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 An   overview   chart  
 

Graph                     Terms                     Tree-width   (algebraic characterization) 

operations                                              Clique-width         (definition)  

             “parsing”  

 

      Automaton          Input   graph   G 
                             
                                         
  

Monadic  2nd-order     ϕ                             G    ⎜ =   ϕ   ?             

sentence               
 

 Conceptual  implication             Compilation  step             Fixed-parameter  algorithm   
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Two  graph  algebras  :  “HR”  and  “VR”  
 

Case 1 :  “HR”, parameter  tree-width         Model-checking  for  

    MSO  sentences   with  edge  set  quantifications. 
 

Case 2 :  “VR”, parameter  clique-width        Model-checking  for  

    MSO  sentences   without  edge  set  quantifications. 
 

Automata  for  Case 2  are   easier  to  build. 
 

Case 1  reduces   to   Case 2 : 

Graph G of tree-width k>2   Incidence graph  of  G  of  tree-width k, 

   hence  of  clique-width  about  2k.  

 But : Graph  of  path-width k>2  Incidence graph  of  path-width  k, 

    hence  of  linear clique-width   k+2 : no exponential ! 
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Two   difficulties : 
  

Parsing, but in some concrete cases, graphs arise with their “natural” 

decompositions.  
 

Construction  of  automata : fails  in  many  cases  by  lack  of  memory.  
 

What  we  propose : 

 -To  use  predefined  deterministic  automata  for  basic  useful  graph 

 properties  like : Path(X,Y), Stable(X), Clique(X), NoCycle(X),  etc. 

 -To consider existential quantifications  over  Boolean  combinations 

 of  basic  formulas  with   substitutions  of   set   terms  

  - Not  to  determinize  automata 

 - To   interpret   and  not  to  compile  “combinatorially defined” automata  

 - To  use  path-   and  linear  clique-width  decompositions. 
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1.  The  graph algebra   VR 
 

Origin :  Vertex  Replacement   context-free   graph   grammars  

Associated  complexity  measure:  clique-width.  

 

Graphs  are  defined  in  terms  of  very  simple  graph  operations.  
 

Graphs  are  simple,  loop-free,  undirected      (extension to directed case easy).         

Vertex  labels  :  a,b,c ,..., d.   Each  vertex  has  one  and  only  one   label.  
 

One  binary  operation :   disjoint   union    :   ⊕ 

  

 Well-defined  up  to  isomorphism  :  one  takes  disjoint   copies ;  

 G ⊕ G   is  not  equal  to  G  
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Unary  operations:  Edge addition denoted  by  Add-edga,b 
 

Add-edga,b(G)   is  G  augmented  with  undirected  edges  between   

every   a-labelled vertex   and   every   b-labelled  vertex 

 

 

 

 

 
 

 

      H = Add-edga,b(G) ; only 5  new edges added  

The  number  of added edges  depends  on  the  argument graph. 

  

 The  directed  version  of   Add-edga,b   adds   directed  edges   from   

     every   a-labelled vertex      to   every  b-labelled  vertex 
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Vertex  relabellings :  
Relaba       b(G)  is   G  with  every   label  a  changed  into    b 

Variant : Relab h (G)  is   G  with  every  label  a  changed  into   h(a) for some  

function  h : C     C ;   C  is   the  finite   set  of   labels. 
  

 

Basic graphs   :   a    one    vertex   labelled  by   a,   for  each   a  in   C. 

 

Definition: A  graph   G   has   clique-width  ≤  k   

 ⇔  it  can  be  constructed  from  basic  graphs  with  the  operations  

   ⊕, Add-edga,b  and  Relaba      b  with  labels  a, b  in  set  C  of  k labels 

 

     Its  (exact)   clique-width   cwd(G)  is   the   smallest   such   k. 
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 Example : Cliques  (a-labelled)  have  clique-width  2.  
 

 

 

 

 

 

 

 

  Kn   is   defined   by   tn   where    t1   =   a 

  tn+1   =   Relabb      a( Add-edga,b(tn ⊕ b)) 
 

Example :  Cographs  (a-labelled)  are   generated   by   ⊕   and   ⊗   defined  by: 

G ⊗ H  =  Relabb      a(  Add-edga,b ( G ⊕ Relaba      b(H) )  ) 

            = G ⊕ H   with   “all edges”   between   G   and    H. 
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2.   Monadic Second-Order  (MSO)  Logic  
 
=  First-order  logic  extended  with (quantified)  variables  

denoting  subsets  of  the  domains. 
 
 

MSO   properties :   transitive closure,  properties of paths,  connectivity,  
 
planarity  (via Kuratowski, uses connectivity),   p-colorability. 
 

