  CUT(f’)    where  f’(k) = g(6.k2.q2).   

 

For  graphs  that  are  uniformly  q-sparse : 

   SEP    ⇔   CUT, 

   bounded  tree-width  ⇔   bounded  clique-width,      

   MSO2    is   equivalent   to   MSO. 
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Proposition:  A  class  C  of    cographs  

is  MSO-orderable 

  ⇔ C  ⊆  CUT(g)   for some function g, 

  ⇔ the  modular  decomposition  trees of  its cographs have   

   bounded degree. 

 

Cographs  labelled  by  a  are  defined  by  terms  over  ⊕   and    

⊗  ( = ⊗{ (a ,a) } ), handled  as  associative  and  commutative  

operations  of variable  arity;  the terms representing  their  modular  

decompositions  have  no  two  consecutive  ⊕   or  ⊗   on  any  branch. 

 

Question : What about  a class C of  bounded clique-width ?
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What  about  chordal  graphs ? 

 

MSO-orderability  of  chordal  graphs  >   

MSO-orderability  of  incidence  graphs  ≡ 

MSO2-orderability  of  all  graphs. 

  CUT  for  incidence  graphs  ≡  SEP  for  basic graphs. 
 

     No  hope  for  bipartite  graphs : 
 

  Because arbitrary  graphs can be encoded  as bipartite  graphs. 

The  encoding preserves MSO-orderability and CUT. 
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   Other  MSO-definable  constructions ; open questions 
 

- Monadic  second-order  transductions (MST).  They are more 

general  than  those presented here : the output structure  may have 

a domain  k  times  larger  than  that  of  the  input  structure. They 

still use parameters. 
 

- A  class of graphs C has bounded  tree-width ⇔   

         Inc(C)  ⊆  MST(Trees)     (using  MSO2)  
 

- A  class of graphs C has bounded  clique-width ⇔   

         C  ⊆  MST(Trees)          (using  MSO).  
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- The   mapping  from  a  linearly  ordered  graph  to  its  (unique)  

modular decomposition  (or to its “split”  decomposition,  by 

Cunnigham)  is an   MST  (not using edge  quantifications). 

- The mappings  between ordered circle graphs  and  their  chord 

intersection  

   diagrams 

 

 

 

 

  It follows that a set of circle graphs has bounded clique-width  if 

and only if  their  chord intersection  diagrams have bounded tree-

width. 
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 -  Some  planar  embedding of a  linearly  ordered  connected planar 

graph can be defined by an MST. (A  linear  order  is  MSO-definable for  

3-connected  planar  graphs; a planar embedding  of a  star  is  a circular  

order  of  its  vertices  of  degree  1.) 

 

 

 

 -  Some  tree-decomposition of  width  k  for any  graph  of  tree-width 

<  k < 3   (B.C,  Kaller)  or  of  path-width < k  (Kabanets). 
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- Conjecture : For each k > 3, there is an MST  constructing a  tree-

decomposition of  width < f(k)  of  any  graph  of  tree-width  <  k, 

where  f  is a fixed function. 
 

  It  would  yield, for any class of graphs of bounded tree-width,  an  

equivalence  between recognizability  and  CMSO-definability (i.e. 

definability  by  MSO  formulas  that can use set  predicates  meaning  that  

the cardinality  of  a  set  is  a  multiple  of  a fixed integer).  
  Recognizability means here recognizability by finite automata on labelled 

trees encoding tree-decompositions.  
  It  would also  give for such classes the  equivalence  between  

CMSO-definability  and order-invariant MSO-definability (i.e., MSO- 

definability with the help  of  an arbitrary linear order. Modulo-counting set 

predicates are order-invariant MSO-definable.
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  Other  open  questions  
  

1) MSO  and  MSO2  orderability  of  particular  classes  of  graphs: 

   Which  conditions  in  addition  to  CUT  and  SEP  ? 

 

   

2) Graphs  omitting  a  fixed  graph  H  as  a  minor  have  a  particular  

tree-structure  (defined by Robertson & Seymour).  

       Is  this structure  constructible  by  an  MST ?  

   
  (Of course, one first need to prove the conjecture for graphs of bounded 

tree-width). 


