

Tractable constructions of finite automata

from monadic second-order formulas

Bruno Courcelle, Irène Durand

Université Bordeaux 1, LaBRI

References : B. Courcelle : Graph structure and monadic second-order logic,
 book to be published by Cambridge University Press, readable on :

 http://www.labri.fr/perso/courcell/ActSci.html

I. Durand : AUTOWRITE, a tool for term rewrite systems and tree

 ENTCS 124 (2005) 29-49

 2

 An overview chart

Graph Terms Tree-width (algebraic characterization)

operations Clique-width (definition)

 “parsing”

 Automaton Input graph G

Monadic 2nd-order ϕ G ⎜ = ϕ ?

sentence

 Conceptual implication Compilation step Fixed-parameter algorithm

 3

Two graph algebras : “HR” and “VR”

Case 1 : “HR”, parameter tree-width Model-checking for

 MSO sentences with edge set quantifications.

Case 2 : “VR”, parameter clique-width Model-checking for

 MSO sentences without edge set quantifications.

Automata for Case 2 are easier to build.

Case 1 reduces to Case 2 :

Graph G of tree-width k>2 Incidence graph of G of tree-width k,

 hence of clique-width about 2k.

 But : Graph of path-width k>2 Incidence graph of path-width k,

 hence of linear clique-width k+2 : no exponential !

 4

Two difficulties :

Parsing, but in some concrete cases, graphs arise with their “natural”

decompositions.

Construction of automata : fails in many cases by lack of memory.

What we propose :

 -To use predefined deterministic automata for basic useful graph

 properties like : Path(X,Y), Stable(X), Clique(X), NoCycle(X), etc.

 -To consider existential quantifications over Boolean combinations

 of basic formulas with substitutions of set terms

 - Not to determinize automata

 - To interpret and not to compile “combinatorially defined” automata

 - To use path- and linear clique-width decompositions.

 5

1. The graph algebra VR

Origin : Vertex Replacement context-free graph grammars

Associated complexity measure: clique-width.

Graphs are defined in terms of very simple graph operations.

Graphs are simple, loop-free, undirected (extension to directed case easy).

Vertex labels : a,b,c ,..., d. Each vertex has one and only one label.

One binary operation : disjoint union : ⊕

 Well-defined up to isomorphism : one takes disjoint copies ;

 G ⊕ G is not equal to G

 6

Unary operations: Edge addition denoted by Add-edga,b

Add-edga,b(G) is G augmented with undirected edges between

every a-labelled vertex and every b-labelled vertex

 H = Add-edga,b(G) ; only 5 new edges added

The number of added edges depends on the argument graph.

 The directed version of Add-edga,b adds directed edges from

 every a-labelled vertex to every b-labelled vertex

 7

Vertex relabellings :
Relaba b(G) is G with every label a changed into b

Variant : Relab h (G) is G with every label a changed into h(a) for some

function h : C C ; C is the finite set of labels.

Basic graphs : a one vertex labelled by a, for each a in C.

Definition: A graph G has clique-width ≤ k

 ⇔ it can be constructed from basic graphs with the operations

 ⊕, Add-edga,b and Relaba b with labels a, b in set C of k labels

 Its (exact) clique-width cwd(G) is the smallest such k.

 8

 Example : Cliques (a-labelled) have clique-width 2.

 Kn is defined by tn where t1 = a

 tn+1 = Relabb a(Add-edga,b(tn ⊕ b))

Example : Cographs (a-labelled) are generated by ⊕ and ⊗ defined by:

G ⊗ H = Relabb a(Add-edga,b (G ⊕ Relaba b(H)))

 = G ⊕ H with “all edges” between G and H.

 9

2. Monadic Second-Order (MSO) Logic

= First-order logic extended with (quantified) variables

denoting subsets of the domains.

MSO properties : transitive closure, properties of paths, connectivity,

planarity (via Kuratowski, uses connectivity), p-colorability.

