On the constructive power of monadic second-order logic

Bruno Courcelle

Institut Universitaire de France \& Université Bordeaux 1, LaBRI
References: B.C. \& J. Engelfriet, Graph structure and monadic second-order logic, book to be published by Cambridge University Press (April 2012)
B.C. \& A. Blumensath, Monadic second-order graph orderings, in preparation.

See for both : http://www.labri.fr/perso/courcell/ActSci.html

Presentation of the talk

Monadic Second-Order (MSO) logic can express graph properties and mappings from (labelled) graphs to (labelled) graphs.

Main facts :

1. MSO graph properties are FPT with respect to cliquewidth and tree-width.
2. So are MSO counting and optimizing functions.
3. MSO definable sets of graphs are recognizable (by finite congruences, there is no good notion of graph automaton).
4. Recognizable sets behave well with respect to the equational sets (which generalize context-free languages).
5. There is no good notion of automaton-based transducer. But the MSO definable transductions behave well w.r.t. equational and recognizable sets (respectively : direct and inverse preservation results).

An overview chart

Summary

1) MSO logic without and with edge quantifications.
2) MSO definitions of orientations.
3) MSO definitions of linear orders.
4) Other constructions.
5) Open problems.

Two types of MSO formulas or rather two logical graph representations

MSO formulas
$\mathrm{G}=\left(\mathrm{V}_{\mathrm{G}}, \mathrm{edgg}_{\mathrm{G}}(. .).\right)$

FPT for clique-width

For G directed: $\operatorname{Inc}(G)=\left(V_{G} \cup E_{G}, \operatorname{inc}_{1 G}(.,),. \operatorname{inc}_{2 G}(.,).\right)$
(1=tail, 2=head)

Typical MSO graph properties

MSO properties: 3-colorablility
$\exists X, Y(" X, Y$ are disjoint" $\wedge \forall u, v\{$ edg $(u, v) \Rightarrow$

$$
[(u \in X \Rightarrow v \notin X) \wedge(u \in Y \Rightarrow v \notin Y) \wedge(u \notin X \cup Y \Rightarrow v \in X \cup Y]\})
$$

Connectedness, negation of :
$\exists Z(\exists x \in Z \wedge \exists y \notin Z \wedge \forall u, v(u \in Z \wedge e d g(u, v) \Rightarrow v \in Z))$

Planarity (via two forbidden minors K_{5} and $\mathrm{K}_{3,3}$)

Perfectness (via forbidden holes and anti-holes)

Typical MSO_{2} graph properties

MSO_{2} property that is not MSO :
has a perfect matching or
has a Hamiltonian circuit or
has a spanning tree of degree ≤ 3

The expressions have the form:
"There exists a set of edges that is ..."

Monadic Second-Order definitions of orientations

Particular monadic second-order transductions:
 G undirected $\rightarrow \mathrm{G}$, orientation of G

Two cases: by MSO or by MSO_{2} formulas

All cases : with parameters (that "guess" an appropriate coloring or spanning tree or ...)

By MSO_{2} formulas (the easiest case, of course)

Idea: for a graph G, "guess", by means of 2 parameters (X , set of edges and Y , set of vertices), a depth-first rooted spanning forest F ("depth-first" - or "normal" - means that every edge of the graph links a vertex and one of its ancestors w.r.t. F).

From F one obtains an acyclic orientation of G .
An additional parameter Z can specify the set of edges "to be reversed".

Fact: By means of 3 parameters X, Y, Z (over $\operatorname{Inc}(G)$), one can specify by MSO_{2} formulas all orientations of a given graph.

Formally: there are MSO_{2} formulas $\alpha(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ and $\beta(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{u}, \mathrm{v})$ such that, for every graph G,

1) there exist X, Y, Z satisfying α in $\operatorname{lnc}(G)$, meaning that X, Y define a depth-first rooted spanning forest and Z is a set of edges,
2) for every X, Y, Z satisfying α and every two adjacent vertices u, v :

$$
\beta(X, Y, Z, u, v) \Rightarrow \neg \beta(X, Y, Z, v, u)
$$

hence, $\beta(X, Y, Z, \ldots)$ defines one orientation of each edge.

