Tractable constructions of finite automata from monadic second-order formulas

Bruno Courcelle, Irène Durand

Université Bordeaux 1, LaBRI

References : B. Courcelle: Graph structure and monadic second-order logic, book to be published by Cambridge University Press, readable on :
http://www.labri.fr/perso/courcell/ActSci.html
I. Durand : AUTOWRITE, a tool for term rewrite systems and tree

ENTCS 124 (2005) 29-49

An overview chart

Conceptual implication
$\xrightarrow{\text { Compilation }}$ step
Fixed-parameter algorithm

Two graph algebras : "HR" and "VR"
Case 1: "HR", parameter tree-width \rightarrow Model-checking for MSO sentences with edge set quantifications.

Case 2: "VR", parameter clique-width $\quad \rightarrow$ Model-checking for MSO sentences without edge set quantifications.

Automata for Case 2 are easier to build.
Case 1 reduces to Case 2:
Graph G of tree-width $\mathrm{k} \geq 2 \rightarrow$ Incidence graph of G of tree-width k , hence of clique-width about 2^{k}.

But : Graph of path-width $\mathrm{k} \geq 2 \rightarrow$ Incidence graph of path-width k , hence of linear clique-width $k+2$: no exponential!

Two difficulties:

Parsing, but in some concrete cases, graphs arise with their "natural" decompositions.

Construction of automata: fails in many cases by lack of memory.
What we propose:
-To use predefined deterministic automata for basic useful graph properties like : Path(X,Y), Stable(X), Clique(X), NoCycle(X), etc. -To consider existential quantifications over Boolean combinations of basic formulas with substitutions of set terms

- Not to determinize automata
- To interpret and not to compile "combinatorially defined" automata
- To use path- and linear clique-width decompositions.

1. The graph algebra VR

Origin : Vertex Replacement context-free graph grammars
Associated complexity measure: clique-width.

Graphs are defined in terms of very simple graph operations.

Graphs are simple, loop-free, undirected (extension to directed case easy).
Vertex labels : a,b,c,...,d. Each vertex has one and only one label.

One binary operation : disjoint union : \oplus

Well-defined up to isomorphism : one takes disjoint copies;
$\mathrm{G} \oplus \mathrm{G}$ is not equal to G

Unary operations: Edge addition denoted by Add-edg $_{a, b}$

Add-edga,b(G) is G augmented with undirected edges between every a-labelled vertex and every b-labelled vertex

H = Add-edga, b(G) ; only 5 new edges added
The number of added edges depends on the argument graph.

The directed version of Add-edga,b adds directed edges from every a-labelled vertex to every b-labelled vertex

Vertex relabellings:
Relaba $\longrightarrow b(\mathrm{G})$ is G with every label a changed into b
Variant: Relab $h(\mathrm{G})$ is G with every label a changed into $h(a)$ for some function $h: C \rightarrow C$; C is the finite set of labels.

Basic graphs : a one vertex labelled by a, for each a in C.

Definition: A graph G has clique-width $\leq \mathrm{k}$
\Leftrightarrow it can be constructed from basic graphs with the operations
\oplus, Add-edga, b and Relaba $\longrightarrow b$ with labels a, b in set C of klabels

Its (exact) clique-width $\operatorname{cwd}(\mathrm{G})$ is the smallest such k.

Example: Cliques (a-labelled) have clique-width 2.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{n}} \text { is defined by } \mathrm{t}_{\mathrm{n}} \text { where } \mathrm{t}_{\mathbf{1}}=\mathbf{a} \\
& \mathrm{t}_{\mathrm{n}+1}=\text { Relabb } \longrightarrow a\left(\text { Add-edga, } b\left(\mathrm{t}_{\mathbf{n}} \oplus \mathbf{b}\right)\right)
\end{aligned}
$$

Example: Cographs (a-labelled) are generated by \oplus and \otimes defined by:
$\mathrm{G} \otimes \mathrm{H}=$ Relabb $\longrightarrow \mathrm{a}($ Add-edga,b $(\mathrm{G} \oplus$ Relaba $\longrightarrow b(\mathrm{H})))$
$=\mathrm{G} \oplus \mathrm{H}$ with "all edges" between G and H .

2. Monadic Second-Order (MSO) Logic

$=$ First-order logic extended with (quantified) variables denoting subsets of the domains.

MSO properties: transitive closure, properties of paths, connectivity, planarity (via Kuratowski, uses connectivity), p-colorability.