 
Examples  of  formulas   for   G  =  ( VG , edgG(.,.) ), undirected 

 
p-colorability  (NP-complete property) 
 

∃ X1,…,Xp (Partition(X1,…,Xp)  ∧  Stable(X1)  ∧ ...... ∧   Stable(Xp)  ) 
 

p-acyclic  colorability   
 

∃ X1,…,Xp (Partition(X1,…,Xp)  ∧  Stable(X1)  ∧ ...... ∧   Stable(Xp)  ∧ .... 
   ........... ∧  NoCycle(Xi  ∪ Xj)  ∧ ......  ) 
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Non  connectivity,  whence connectivity, more generally,  transitive closure  : 

∃X ( ∃x ∈ X  ∧  ∃y ∉ X  ∧  ∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∈ X)  ) 
 

Contains    H  as  a  minor :   
 

H  simple, loop-free.  Vertices(H)  =  {v1,…,vp }  
 
∃X1,…,Xp (Disjoint(X1,…,Xp)  ∧  Connected(X1)  ∧ ...... ∧ Connected(Xp)  ∧ .... 
   ........... ∧  Link(Xi , Xj)  ∧ ......  ) 
 

  where  Link(Xi , Xj)  means : there is an edge  between  some vertex of  Xi   
              and some vertex of  Xj .   

 
One  puts   Link(Xi , Xj)    in  the  sentence  for  each edge    vi ---- vj     of   H. 
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3.  Büchi-style  construction  of  automata  for  VR  terms. 
 

We  fix  k   the number  of  vertex  labels  (hence  the  bound  on  clique-width). 

F  =  the  corresponding  set  :   a  ,  ⊕ , Add-edga,b ,  Relab a         b  

G(t)  =  the  graph  defined  by  a  term  t  in  T(F).   

Vertices(G(t)) =   the  set  of  occurrences  of  constant  symbols  in  t 
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 Formulas   are  without   first-order  variables   and    ∀    

  

Construction : For each  sentence  ϕ   an  automaton  A(ϕ)  that  defines  

the  set  of  terms  in  T(F)    such that    G(t)  ⎜ =  ϕ 

 By   induction on   the  structure  of  the  sentence  ϕ 

  For  ∃ X. ϕ(X),  we  need   A(ϕ(X)). 

 

  More generally,  we  need   A(ϕ(X1,...,Xn)). 
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A  term  t   in  T(F)  defines   a  graph  G(t)  with  vertex set   

        =  the  set  of  occurrences  of constants.  

 For   representing   assignments  

    ν: { X1,...,Xn }        P( Vertices(G(t)) ) 

 we   replace  in   F  each  constant   a   by   the   constants    

(a, (w1,…,wn))  with   wi ∈ {0,1}  :   we   get   F(n) .  

 A  term   s  in T(F(n) )  encodes  a   term  t   in  T(F)  and  an  

 assignment   ν : { X1,..,Xn }      P( Vertices(G(t)) ) : 

 if   u  is  an  occurrence  of  (a, (w1,..,wn)),  then  wi = 1 iff  u  ∈  Xi . 

Such  a  term  s  is  denoted  by  t*ν . 
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 A   term  t*ν  in  T(F(n) )  defines  the graph  G( t )  and  some 

assignment  ν  :  { X1,...,Xn }        P( Vertices(G(t)) ). 

 From  F  and  ϕ  we will construct  a  finite  deterministic   automaton    

A(ϕ(X1,…,Xn))   that  recognizes : 

  L(ϕ(X1,…,Xn)) : =  {  t*ν  ∈ T(F(n) )    /      ( G( t ), ν  )   ⎜ =  ϕ  }  

Main inductive steps  

  L(  ∃ Xn+1 . ϕ(X1, ..., Xn+1) )   = pr( L ( ϕ(X1, ..., Xn+1)  ) 

  A(  ∃ Xn+1 . ϕ(X1, ..., Xn+1) )   = pr( A ( ϕ(X1, ..., Xn+1)  ) 
 

where  pr  is  the  “projection”   that  eliminates   the  last  Boolean.         

  One   obtains   a   nondeterministic   automaton. 
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  For  ∧  and   ∨  :  product  of   two  complete  automata  

  (deterministic  or  not). 

  For  negation : exchange  accepting/non-accepting  states  

          for   a   deterministic   automaton. 

   

  The  case  of  atomic  formulas  is  discussed  below.  

  
 

  The number  of  states  is   an   h-iterated   exponential,  

  where  h  =  maximum   nesting   of   negations.  

  This  is  not  avoidable    (Weyer, Frick and Grohe). 
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 Substitutions  and  inverse  images  (“cylindrifications”). 
 