Furthermore, for every such X, Y and every orientation H of G , there is
Z such that $\beta(X, Y, Z, \ldots)$ defines the orientation H.

Consequences:

If Q is an MSO_{2} property of directed graphs, then the property of undirected graphs G :
$\mathrm{P}(\mathrm{G}) \Leftrightarrow \mathrm{G}$ has an orientation satisfying Q
is MSO_{2}. (False for MSO).

Analogy : Tree-width is invariant under changes of orientation.
Here MSO_{2} formulas can specify arbitrary (changes of) orientation(s).

By MSO formulas : more difficult

Fact: No pair of MSO formulas can specify at least one orientation of any graph.

Proof: Assume this possible with p parameters X_{1}, \ldots, X_{p}.
Take a clique K_{n} with $n>2^{p}$. There are adjacent vertices u, v that belong to the same sets X_{i}, hence

$$
\beta\left(X_{1}, \ldots, X_{p}, u, v\right) \Leftrightarrow \beta\left(X_{1}, \ldots, X_{p}, v, u\right)
$$

so that the edge $u-v$ is not oriented by $\beta\left(X_{1}, \ldots, X_{p, \ldots,}\right)$.
(There is an automorphism that preserves the sets X_{1}, \ldots, X_{p}.)
Hence, MSO orientability needs some combinatorial conditions.

Case 1 : Defining an orientation of p-colorable graphs.
Parameters X_{1}, \ldots, X_{p} are intended to specify a p-coloring. The orientation is $u \rightarrow v$ if $u \in X_{i}, v \in X_{j}$ and $i<j$.
One defines particular orientations, not all of them.

Remarks: With 4 parameters (4 colors), one can define some orientations of each planar graph. With 80 parameters (80 colors, by Raspaud \& Sopena), one can define all orientations of each simple planar graph. (Actually 2 and 7 parameters can encode 4 and 80 colors respectively).

Case 2: Defining an orientation of indegree $\leq p$.
Let $m=2^{2 p(p+1)+1}-1$. There is a tournament T with $V_{T}=[m]$ such that for every oriented graph H of indegree $\leq \mathrm{p}$, there is a homomorphism $\mathrm{h}: \mathrm{H} \rightarrow \mathrm{T}$ (by Nesetril et al.). Such h can be specified by parameters $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}$.

$$
\text { Then } u \rightarrow v \Leftrightarrow u \in X_{i}, v \in X_{j} \text { and } i \rightarrow j \text { in } T \text {. }
$$

Consequence: Uniform p-sparsity of G is MSO expressible. Means : $\left|E_{K}\right| \leq p$. $\left|V_{K}\right|$ for every subgraph K of G. Because (by Nash-Williams) it is equivalent to the existence of an orientation of indegree $\leq \mathrm{p}$. (No MSO expression of the definition).

Monadic Second-Order definitions of linear orders

Facts: 1) A linear order yields an orientation.
2) Impossible to define all linear orders, even with edge quantifications.

Proof: Counting argument by considering P_{n} for large n.
(n ! linears orders but only 2^{pn} different ones defined from p parameters).
3) Impossible to define with fixed MSO_{2} formulas a linear order on each graph.
Proof: Assume this possible with p parameters and consider an edgeless graph with n vertices, $n>2^{p}$. Same argument based on automorphisms as for orientations.

By MSO_{2} formulas (the easiest case)

Case 1 : Rooted trees of degree $\leq d$.
With d parameters (defining sets of edges), a formula can order the successors of every node. Another one can order lexicographically the access paths to nodes.

Case 2: Graphs with a spanning tree of degree $\leq d$.
One parameter can choose such a tree, and we use Case 1.

