

Tractable constructions of finite automata from monadic second-order formulas

Bruno Courcelle, Irène Durand

Université Bordeaux 1, LaBRI

References : B. Courcelle : Graph structure and monadic second-order logic, book to be published by *Cambridge University Press*, readable on : <u>http://www.labri.fr/perso/courcell/ActSci.html</u> I. Durand : AUTOWRITE, a tool for term rewrite systems and tree ENTCS 124 (2005) 29-49 An overview chart

Two graph algebras : "HR" and "VR"

Case 1 : "HR", parameter tree-width \rightarrow Model-checking for MSO sentences *with* edge set quantifications.

Case 2 : "VR", parameter clique-width \rightarrow Model-checking for MSO sentences without edge set quantifications.

Automata for Case 2 are easier to build.

Case 1 reduces to Case 2 :

Graph G of tree-width k≥2 → Incidence graph of G of tree-width k, hence of clique-width about 2^k.

But : Graph of path-width $k \ge 2 \rightarrow$ Incidence graph of path-width k, hence of linear clique-width k+2 : no exponential !

Two difficulties :

Parsing, but in some concrete cases, graphs arise with their "natural" decompositions.

Construction of automata : fails in many cases by lack of memory.

What we propose :

-To use predefined deterministic automata for *basic* useful graph properties like : Path(X,Y), Stable(X), Clique(X), NoCycle(X), *etc.*-To consider existential quantifications over Boolean combinations of basic formulas with substitutions of set terms

- Not to determinize automata
- To interpret and not to compile "combinatorially defined" automata
- To use path- and linear clique-width decompositions.

1. The graph algebra VR

Origin: Vertex Replacement *context-free* graph grammars Associated complexity measure: clique-width.

Graphs are defined in terms of very simple graph operations.

Graphs are simple, loop-free, undirected (extension to directed case easy). Vertex labels : *a,b,c,..., d.* Each vertex has one and only one label.

One binary operation : disjoint union : \oplus

Well-defined up to isomorphism : one takes disjoint copies ; $G \oplus G$ is *not* equal to G

Unary operations: Edge addition denoted by $Add-edg_{a,b}$

Add-edg_{a,b}(G) is G augmented with undirected edges between every *a*-labelled vertex and every *b*-labelled vertex

 $H = Add - edg_{a,b}(G)$; only 5 new edges added

The number of added edges depends on the argument graph.

The directed version of *Add-edga,b* adds directed edges *from* every *a*-labelled vertex *to* every *b*-labelled vertex Vertex relabellings :

Relaba → *b*(G) is G with every label *a* changed into *b* Variant : *Relab* h (G) is G with every label *a* changed into *h*(*a*) for some function $h : C \rightarrow C$; C is the *finite* set of labels.

Basic graphs : a one vertex labelled by a, for each a in C.

Definition: A graph G has clique-width ≤ k
 ⇔ it can be constructed from basic graphs with the operations
 ⊕, Add-edga,b and Relaba → b with labels a, b in set C of k labels

Its (exact) clique-width cwd(G) is the smallest such k.

Example : Cographs (a-labelled) are generated by \oplus and \otimes defined by: $G \otimes H = Relabb \rightarrow a(Add-edga,b(G \oplus Relaba \rightarrow b(H)))$ $= G \oplus H$ with "all edges" between G and H.

2. Monadic Second-Order (MSO) Logic

= First-order logic extended with (quantified) variables denoting subsets of the domains.

MSO properties : transitive closure, properties of paths, connectivity, planarity (via Kuratowski, uses connectivity), p-colorability.

Examples of formulas for $G = (V_G, edg_G(.,.))$, undirected

p-colorability (NP-complete property)

 $\exists X_1, ..., X_p (Partition(X_1, ..., X_p) \land Stable(X_1) \land \land Stable(X_p))$

p-acyclic colorability

$$\exists X_1, \dots, X_p \text{ (Partition(X_1, \dots, X_p) \land Stable(X_1) \land \dots \land Stable(X_p) \land \dots} \\ \dots \dots \land NoCycle(X_i \cup X_j) \land \dots)$$

Non connectivity, whence connectivity, more generally, transitive closure : $\exists X (\exists x \in X \land \exists y \notin X \land \forall u, v (u \in X \land edg(u, v) \Rightarrow v \in X))$

Contains H as a minor :

H simple, loop-free. Vertices(*H*) = { $v_1,...,v_p$ }

 $\exists X_1, \dots, X_p \text{ (Disjoint(X_1, \dots, X_p) \land Connected(X_1) \land \dots \land Connected(X_p) \land \dots \land Link(X_i, X_j) \land \dots) }$

where Link(X_i , X_j) means : there is an edge between some vertex of X_i and some vertex of X_j.