 If   we   know  A( ϕ(X1, X2)) , we can get easily  A( ϕ(X4, X3)): 

   L( ϕ(X4, X3) ) =  h-1 ( L( ϕ(X1, X2))   )     where  

 h   maps  (a , (w1, w2 , w3, w4))   to   (a , (w4, w3))   

 We  take   

   A( ϕ(X4, X3)) =  h-1 (  A( ϕ(X1, X2) )  )  

 This  preserves  determinism  and  number  of  states.   
                      Set   term    

     From   A( ϕ(X1, X2)) , we  can  get  A(  ϕ ( X3, X1∪ (X2 \ X4 ))  )  by h-1 

 with h  mapping  (a , (w1, w2 , w3, w4))  to  (a , (w3, w1 ∨(w2 ∧ ¬w4 ))).   
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   Basic   cases  :  Atomic  formula  :  edg(X1,X2)  for  directed  edges 
 

 The  automaton  A(edg(X1,X2))  with    k2+k+3   states. 

 Vertex   labels  are   in   C  with  k elements.  

 edg(X1,X2)  means :   Single(X1)  ∧  Single(X2)  ∧ Link(X1,X2)   

 States  :  0, Ok, a(1), a(2), ab, Error,      for a,b  in   C , a  ≠  b 

 Meanings of states (at node  u in  t ; its subterm  t/u  defines    G(t/u)  ⊆  G(t) ).  

 0   : X1 = ∅  , X2 = ∅   

 Ok        Accepting   state :    X1 = {v}  , X2 = {w}  ,  edg(v,w)  in  G(t/u)   

 a(1) : X1 = {v}  , X2 = ∅  ,  v  has  label  a  in  G(t/u)   

 a(2)  : X1 = ∅  , X2 = {w}  ,  w  has  label  a  in  G(t/u)   

 ab  : X1 = {v}  , X2 = {w}  , v  has  label  a, w  has  label  b  (hence v ≠ w) 
             and  ¬edg(v,w)   in  G(t/u)    
 Error   :  all  other  cases
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 Transition  rules  

 For  the  constants  based on    a : 

 (a,00)   0  ;  (a,10)   a(1)  ;  (a,01)    a(2)  ;    (a,11)    Error 
 

 For  the  binary  operation  ⊕:      r 

            p             q  

 

  If  p = 0  then  r := q  

  If  q = 0  then  r := p 

  If  p = a(1),  q =  b(2)  and  a  ≠  b   then   r  := ab 

  If  p = b(2),  q =  a(1)  and  a  ≠  b   then   r  := ab 

  Otherwise  r  : =  Error 
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 For  unary  operations   Add-edgea,b        r 
 

                 p  

  If  p = ab   then  r  :=  Ok   else  r  : =  p 

 

 For  unary  operations   Relaba       b  

 

  If   p = a(i) where   i = 1 or 2       then     r : = b(i)  

  If   p =  ac   where  c ≠ a  and  c  ≠  b    then     r : =  bc      

  If   p =  ca   where  c ≠ a  and  c  ≠  b   then     r : =  cb       

  If   p =  Error  or  0  or  Ok  or  c(i)  or  cd   or  dc   where   c ≠ a   

            then     r : = p  
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Another   construction   using    Backwards  Translation:   

 

 The  mapping :   t  in T(F) ⎜            G(t)  is an  MSO transduction.   

 The  set  L(ϕ) of  terms  t  in  T(F)  such  that   G(t)  ⎜=  ϕ   is   defined  

by  an  MSO  formula  ϕ#  obtained  by  Backwards  Translation. 

 By  the  Recognizability Theorem  (Doner et al.)  for  terms,  L(ϕ)   is 

 definable  by  a  finite  automaton.  

 

 Short  proof,  but   ϕ#   has   larger  quantifier-height   than   ϕ . 

 Hence  bad  in  view  of  concrete  implementations.
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Implementation: The   automaton  constructed  from  ϕ  and  k   frequently   too  large  

to  be   compiled. Problems  with size  of  memory   for  intermediate  automata, even if  the 

unique  minimal  deterministic  automaton   has  manageable  number of  states.   
 

D. Soguet  et  al.,  using   MONA,  and  I. Durand  with  AUTOWRITE  (figures in blue) 

have constructed  automata  for  the following cases : 

       Clique-width 2     Clique-width  3         Clique-width 4 

  MaxDegree<1    24   states    123      states      621    states  

  MaxDegree<3    91   states    Space-Out 

  Degree<4(x)               48   states    233      states  

  Path(X,Y)                    12   states             128      states      2197  states 

  Connected            11   states             Space-Out 

  IsConnComp(X)         48   states                 Space-Out 

  Has<4-VertCover  111 states   1037    states 

  HasClique>4               21 states   153      states 

  2-colorable                  8   states    56      states 
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What  to  do  against  this  difficulty  ?  