In particular: Cliques : $d=1$;
3-connected planar graphs : $d=3$, (by Barnette).

Now some necessary conditions.

Basic "separation" condition: If an MSO_{2} formula β of quantifierheight h and using p parameters orders a graph G, this graph has $<\mathrm{f}(h, p)$ connected components for some fixed function f .

Proof sketch: Let G with connected components $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{N}}$, and chosen p parameters. Let u_{i} be a vertex of C_{i}.

Whether $\beta\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{p}}, \mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)$ is true depends (by a fixed function) on $\left(\Theta_{i}, \Theta_{j},\left\{\Theta_{k} / k \neq i, j\right\}\right)$ where Θ_{i} is the " h-theory" of u_{i} in C_{i} i.e., the finite set of formulas $\gamma\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{p}}, \mathrm{w}\right)$ of quantifier-height $\leq h$ true in C_{i} with u_{i} as value of w .

Again: Whether $\beta\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{p}}, \mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)$ is true depends only on $\left(\Theta_{i}, \Theta_{j},\left\{\Theta_{k} / k \neq i, j\right\}\right)$ where Θ_{i} is the "h-theory" of u_{i} in C_{i}. If $N \geq$ some $f(h, p)$, there are u_{i} and u_{j} with same " h theories" and thus $\beta\left(X_{1}, \ldots, X_{p}, u_{i}, u_{j}\right) \Rightarrow \beta\left(X_{1}, \ldots, X_{p}, u_{j}, u_{i}\right) ; u_{i}$ and u_{j} are not ordered. (We use logic, not only automorphisms).

Generalized necessary "separation" condition SEP: If a class of graphs is MSO_{2} orderable, there is a function g on integers such that for every graph G and every set X of k vertices the graph $G-X$ has $<g(k)$ connected components. (Formally: $G \in$ Sep(g).)

This condition is necessary but not sufficient.

Counter example: the graphs $K_{n, 2} 2^{n}$

Proof:
Not MSO_{2} orderable by easy argument using automorphisms.

Fact: If f is a strictly increasing function, then the graphs $\mathrm{K}_{\mathrm{n}, f(\mathrm{n})}$ are in $\operatorname{Sep}(f)$.

Question: Which additional condition makes it sufficient?

Answer 1 : Excluding $\mathrm{K}_{\mathrm{p}, \mathrm{p}}$ as a minor.

Remark: By using a different logic (First-order logic with least fixed-points over sets of k-tuples), M. Grohe can order the graphs of every class that excludes a minor and he gets a logic that captures PTIME on these classes (LICS 2010).

Proof sketch: Let G connected without $\mathrm{K}_{\mathrm{p}, \mathrm{p}}$ as a minor satisfy SEP for some function g.
Let T be a depth-first spanning tree (chosen by some parameter).

We must order the
successors of every node x of T.
If C is a "successor component"
of x, let $\operatorname{Anc}(C)=\left(y_{1}, \ldots, y_{q}\right)$.

1) We order lexicographically
w.r.t. Anc(C) the successors of x.

We need to order two components with same ancestor list.

$$
\text { Let } \operatorname{Anc}(C)=\left(y_{1}, \ldots, y_{q}\right) \text {. }
$$

2) If $q \geq p$, there are less than p successor components of x with same ancestor list (otherwise $\mathrm{K}_{\mathrm{p}, \mathrm{p}}$ is a minor of G); with $\mathrm{p}-1$ parameters, one can order them (as for trees of bounded degree).
3) If $q<p$, there are $<g(p+1)$ successor components of x with same list of ancestors (we use SEP by deleting x, y_{1}, \ldots, y_{q}) with $g(p+1)$ parameters, one can order them.

Finally, we order lexicographically the access paths to the nodes of T (the vertices of G).

If G is not connected, it has $<\mathrm{g}(0)$ connected components.