One puts $Link(X_i, X_j)$ in the sentence for each edge $v_i - v_j$ of H.

3. Büchi-style construction of automata for VR terms.

We fix *k* the number of vertex labels (hence the bound on clique-width). F = the corresponding set : **a** , \oplus , *Add-edga,b* , *Relab a* ____*b* G(t) = the graph defined by a term *t* in **T**(F).

Vertices(G(t)) = the set of occurrences of constant symbols in t

Formulas are without first-order variables and \forall

Construction : For each sentence φ an automaton A(φ) that defines the set of terms in **T**(F) such that $G(t) = \varphi$ By induction on the structure of the sentence φ For $\exists X. \varphi(X)$, we need A($\varphi(X)$).

More generally, we need $A(\phi(X_1,...,X_n))$.

A term t in T(F) defines a graph G(t) with vertex set = the set of occurrences of constants. For representing assignments $v: \{X_1, \dots, X_n\} \rightarrow P(Vertices(G(t)))$ we replace in F each constant a by the constants $(a, (w_1, \dots, w_n))$ with $w_i \in \{0, 1\}$: we get $F^{(n)}$. A term s in $\mathbf{T}(\mathbf{F}^{(n)})$ encodes a term t in $\mathbf{T}(\mathbf{F})$ and an assignment $v : \{X_1, ..., X_n\} \rightarrow P(Vertices(G(t)))$: if *u* is an occurrence of $(\mathbf{a}, (w_1, ..., w_n))$, then $w_i = 1$ iff $u \in X_i$. Such a term s is denoted by $t \cdot v$.

A term $t \sim v$ in $\mathbf{T}(\mathbf{F}^{(n)})$ defines the graph $\mathbf{G}(t)$ and some

assignment v : { $X_1, ..., X_n$ } $\rightarrow P(Vertices(G(t)))$.

From F and ϕ we will construct a finite deterministic automaton $A(\phi(X_1,...,X_n))$ that recognizes :

$$L(\phi(X_1,...,X_n)) := \{ t^* v \in T(F^{(n)}) / (G(t), v) \mid = \phi \}$$

Main inductive steps

$$L(\exists X_{n+1} . \phi(X_1, ..., X_{n+1})) = pr(L(\phi(X_1, ..., X_{n+1}))$$
$$A(\exists X_{n+1} . \phi(X_1, ..., X_{n+1})) = pr(A(\phi(X_1, ..., X_{n+1}))$$

where pr is the "projection" that eliminates the last Boolean. One obtains a nondeterministic automaton. For \land and \lor : product of two complete automata (deterministic or not).

For *negation* : exchange accepting/non-accepting states for a *deterministic* automaton.

The case of atomic formulas is discussed below.

The number of states is an h-iterated exponential, where h = maximum nesting of negations. This is not avoidable (Weyer, Frick and Grohe). Substitutions and inverse images ("cylindrifications").

If we know $A(\phi(X_1, X_2))$, we can get easily $A(\phi(X_4, X_3))$: $L(\phi(X_4, X_3)) = h^{-1} (L(\phi(X_1, X_2)))$ where

h maps $(a, (w_1, w_2, w_3, w_4))$ to $(a, (w_4, w_3))$ We take

$$A(\phi(X_4, X_3)) = h^{-1} (A(\phi(X_1, X_2)))$$

This preserves determinism and number of states.

From A($\phi(X_1, X_2)$), we can get A($\phi(X_3, X_1 \cup (X_2 \setminus X_4))$)) by h⁻¹ with h mapping (**a**, (w₁, w₂, w₃, w₄)) to (**a**, (w₃, w₁ \lor (w₂ $\land \neg$ w₄))).

Basic cases : Atomic formula : $edg(X_1, X_2)$ for directed edges

The automaton $A(edg(X_1, X_2))$ with k^2+k+3 states.

Vertex labels are in C with k elements.

 $edg(X_1, X_2)$ means : Single(X₁) \land Single(X₂) \land Link(X₁, X₂)

States : 0, Ok, a(1), a(2), ab, Error, for a,b in C, $a \neq b$

Meanings of states (at node u in t; its subterm t/u defines $G(t/u) \subseteq G(t)$).