Examples of formulas for $G=\left(\mathrm{V}_{\mathrm{G}}\right.$, edg $\left._{\mathrm{G}}(.,).\right)$, undirected
p-colorability (NP-complete property)
$\exists X_{1}, \ldots, X_{p}\left(\operatorname{Partition}\left(X_{1}, \ldots, X_{p}\right) \wedge \operatorname{Stable}\left(X_{1}\right) \wedge \ldots \ldots \wedge \operatorname{Stable}\left(X_{p}\right)\right)$
p-acyclic colorability
$\exists X_{1}, \ldots, X_{p}\left(\operatorname{Partition}\left(X_{1}, \ldots, X_{p}\right) \wedge \operatorname{Stable}\left(X_{1}\right) \wedge \ldots \ldots . \wedge \operatorname{Stable}\left(X_{p}\right) \wedge \ldots\right.$. $\left.\ldots \wedge \operatorname{NoCycle}\left(X_{i} \cup X_{j}\right) \wedge \ldots\right)$

Non connectivity, whence connectivity, more generally, transitive closure :

$$
\exists x(\exists x \in X \wedge \exists y \notin X \wedge \forall u, v(u \in X \wedge e d g(u, v) \Rightarrow v \in X))
$$

Contains H as a minor:
H simple, loop-free. Vertices $(H)=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{p}}\right\}$
$\exists X_{1}, \ldots, X_{p}\left(\operatorname{Disjoint}\left(X_{1}, \ldots, X_{p}\right) \wedge\right.$ Connected $\left(X_{1}\right) \wedge \ldots . . \wedge$ Connected $\left(X_{p}\right) \wedge \ldots$. $\left.\wedge \operatorname{Link}\left(X_{i}, X_{j}\right) \wedge\right)$
where $\operatorname{Link}\left(X_{i}, X_{j}\right)$ means: there is an edge between some vertex of X_{i} and some vertex of X_{j}.

One puts $\operatorname{Link}\left(X_{i}, X_{j}\right)$ in the sentence for each edge $v_{i}---v_{j}$ of H.

3. Büchi-style construction of automata for VR terms.

We fix k the number of vertex labels (hence the bound on clique-width).
F = the corresponding set : a , \oplus, Add-edga,b, Relab a \qquad b $\mathrm{G}(t)=$ the graph defined by a term t in $\mathbf{T}(\mathrm{F})$.

Vertices $(\mathrm{G}(t))=$ the set of occurrences of constant symbols in t

Formulas are without first-order variables and

Construction: For each sentence φ an automaton $\mathrm{A}(\varphi)$ that defines the set of terms in $\mathbf{T}(\mathrm{F})$ such that $\mathrm{G}(t) \mid=\varphi$

By induction on the structure of the sentence φ
For $\exists \mathrm{X} . \varphi(\mathrm{X})$, we need $\mathrm{A}(\varphi(\mathrm{X}))$.

More generally, we need $\mathrm{A}\left(\varphi\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)\right)$.

A term t in $\mathbf{T}(\mathrm{F})$ defines a graph $\mathrm{G}(t)$ with vertex set $=$ the set of occurrences of constants.

For representing assignments

$$
v:\left\{X_{1}, \ldots, X_{n}\right\} \rightarrow P(\operatorname{Vertices}(G(t)))
$$

we replace in F each constant a by the constants
(a, $\left.\left(w_{1}, \ldots, w_{n}\right)\right)$ with $w_{i} \in\{0,1\}$: we get $F^{(n)}$.
A term s in $\mathbf{T}\left(F^{(n)}\right)$ encodes a term t in $\mathbf{T}(F)$ and an assignment $v:\left\{\mathrm{X}_{1}, . ., \mathrm{X}_{\mathrm{n}}\right\} \rightarrow P(\operatorname{Vertices}(\mathrm{G}(t)))$:
if u is an occurrence of $\left(a,\left(w_{1}, ., w_{n}\right)\right)$, then $w_{i}=1$ iff $u \in X_{i}$.
Such a term s is denoted by $t * v$.

A term $t * v$ in $\mathbf{T}\left(\mathrm{F}^{(\mathrm{n})}\right)$ defines the graph $\mathrm{G}(t)$ and some assignment $v:\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\} \rightarrow P(\operatorname{Vertices}(\mathrm{G}(\mathrm{t})) \mathrm{)}$.