Examples of formulas for G = (VG , edgG(.,.)), undirected

p-colorability (NP-complete property)

∃ X1,…,Xp (Partition(X1,…,Xp) ∧ Stable(X1) ∧ ∧ Stable(Xp))

p-acyclic colorability

∃ X1,…,Xp (Partition(X1,…,Xp) ∧ Stable(X1) ∧ ∧ Stable(Xp) ∧
 ∧ NoCycle(Xi ∪ Xj) ∧)

 10

Non connectivity, whence connectivity, more generally, transitive closure :

∃X (∃x ∈ X ∧ ∃y ∉ X ∧ ∀u,v (u ∈ X ∧ edg(u,v) ⇒ v ∈ X))

Contains H as a minor :

H simple, loop-free. Vertices(H) = {v1,…,vp }

∃X1,…,Xp (Disjoint(X1,…,Xp) ∧ Connected(X1) ∧ ∧ Connected(Xp) ∧
 ∧ Link(Xi , Xj) ∧)

 where Link(Xi , Xj) means : there is an edge between some vertex of Xi
 and some vertex of Xj .

One puts Link(Xi , Xj) in the sentence for each edge vi ---- vj of H.

 11

3. Büchi-style construction of automata for VR terms.

We fix k the number of vertex labels (hence the bound on clique-width).

F = the corresponding set : a , ⊕ , Add-edga,b , Relab a b

G(t) = the graph defined by a term t in T(F).

Vertices(G(t)) = the set of occurrences of constant symbols in t

 12

 Formulas are without first-order variables and ∀

Construction : For each sentence ϕ an automaton A(ϕ) that defines

the set of terms in T(F) such that G(t) ⎜ = ϕ

 By induction on the structure of the sentence ϕ

 For ∃ X. ϕ(X), we need A(ϕ(X)).

 More generally, we need A(ϕ(X1,...,Xn)).

 13

A term t in T(F) defines a graph G(t) with vertex set

 = the set of occurrences of constants.

 For representing assignments

 ν: { X1,...,Xn } P(Vertices(G(t)))

 we replace in F each constant a by the constants

(a, (w1,…,wn)) with wi ∈ {0,1} : we get F(n) .

 A term s in T(F(n)) encodes a term t in T(F) and an

 assignment ν : { X1,..,Xn } P(Vertices(G(t))) :

 if u is an occurrence of (a, (w1,..,wn)), then wi = 1 iff u ∈ Xi .

Such a term s is denoted by t*ν .

 14

 A term t*ν in T(F(n)) defines the graph G(t) and some

assignment ν : { X1,...,Xn } P(Vertices(G(t))).

 From F and ϕ we will construct a finite deterministic automaton

A(ϕ(X1,…,Xn)) that recognizes :

 L(ϕ(X1,…,Xn)) : = { t*ν ∈ T(F(n)) / (G(t), ν) ⎜ = ϕ }

Main inductive steps

 L(∃ Xn+1 . ϕ(X1, ..., Xn+1)) = pr(L (ϕ(X1, ..., Xn+1))

 A(∃ Xn+1 . ϕ(X1, ..., Xn+1)) = pr(A (ϕ(X1, ..., Xn+1))

where pr is the “projection” that eliminates the last Boolean.

 One obtains a nondeterministic automaton.

 15

 For ∧ and ∨ : product of two complete automata

 (deterministic or not).

 For negation : exchange accepting/non-accepting states

 for a deterministic automaton.

 The case of atomic formulas is discussed below.

 The number of states is an h-iterated exponential,

 where h = maximum nesting of negations.

 This is not avoidable (Weyer, Frick and Grohe).

 16

 Substitutions and inverse images (“cylindrifications”).

 If we know A(ϕ(X1, X2)) , we can get easily A(ϕ(X4, X3)):

 L(ϕ(X4, X3)) = h-1 (L(ϕ(X1, X2))) where

 h maps (a , (w1, w2 , w3, w4)) to (a , (w4, w3))

 We take

 A(ϕ(X4, X3)) = h-1 (A(ϕ(X1, X2)))

 This preserves determinism and number of states.
 Set term

 From A(ϕ(X1, X2)) , we can get A(ϕ (X3, X1∪ (X2 \ X4))) by h-1

 with h mapping (a , (w1, w2 , w3, w4)) to (a , (w3, w1 ∨(w2 ∧ ¬w4))).

 17

 Basic cases : Atomic formula : edg(X1,X2) for directed edges

 The automaton A(edg(X1,X2)) with k2+k+3 states.