0 :
$$X_1 = \emptyset$$
 , $X_2 = \emptyset$

Ok Accepting state: $X_1 = \{v\}$, $X_2 = \{w\}$, edg(v,w) in G(t/u)

a(1) : X₁ = {v} , X₂ = \emptyset , v has label a in G(t/u)

a(2) : $X_1 = \emptyset$, $X_2 = \{w\}$, w has label a in G(t/u)

ab : $X_1 = \{v\}$, $X_2 = \{w\}$, v has label a, w has label b (hence $v \neq w$) and $\neg edg(v,w)$ in G(t/u)

Error : all other cases

Transition rules

For the constants based on **a**:

 $(a,00) \rightarrow 0$; $(a,10) \rightarrow a(1)$; $(a,01) \rightarrow a(2)$; $(a,11) \rightarrow Error$

For the binary operation \oplus :

If
$$p = 0$$
 then $r := q$
If $q = 0$ then $r := p$
If $p = a(1)$, $q = b(2)$ and $a \neq b$ then $r := ab$
If $p = b(2)$, $q = a(1)$ and $a \neq b$ then $r := ab$
Otherwise $r := Error$

For unary operations *Add-edge*a,b r

If p = ab then r := Ok else r := p

If p = a(i) where i = 1 or 2 If p = ac where $c \neq a$ and $c \neq b$ If p = ca where $c \neq a$ and $c \neq b$ If p = ca where $c \neq a$ and $c \neq b$ If p = ca where $c \neq a$ and $c \neq b$ If p = Error or 0 or 0k or c(i) or cd or dc where $c \neq a$ then r := p

Another construction using Backwards Translation:

The mapping : t in $T(F) \longrightarrow G(t)$ is an MSO transduction. The set $L(\phi)$ of terms t in T(F) such that $G(t) \models \phi$ is defined by an MSO formula $\phi^{\#}$ obtained by *Backwards Translation*. By the Recognizability Theorem (Doner *et al.*) for terms, $L(\phi)$ is definable by a finite automaton.

Short proof, but $\phi^{\#}$ has larger quantifier-height than ϕ . Hence bad in view of concrete implementations. **Implementation:** The automaton constructed from ϕ and k frequently too large to be compiled. Problems with size of memory for intermediate automata, even if the *unique minimal deterministic* automaton has manageable number of states.

D. Soguet *et al.*, using MONA, and I. Durand with AUTOWRITE (figures in **blue**) have constructed automata for the following cases :

	Clique-width 2	Clique-width 3	Clique-width 4	
MaxDegree <u><</u> 1	24 states	123 states	621 states	
MaxDegree <u><</u> 3	91 states	Space-Out		
Degree <u><</u> 4(x)	48 states	233 states		
Path(X,Y)	12 states	128 states	2197 states	
Connected	11 states	Space-Out		
IsConnComp(X)	48 states	Space-Out		
Has <u><</u> 4-VertCover	111 states	1037 states		
HasClique <u>></u> 4	21 states	153 states		
2-colorable	8 states	56 states		

What to do against this difficulty ?

(1) To use predefined deterministic automata for *basic* useful graph properties like : Path(X,Y), Stable(X), Clique(X), NoCycle(X), *etc.* We define automata *directly* from the properties, without using the logical descriptions.

(2) To consider "only" existential quantifications over Boolean combinations of basic formulas with substitutions of set terms.
 Typical examples : p-acyclic colorability

 $\exists X_1, \dots, X_p \text{ (Partition}(X_1, \dots, X_p) \land \text{ Stable}(X_1) \land \dots \land \text{ Stable}(X_p) \land \dots \\ \dots \dots \land \text{ NoCycle}(X_i \cup X_j) \land \dots)$

MSO constrained domination : \exists X.(Dom(*AllVertices* \ X, X) $\land \phi(X)$) where Dom(X₁,X₂) means : Every vertex in X₁ is linked to some vertex in X₂.

(3) Not to determinize automata

Proposition: If *A* is a nondeterministic automaton with N states over a set of at most binary function symbols, with nondeterminism degree *d*, then, the membership in L(A) of a term of size *m* can be done in time $O(m \cdot d \cdot N^2)$.

Corollary : Let P be a set of basic MSO properties with deterministic automata of at most N(k) states for each k = bound on clique-width.

For a sentence Ψ : $\exists X_1, ..., X_p(\phi(X_1, ..., X_p))$, where ϕ is a Boolean combination of q properties P($t_1, ..., t_s$) from P and the t_i 's are set terms over $X_1, ..., X_p$, then, for every term t in **T**(F) :

 $G(t) = \psi$ can be checked in time $O(|t| \cdot (2^p + N(k)^{2q}))$.