Improvement :
If G has no minor $K_{p, p}$ and $\operatorname{Sep}(G, p) \leq d$, then $\operatorname{Sep}(G, k) \leq(p+d) \cdot k \cdot 2^{k}$ for every $k \geq p$.

Hence, a class without $K_{p, p}$ as a minor is an MSO_{2}-orderable if and only if $\operatorname{Sep}(G, p)$ is bounded for G in this class.
(The combinatorial condition need not consider $\operatorname{Sep}(G, k)$ for all values of k, but only $k=p$.)

Question : Can one replace "excluding $\mathrm{K}_{\mathrm{p}, \mathrm{p}}$ " by "r-sparse"?
No: Consider the incidence graphs of $\mathrm{K}_{\mathrm{n}, f(\mathrm{n})}$ with f not "elementary".

Answer 2, about dense graphs.
A set of complete bipartite graphs $K_{m, n}$ with $m \geq n$ is
MSO_{2}-orderable \Leftrightarrow
it satisfies $m \leq a^{n}$ for some $a \Leftrightarrow$
it satisfies $\operatorname{SEP}\left(\lambda k . a^{k}\right)$ for some a.

Hence, for cographs, SEP does not imply MSO_{2}-orderability.
Question: Find necessary and sufficient conditions for a set of cographs to be MSO_{2}-orderable.

Answer 3, about split graphs (particular chordal graphs).
Similar fact:
A set of split graphs is MSO_{2}-orderable \Leftrightarrow
it satisfies $\operatorname{SEP}\left(\lambda k . a^{k}\right)$ for some a.
Again: SEP does not imply MSO_{2}-orderability.

There exists an MSO_{2}-orderable set of chordal graphs that is not included in $\operatorname{SEP}\left(\lambda k . a^{k}\right)$ for any a. (We build graphs G such that $\operatorname{Sep}(G, k)=k!)$.

Linear ordering by MSO formulas.

Observation: Cliques are MSO_{2}-orderable but not MSO-orderable (for MSO, they are equivalent to edgeless graphs).

Hence, we need a stronger combinatorial condition than SEP.

SEP is based on vertex separators (cf. tree-decompositions).

We will introduce certain edge-separations by complete bipartite graphs (cf. the definition of clique-width).

Definition 1: A family of associative and commutative "cliquewidth" operations.
G, H simple, undirected graphs with vertex labels in $[\mathrm{k}]$,
$R \subseteq[k] \times[k]$, symmetric,
$\mathrm{G} \otimes_{\mathrm{R}} \mathrm{H}$ is $\mathrm{G} \oplus H$ with edges between every vertex of G
labelled by a and every vertex of H labelled by b such that $(a, b) \in R$.

Example: $\mathrm{G} \otimes_{\mathrm{R}} \mathrm{H} \otimes_{\mathrm{R}} \mathrm{K}$
$R=\{(a, b),(b, a)\}$

Definition 2: Let G simple and undirected.
$\operatorname{Cut}(\mathrm{G}, \mathrm{k})$ is the maximum number n of graphs $\mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{n}}$ with labels in $[\mathrm{k}]$, such that (just another way to split graphs):

$$
\begin{aligned}
& G=H_{1} \otimes_{R} \ldots \otimes_{R} H_{n} \text { for some } R \text { symmetric } \subseteq[k] \times[k] \text {. } \\
& G \in \operatorname{CUT}(\mathrm{~g}) \text { if } \operatorname{Cut}(\mathrm{G}, \mathrm{k}) \leq g(\mathrm{k}) \text { for every } \mathrm{k} \text {. }
\end{aligned}
$$

A necessary condition

Proposition : Let G be simple, undirected, MSO-ordered by a formula with p parameters and quantifier-height h.

Then $\operatorname{Cut}(\mathrm{G}, \mathrm{k}) \leq \mathrm{f}(\mathrm{k}, \mathrm{p}, h)$.