From F and φ we will construct a finite deterministic automaton $\mathrm{A}\left(\varphi\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)\right)$ that recognizes :

$$
\mathrm{L}\left(\varphi\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)\right):=\left\{t \star \nu \in \mathbf{T}\left(\mathrm{~F}^{(\mathrm{n})}\right) \quad / \quad(\mathrm{G}(t), v) \mid=\varphi\right\}
$$

Main inductive steps

$$
\begin{aligned}
& L\left(\exists X_{n+1} \cdot \varphi\left(X_{1}, \ldots, X_{n+1}\right)\right)=\operatorname{pr}\left(L\left(\varphi\left(X_{1}, \ldots, X_{n+1}\right)\right)\right. \\
& A\left(\exists X_{n+1} \cdot \varphi\left(X_{1}, \ldots, X_{n+1}\right)\right)=\operatorname{pr}\left(A\left(\varphi\left(X_{1}, \ldots, X_{n+1}\right)\right)\right.
\end{aligned}
$$

where pr is the "projection" that eliminates the last Boolean.
One obtains a nondeterministic automaton.

For \wedge and \vee : product of two complete automata (deterministic or not).
For negation : exchange accepting/non-accepting states for a deterministic automaton.

The case of atomic formulas is discussed below.

The number of states is an h-iterated exponential, where $\mathrm{h}=$ maximum nesting of negations.
This is not avoidable (Weyer, Frick and Grohe).

Substitutions and inverse images ("cylindrifications").

If we know $A\left(\varphi\left(X_{1}, X_{2}\right)\right)$, we can get easily $A\left(\varphi\left(X_{4}, X_{3}\right)\right)$:

$$
L\left(\varphi\left(X_{4}, X_{3}\right)\right)=h^{-1}\left(L\left(\varphi\left(X_{1}, X_{2}\right)\right) \quad\right. \text { where }
$$

h maps $\left(a,\left(w_{1}, w_{2}, w_{3}, w_{4}\right)\right)$ to $\left(a,\left(w_{4}, w_{3}\right)\right)$
We take

$$
A\left(\varphi\left(X_{4}, X_{3}\right)\right)=h^{-1}\left(A\left(\varphi\left(X_{1}, X_{2}\right)\right)\right)
$$

This preserves determinism and number of states.
From $A\left(\varphi\left(X_{1}, X_{2}\right)\right)$, we can get $\left.A\left(\varphi\left(X_{3}, \widehat{X_{1} \cup\left(X_{2} \backslash X_{4}\right.}\right)\right)\right)$ by h^{-1} with h mapping $\left(a,\left(w_{1}, w_{2}, w_{3}, w_{4}\right)\right)$ to $\left(a,\left(w_{3}, w_{1} \vee\left(w_{2} \wedge \neg w_{4}\right)\right)\right.$).

Basic cases : Atomic formula : edg $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ for directed edges
The automaton $A\left(\operatorname{edg}\left(X_{1}, X_{2}\right)\right)$ with $k^{2}+k+3$ states.
Vertex labels are in C with k elements.
$\operatorname{edg}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ means: $\operatorname{Single}\left(\mathrm{X}_{1}\right) \wedge \operatorname{Single}\left(\mathrm{X}_{2}\right) \wedge \operatorname{Link}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$
States: 0, Ok, $a(1), a(2), a b$, Error, for a, b in $C, a \neq b$
Meanings of states (at node u in t; its subterm t / u defines $G(t / u) \subseteq G(t)$).
$0 \quad: x_{1}=\varnothing, x_{2}=\varnothing$
Ok Accepting state: $\mathrm{X}_{1}=\{\mathrm{v}\}, \mathrm{X}_{2}=\{\mathrm{w}\}$, edg (v, w) in $\mathrm{G}(\mathrm{t} / \mathrm{u})$
a(1) $: X_{1}=\{v\}, X_{2}=\varnothing, v$ has label a in $G(t / u)$
$a(2): X_{1}=\varnothing, X_{2}=\{w\}, w$ has label a in $G(t / u)$
$a b: X_{1}=\{v\}, X_{2}=\{w\}, v$ has label a, w has label b (hence $v \neq w$) and $\neg \mathrm{edg}(\mathrm{v}, \mathrm{w})$ in $\mathrm{G}(\mathrm{t} / \mathrm{u})$
Error : all other cases

Transition rules

For the constants based on a :
$(\mathrm{a}, 00) \rightarrow 0 ;(\mathrm{a}, 10) \rightarrow \mathrm{a}(1) ;(\mathrm{a}, 01) \rightarrow \mathrm{a}(2) ;(\mathrm{a}, 11) \rightarrow$ Error

For the binary operation \oplus :

If $\mathrm{p}=0$ then $\mathrm{r}:=\mathrm{q}$
If $q=0$ then $r:=p$
If $p=a(1), q=b(2)$ and $a \neq b$ then $r:=a b$
If $p=b(2), q=a(1)$ and $a \neq b$ then $r:=a b$
Otherwise r := Error