(4) Use "linear clique-width" terms (cf. path-width w.r.t. tree-width):

Automata have less transitions, so we get :

 $G(t) = \psi$ can be checked in time $O(|t|.(2^{p} + N(k)^{q}))$

Instead of :

 $G(t) = \psi$ can be checked in time $O(|t| \cdot (2^p + N(k)^{2q}))$.

Of course, we need more labels, but this may be no problem with the next idea.

(5) The last "secret weapon" to fight the "Dragon" :

To interpret and not to compile "combinatorially defined" automata

Some basic graph properties:

Property	Partition	edg(X,Y)	Stable(X)	Conn(X) for	Dom(X,Y)	Path(X,Y)	Nocycle(X)
	(X_1,\ldots,X_p)			degree <u><</u> p	Link(X,Y)		
N(k)	2	k ² +k+2	2 ^k	2 ^{O(p.p.k.k)}	2 ^{2k}	2 ^{O(k.k)}	2 ^{O(k.k)}

Remark : For connectivity without degree limit, one can construct a deterministic automaton with $2^{(2 O(k))}$ states and the minimal one has more than $2^{(2 (k/2))}$ states.

Last words : MSO logic with edge set quantifications, tree-width as parameter and the graph algebra **HR**

Edge set quantifications increase the expressive power of MSO logic

Incidence graph of G undirected, $Inc(G) = (V_G \cup E_G, inc_G(.,.))$

 $inc_G(v,e) \Leftrightarrow v$ is a vertex (in V_G) of edge e (in E_G).

Monadic second-order (MSO₂) formulas written with inc can use quantifications on sets of edges.

The existence of a perfect matching or a Hamiltonian circuit is expressible by an MSO₂ formula, but not by an MSO formula.

HR operations : Origin : Hyperedge Replacement hypergraph grammars ; associated complexity measure : tree-width

Graphs have distinguished vertices called *sources,* (or terminals or boundary vertices) pointed to by source labels from a finite set : $\{a, b, ..., d\}$. Binary operation(s) : Parallel composition

G // H is the disjoint union of G and H and sources with same label are fused. (If G and H are not disjoint, one first makes a copy of H disjoint from G).

Unary operations :

Forget a source label

Forget_a(G) is G without a-source: the source is no longer distinguished; (it is made "internal").

Source renaming :

 $Ren_{a \leftrightarrow b}(G)$ exchanges source labels *a* and *b* (replaces *a* by *b* if *b* is not the label of a source)

Nullary operations denote basic graphs :

the connected graphs with at most one edge.

Tree-decompositions

Proposition: A graph has tree-width $\leq k$ if and only if it can be constructed from basic graphs with $\leq k+1$ labels by using the operations //, $Ren_{a \rightarrow} b$ and *Forgeta*. *Example :* Trees are of tree-width 1, constructed with two source labels, r (root) and n (new root): Fusion of two trees at their roots :

Extension of a tree by parallel composition with a new edge, forgetting the old root, making the "new root" as current root :

 $e = r \bullet \cdots \bullet n$

 $Ren_n \leftrightarrow r (Forget_r (G // e))$

From an algebraic expression to a tree-decomposition

Example : cd // *Ren*_{a c} (ab // *Forget*_b(ab // bc)) (Constant ab denotes an edge from a to b)

The tree-decomposition associated with this term.

Automata can be constructed as shown for terms over the VR operations.

There is a difficulty with the bijection between occurrences in the term and the vertices and edges of the graph.

There are two possibilities :

- (1) Vertices are in bijection with the occurrences of *Forgeta*. Then, the edges are at the leaves of the syntactic tree, *below* the nodes representing their ends. The basic automaton for *adjacency* has 2^{O(k.k)} states. Too bad for a basic property.
- (2) Vertices are at the leaves, the edges are at nodes *above* the nodes representing their ends. Because of // which fuses vertices of the argument graphs, each vertex is represented by several leaves. (Equality of vertices is then an equivalence relation). We get the same exponential blow-up.

For representing path-decompositions, // is not needed. This drawback disappears (Solution (2) is then OK). The operations of the VR algebra can be used because :

LinearCliqueWidth(G) \leq PathWidth(G) + 2.

The **VR** operations are simple, and they can represent with "linear (comb) terms" graphs of *unbounded path-width* (but bounded linear clique-width).

Furthermore, the constructed automata have *less transitions* for the same numbers of states, because they only use unary operations.