Proposition : CUT $(\mathrm{g}) \subseteq \operatorname{SEP}\left(\mathrm{g}^{\prime}\right)$ where $\mathrm{g}^{\prime}(\mathrm{k})=\mathrm{g}\left(\mathrm{k}+2^{\mathrm{k}}\right)$,

i.e. CUT \Rightarrow SEP.

Conversely,
Proposition: If G is uniformly q-sparse:
$G \in \operatorname{SEP}(f) \Rightarrow G \in \operatorname{CUT}\left(f^{\prime}\right)$ where $f^{\prime}(k)=g\left(6 \cdot k^{2} \cdot q^{2}\right)$.

For graphs that are uniformly q-sparse :
SEP \Leftrightarrow CUT,
bounded tree-width \Leftrightarrow bounded clique-width, MSO_{2} is equivalent to MSO .

Proposition: A class C of cographs
is MSO-orderable
$\Leftrightarrow C \subseteq \operatorname{CUT}(\mathrm{~g})$ for some function g,
\Leftrightarrow the modular decomposition trees of its cographs have bounded degree.

Cographs labelled by a are defined by terms over \oplus and $\otimes\left(=\otimes_{\{(a, a)\}}\right)$, handled as associative and commutative operations of variable arity; the terms representing their modular decompositions have no two consecutive \oplus or \otimes on any branch.

Question : What about a class C of bounded clique-width ?

What about chordal graphs ?

MSO-orderability of chordal graphs \geq
MSO-orderability of incidence graphs \equiv
MSO_{2}-orderability of all graphs.
CUT for incidence graphs \equiv SEP for basic graphs.

No hope for bipartite graphs:
Because arbitrary graphs can be encoded as bipartite graphs. The encoding preserves MSO-orderability and CUT.

Other MSO-definable constructions; open questions

- Monadic second-order transductions (MST). They are more general than those presented here : the output structure may have a domain k times larger than that of the input structure. They still use parameters.
- A class of graphs C has bounded tree-width \Leftrightarrow

$$
\operatorname{Inc}(C) \subseteq \operatorname{MST}(\text { Trees }) \quad\left(\text { using } \mathrm{MSO}_{2}\right)
$$

- A class of graphs C has bounded clique-width \Leftrightarrow

$$
C \subseteq M S T \text { (Trees) } \quad \text { (using MSO) }
$$

- The mapping from a linearly ordered graph to its (unique) modular decomposition (or to its "split" decomposition, by Cunnigham) is an MST (not using edge quantifications).
- The mappings between ordered circle graphs and their chord diagrams

It follows that a set of circle graphs has bounded clique-width if and only if their chord intersection diagrams have bounded treewidth.

- Some planar embedding of a linearly ordered connected planar graph can be defined by an MST. (A linear order is MSO-definable for 3 -connected planar graphs; a planar embedding of a star is a circular order of its vertices of degree 1.)
- Some tree-decomposition of width k for any graph of tree-width $\leq k \leq 3$ (B.C, Kaller) or of path-width $\leq k$ (Kabanets).
- Conjecture : For each $k>3$, there is an MST constructing a treedecomposition of width $\leq f(k)$ of any graph of tree-width $\leq k$, where f is a fixed function.

It would yield, for any class of graphs of bounded tree-width, an equivalence between recognizability and CMSO-definability (i.e. definability by MSO formulas that can use set predicates meaning that the cardinality of a set is a multiple of a fixed integer).

Recognizability means here recognizability by finite automata on labelled trees encoding tree-decompositions.

It would also give for such classes the equivalence between CMSO-definability and order-invariant MSO-definability (i.e., MSOdefinability with the help of an arbitrary linear order. Modulo-counting set predicates are order-invariant MSO-definable.

Other open questions

1) MSO and MSO_{2} orderability of particular classes of graphs: Which conditions in addition to CUT and SEP ?
2) Graphs omitting a fixed graph H as a minor have a particular tree-structure (defined by Robertson \& Seymour). Is this structure constructible by an MST?
(Of course, one first need to prove the conjecture for graphs of bounded tree-width).