 Vertex labels are in C with k elements.

 edg(X1,X2) means : Single(X1) ∧ Single(X2) ∧ Link(X1,X2)

 States : 0, Ok, a(1), a(2), ab, Error, for a,b in C , a ≠ b

 Meanings of states (at node u in t ; its subterm t/u defines G(t/u) ⊆ G(t)).

 0 : X1 = ∅ , X2 = ∅

 Ok Accepting state : X1 = {v} , X2 = {w} , edg(v,w) in G(t/u)

 a(1) : X1 = {v} , X2 = ∅ , v has label a in G(t/u)

 a(2) : X1 = ∅ , X2 = {w} , w has label a in G(t/u)

 ab : X1 = {v} , X2 = {w} , v has label a, w has label b (hence v ≠ w)
 and ¬edg(v,w) in G(t/u)
 Error : all other cases

 18

 Transition rules

 For the constants based on a :

 (a,00) 0 ; (a,10) a(1) ; (a,01) a(2) ; (a,11) Error

 For the binary operation ⊕: r

 p q

 If p = 0 then r := q

 If q = 0 then r := p

 If p = a(1), q = b(2) and a ≠ b then r := ab

 If p = b(2), q = a(1) and a ≠ b then r := ab

 Otherwise r : = Error

 19

 For unary operations Add-edgea,b r

 p

 If p = ab then r := Ok else r : = p

 For unary operations Relaba b

 If p = a(i) where i = 1 or 2 then r : = b(i)

 If p = ac where c ≠ a and c ≠ b then r : = bc

 If p = ca where c ≠ a and c ≠ b then r : = cb

 If p = Error or 0 or Ok or c(i) or cd or dc where c ≠ a

 then r : = p

 20

Another construction using Backwards Translation:

 The mapping : t in T(F) ⎜ G(t) is an MSO transduction.

 The set L(ϕ) of terms t in T(F) such that G(t) ⎜= ϕ is defined

by an MSO formula ϕ# obtained by Backwards Translation.

 By the Recognizability Theorem (Doner et al.) for terms, L(ϕ) is

 definable by a finite automaton.

 Short proof, but ϕ# has larger quantifier-height than ϕ .

 Hence bad in view of concrete implementations.

 21

Implementation: The automaton constructed from ϕ and k frequently too large

to be compiled. Problems with size of memory for intermediate automata, even if the

unique minimal deterministic automaton has manageable number of states.

D. Soguet et al., using MONA, and I. Durand with AUTOWRITE (figures in blue)

have constructed automata for the following cases :

 Clique-width 2 Clique-width 3 Clique-width 4

 MaxDegree<1 24 states 123 states 621 states

 MaxDegree<3 91 states Space-Out

 Degree<4(x) 48 states 233 states

 Path(X,Y) 12 states 128 states 2197 states

 Connected 11 states Space-Out

 IsConnComp(X) 48 states Space-Out

 Has<4-VertCover 111 states 1037 states

 HasClique>4 21 states 153 states

 2-colorable 8 states 56 states

 22

What to do against this difficulty ?

(1) To use predefined deterministic automata for basic useful

graph properties like : Path(X,Y), Stable(X), Clique(X), NoCycle(X), etc.

 We define automata directly from the properties, without using

 the logical descriptions.

(2) To consider “only” existential quantifications over Boolean

combinations of basic formulas with substitutions of set terms.

 Typical examples : p-acyclic colorability

 ∃ X1,…,Xp (Partition(X1,…,Xp) ∧ Stable(X1) ∧ ∧ Stable(Xp) ∧ ...
 ∧ NoCycle(Xi ∪ Xj) ∧)

 MSO constrained domination : ∃ X.(Dom(AllVertices \ X, X) ∧ ϕ(X))
where Dom(X1,X2) means : Every vertex in X1 is linked to some vertex in X2.

 23

(3) Not to determinize automata

Proposition: If A is a nondeterministic automaton with N states over a

set of at most binary function symbols, with nondeterminism degree d,

then, the membership in L(A) of a term of size m can be done in time

O(m . d . N2).

Corollary : Let P be a set of basic MSO properties with deterministic

automata of at most N(k) states for each k = bound on clique-width.

For a sentence ψ : ∃X1,…,Xp(ϕ(X1,…,Xp)), where ϕ is a Boolean

combination of q properties P(t1,…,ts) from P and the ti ‘s are set terms

over X1,…,Xp, then, for every term t in T(F) :

G(t) ⎜ = ψ can be checked in time O(⎜t ⎜. (2p + N(k)2q)).