For unary operations Add-edge $_{\mathrm{a}, \mathrm{b}}$

If $p=a b$ then $r:=$ Ok else $r:=p$

For unary operations Relab $\mathrm{a}_{\mathrm{a}} \longrightarrow \mathrm{b}$

$$
\begin{array}{ll}
\text { If } p=a(i) \text { where } i=1 \text { or } 2 & \text { then } r:=b(i) \\
\text { If } p=a c \text { where } c \neq a \text { and } c \neq b & \text { then } r:=b c \\
\text { If } p=c a \text { where } c \neq a \text { and } c \neq b & \text { then } r:=c b \\
\text { If } p=\text { Error or } 0 \text { or Ok or } c(i) \text { or cd or dc where } c \neq a \\
& \text { then } r:=p
\end{array}
$$

Another construction using Backwards Translation:

The mapping : t in $\mathbf{T}(\mathrm{F}) \longmapsto \longrightarrow \mathrm{G}(\mathrm{t})$ is an MSO transduction.
The set $L(\varphi)$ of terms t in $T(F)$ such that $G(t) \mid=\varphi$ is defined by an MSO formula $\varphi^{\#}$ obtained by Backwards Translation.

By the Recognizability Theorem (Doner et al.) for terms, $L(\varphi)$ is definable by a finite automaton.

Short proof, but $\varphi^{\#}$ has larger quantifier-height than φ.
Hence bad in view of concrete implementations.

Implementation: The automaton constructed from φ and k frequently too large to be compiled. Problems with size of memory for intermediate automata, even if the unique minimal deterministic automaton has manageable number of states.
D. Soguet et al., using MONA, and I. Durand with AUTOWRITE (figures in blue) have constructed automata for the following cases :
Clique-width 2 Clique-width $3 \quad$ Clique-width 4

MaxDegree ≤ 1	24 states	123 states	621 states
MaxDegree ≤ 3	91 states	Space-Out	
Degree $\leq 4(\mathrm{x})$	48 states	233 states	
Path (X, Y)	12 states	128 states	2197 states
Connected	11 states	Space-Out	
IsConnComp(X)	48 states	Space-Out	
Has $\leq 4-$ VertCover	111 states	1037 states	
HasClique ≥ 4	21 states	153 states	
2-colorable	8 states	56 states	

What to do against this difficulty ?
(1) To use predefined deterministic automata for basic useful graph properties like : Path(X,Y), Stable(X), Clique(X), NoCycle(X), etc. We define automata directly from the properties, without using the logical descriptions.
(2) To consider "only" existential quantifications over Boolean combinations of basic formulas with substitutions of set terms.
Typical examples : \quad-acyclic colorability

MSO constrained domination: $\exists \mathrm{X}$. (Dom(Al/Vertices $\backslash \mathrm{X}, \mathrm{X}) \wedge \varphi(\mathrm{X}))$ where $\operatorname{Dom}\left(X_{1}, X_{2}\right)$ means : Every vertex in X_{1} is linked to some vertex in X_{2}.
(3) Not to determinize automata

Proposition: If A is a nondeterministic automaton with N states over a set of at most binary function symbols, with nondeterminism degree d, then, the membership in $L(A)$ of a term of size m can be done in time $\mathrm{O}\left(m . d . N^{2}\right)$.

Corollary : Let P be a set of basic MSO properties with deterministic automata of at most $\mathrm{N}(\mathrm{k})$ states for each $\mathrm{k}=$ bound on clique-width.

For a sentence $\psi: \exists X_{1}, \ldots, X_{p}\left(\varphi\left(X_{1}, \ldots, X_{p}\right)\right)$, where φ is a Boolean combination of q properties $\mathrm{P}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{s}}\right)$ from P and the t_{i} 's are set terms over X_{1}, \ldots, X_{p}, then, for every term t in $\mathbf{T}(F)$:

$$
\mathrm{G}(\mathrm{t}) \quad \mid=\psi \text { can be checked in time } \mathrm{O}\left(|\mathrm{t}| \cdot\left(2^{\mathrm{p}}+\mathrm{N}(\mathrm{k})^{2 \mathrm{q}}\right)\right) .
$$

(4) Use "linear clique-width" terms (cf. path-width w.r.t. tree-width):

Automata have less transitions, so we get:
$G(t) \quad \mid=\psi$ can be checked in time $O\left(|t| \cdot\left(2^{p}+N(k)^{q}\right)\right)$

Instead of :
$G(t) \mid=\psi$ can be checked in time $O\left(|t| \cdot\left(2^{p}+N(k)^{2 q}\right)\right)$.

Of course, we need more labels, but this may be no problem with the next idea.

(5) The last "secret weapon" to fight the "Dragon" :

To interpret and not to compile "combinatorially defined" automata
Some basic graph properties:

Property	Partition $\left(X_{1}, \ldots, X_{p}\right)$	$\operatorname{edg}(X, Y)$	Stable (X)	Conn (X) for degree $\leq p$	$\operatorname{Dom}(X, Y)$ $\operatorname{Link}(X, Y)$	Path (X, Y)	Nocycle(X)
$N(k)$	2	$k^{2}+k+2$	2^{k}	$2^{O(p . p . k . k)}$	$2^{2 k}$	$2^{O(k . k)}$	$2^{O(k . k)}$

Remark : For connectivity without degree limit, one can construct a deterministic automaton with $2^{\wedge}\left(2^{\wedge} \mathrm{O}(\mathrm{k})\right)$ states and the minimal one has more than $2^{\wedge}\left(2^{\wedge}(k / 2)\right)$ states.

Last words : MSO logic with edge set quantifications, tree-width as parameter and the graph algebra HR

Edge set quantifications increase the expressive power of MSO logic


```
inc}\mp@subsup{G}{G}{}(v,e)\Leftrightarrowv\mathrm{ is a vertex (in }\mp@subsup{V}{G}{})\mathrm{ of edge e (in EG ).
Monadic second-order \(\left(\mathrm{MSO}_{2}\right)\) formulas written with inc can use quantifications on sets of edges.
```

The existence of a perfect matching or a Hamiltonian circuit is expressible by an MSO_{2} formula, but not by an MSO formula.

HR operations: Origin: Hyperedge Replacement hypergraph grammars; associated complexity measure : tree-width

Graphs have distinguished vertices called sources, (or terminals or boundary vertices) pointed to by source labels from a finite set: $\{a, b, \ldots, d\}$.
Binary operation(s): Parallel composition
$\mathrm{G} / / \mathrm{H}$ is the disjoint union of G and H and sources with same label are fused.
(If G and H are not disjoint, one first makes a copy of H disjoint from G).

G

H

Unary operations :

Forget a source label

Forgeta(G) is G without a-source: the source is no longer distinguished; (it is made "internal").

Source renaming:

Rena ${ }_{a} b(\mathrm{G})$ exchanges source labels a and b (replaces a by b if b is not the label of a source)

Nullary operations denote basic graphs :
the connected graphs with at most one edge.

Tree-decompositions

Proposition: A graph has tree-width $\leq \mathrm{k}$ if and only if it can be constructed from basic graphs with $\leq k+1$ labels by using the operations //, Rena $a_{\leftrightarrow} b$ and Forgeta. Example : Trees are of tree-width 1, constructed with two source labels, r (root) and n (new root): Fusion of two trees at their roots :

G

H

G// H

Extension of a tree by parallel composition with a new edge, forgetting the old root, making the "new root" as current root :

$$
\mathrm{e}=r \bullet \bullet n
$$

$R e n n \leftrightarrow r($ Forgetr $(\mathrm{G} \mathrm{//} \mathrm{e} \mathrm{)})$

From an algebraic expression to a tree-decomposition
Example : cd // Ren $\mathrm{a}_{\leftrightarrow} \mathrm{c}\left(\mathrm{ab} / / \operatorname{Forget}_{\mathrm{b}}(\mathrm{ab} / / \mathrm{bc})\right)$ (Constant ab denotes an edge from a to b)

The tree-decomposition associated with this term.

Automata can be constructed as shown for terms over the VR operations.

There is a difficulty with the bijection between occurrences in the term and the vertices and edges of the graph.

There are two possibilities :
(1) Vertices are in bijection with the occurrences of Forgeta. Then, the edges are at the leaves of the syntactic tree, below the nodes representing their ends. The basic automaton for adjacency has $2^{O(k . k)}$ states. Too bad for a basic property.
(2) Vertices are at the leaves, the edges are at nodes above the nodes representing their ends. Because of // which fuses vertices of the argument graphs, each vertex is represented by several leaves. (Equality of vertices is then an equivalence relation).
We get the same exponential blow-up.

For representing path-decompositions, // is not needed. This drawback disappears (Solution (2) is then OK). The operations of the VR algebra can be used because:

$$
\text { LinearCliqueWidth(G) } \leq \text { PathWidth(G) }+2
$$

The VR operations are simple, and they can represent with "linear (comb) terms" graphs of unbounded path-width (but bounded linear clique-width).

Furthermore, the constructed automata have less transitions for the same numbers of states, because they only use unary operations.