 24

 (4) Use “linear clique-width” terms (cf. path-width w.r.t. tree-width):

Automata have less transitions, so we get :

G(t) ⎜ = ψ can be checked in time O(⎜t ⎜. (2p + N(k)q))

Instead of :

G(t) ⎜ = ψ can be checked in time O(⎜t ⎜. (2p + N(k)2q)).

Of course, we need more labels, but this may be no problem with the

next idea.

 25

(5) The last “secret weapon” to fight the “Dragon” :

To interpret and not to compile “combinatorially defined” automata

Some basic graph properties:

Property Partition

(X1,…,Xp)

edg(X,Y) Stable(X) Conn(X) for
degree <p

Dom(X,Y)

Link(X,Y)

Path(X,Y) Nocycle(X)

N(k)

2

k2+k+2

2k

2O(p.p.k.k)

22k

2O(k.k)

2O(k.k)

Remark : For connectivity without degree limit, one can construct a

deterministic automaton with 2 ^(2 ^O(k)) states and the minimal one has more

than 2 ^(2 ^ (k/2)) states.

 26

Last words : MSO logic with edge set quantifications,

 tree-width as parameter and the graph algebra HR

Edge set quantifications increase the expressive power of

MSO logic

Incidence graph of G undirected, Inc(G) = (VG ∪ EG, incG(.,.).)

incG(v,e) ⇔ v is a vertex (in VG) of edge e (in EG).

Monadic second-order (MSO2) formulas written with inc can use

 quantifications on sets of edges.

 The existence of a perfect matching or a Hamiltonian circuit is expressible

 by an MSO2 formula, but not by an MSO formula.

 27

HR operations : Origin : Hyperedge Replacement hypergraph grammars ;
 associated complexity measure : tree-width

Graphs have distinguished vertices called sources, (or terminals or boundary vertices)

pointed to by source labels from a finite set : {a, b, ..., d}.

Binary operation(s) : Parallel composition

G // H is the disjoint union of G and H and sources with same label are fused.

(If G and H are not disjoint, one first makes a copy of H disjoint from G).

 28

Unary operations :

 Forget a source label

 Forgeta(G) is G without a-source: the source is no longer distinguished ;

(it is made "internal").

 Source renaming :

Rena b(G) exchanges source labels a and b

(replaces a by b if b is not the label of a source)

 Nullary operations denote basic graphs :

 the connected graphs with at most one edge.

 29

Tree-decompositions

 30

Proposition: A graph has tree-width ≤ k if and only if it can be constructed from

basic graphs with ≤ k+1 labels by using the operations // , Rena b and Forgeta.

Example : Trees are of tree-width 1, constructed with two source labels, r (root) and n (new root):

Fusion of two trees at their roots :

Extension of a tree by parallel composition

with a new edge, forgetting the old root,

making the "new root" as current root :

e = r •_________• n

Renn r (Forgetr (G // e))

 31

From an algebraic expression to a tree-decomposition

Example : cd // Rena c (ab // Forgetb(ab // bc)) (Constant ab denotes an edge from a to b)

 The tree-decomposition associated with this term.

 32

Automata can be constructed as shown for terms over the VR operations.

 There is a difficulty with the bijection between occurrences in the term

and the vertices and edges of the graph.

There are two possibilities :

(1) Vertices are in bijection with the occurrences of Forgeta. Then, the

edges are at the leaves of the syntactic tree, below the nodes

representing their ends. The basic automaton for adjacency has 2O(k.k)

states. Too bad for a basic property.

(2) Vertices are at the leaves, the edges are at nodes above the nodes

representing their ends. Because of // which fuses vertices of the

argument graphs, each vertex is represented by several leaves. (Equality

of vertices is then an equivalence relation).
 We get the same exponential blow-up.

 33

 For representing path-decompositions, // is not needed. This drawback

disappears (Solution (2) is then OK). The operations of the VR algebra can

be used because :

 LinearCliqueWidth(G) < PathWidth(G) + 2.

 The VR operations are simple, and they can represent with “linear (comb)

terms” graphs of unbounded path-width (but bounded linear clique-width).

 Furthermore, the constructed automata have less transitions for the

same numbers of states, because they only use unary operations.