(1) To  use  predefined  deterministic  automata  for  basic  useful   

graph properties like : Path(X,Y), Stable(X), Clique(X), NoCycle(X), etc. 

  We   define   automata  directly  from  the properties, without  using  

  the  logical  descriptions. 

  

(2) To consider  “only”  existential  quantifications  over  Boolean   

combinations of  basic  formulas  with   substitutions  of   set   terms.  

 Typical examples  :           p-acyclic  colorability   
 

  ∃ X1,…,Xp (Partition(X1,…,Xp)  ∧  Stable(X1)  ∧ ..... ∧   Stable(Xp)  ∧ ... 
   ........... ∧  NoCycle(Xi ∪ Xj)  ∧ ......  ) 
 

 MSO  constrained  domination :  ∃ X.(Dom(AllVertices \ X, X) ∧ ϕ(X) )    
where  Dom(X1,X2) means  : Every vertex in X1 is linked to some vertex in X2. 
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(3) Not  to  determinize  automata 
 

Proposition: If  A  is a  nondeterministic  automaton  with  N  states  over a  

set  of  at  most  binary  function  symbols, with  nondeterminism degree d,  

then,  the membership in  L(A)  of  a  term  of  size  m  can be done in time  

O( m . d . N2  ).  

Corollary : Let P  be a set of  basic  MSO properties with deterministic 

automata  of  at most N(k) states  for  each k  =  bound  on  clique-width. 

For a sentence ψ  :  ∃X1,…,Xp(ϕ(X1,…,Xp)),  where ϕ  is a Boolean 

combination  of  q  properties  P(t1,…,ts)  from P  and  the  ti ‘s    are  set  terms 

over  X1,…,Xp,  then, for every  term  t  in T(F) : 

G(t)    ⎜ =   ψ   can  be  checked   in  time    O(⎜t ⎜. ( 2p + N(k)2q ) ). 
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 (4)  Use   “linear clique-width”  terms  (cf. path-width  w.r.t.  tree-width): 

 

Automata  have  less  transitions, so  we  get :  

 

G(t)    ⎜ =   ψ   can  be  checked   in  time    O(⎜t ⎜. ( 2p + N(k)q ) ) 

 

Instead  of  : 

 

G(t)    ⎜ =   ψ   can  be  checked   in  time    O(⎜t ⎜. ( 2p + N(k)2q ) ). 

 
Of  course,  we   need  more labels,  but  this may  be  no  problem with the 

next  idea. 

 



 25

 

(5) The  last  “secret weapon”  to  fight  the  “Dragon” : 

To   interpret  and  not  to  compile  “combinatorially defined” automata 
 

Some   basic   graph   properties: 
 

Property Partition 

(X1,…,Xp) 

edg(X,Y) Stable(X)  Conn(X) for
degree <p 

Dom(X,Y)

Link(X,Y) 

Path(X,Y) Nocycle(X) 

 

N(k) 

 

2 

 

k2+k+2

 

2k 

 

2O(p.p.k.k) 

 

22k 

 

2O(k.k) 

 

2O(k.k) 

 

Remark :  For connectivity  without degree limit, one can construct a 

deterministic  automaton with 2 ^(2 ^O(k) ) states  and  the minimal one has more 

than  2 ^(2 ^ (k/2)  ) states.   
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Last  words  : MSO   logic  with  edge  set   quantifications,   

 tree-width as parameter and  the  graph  algebra   HR   
 

Edge  set quantifications  increase  the  expressive power of  

MSO  logic 

 
 

Incidence  graph  of   G  undirected,  Inc(G) = ( VG ∪ EG, incG(.,.).) 
 
incG(v,e)   ⇔   v  is  a  vertex  ( in VG )  of  edge  e  (in  EG ). 
 
Monadic second-order  (MSO2)   formulas  written   with  inc   can   use 

 quantifications   on  sets  of  edges.  
 

 The existence  of  a perfect  matching  or  a  Hamiltonian circuit  is expressible   

  by an  MSO2  formula, but  not   by   an   MSO   formula.
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HR  operations : Origin :  Hyperedge Replacement hypergraph grammars ;  
         associated complexity measure : tree-width 
 

Graphs have  distinguished vertices called sources, (or terminals or boundary vertices) 

pointed  to  by source  labels from a finite set :    {a, b, ..., d}. 

Binary operation(s)  :  Parallel  composition 

G // H     is  the  disjoint  union of  G  and  H  and sources  with  same  label  are   fused.  

(If  G  and  H are  not disjoint, one  first  makes  a  copy of  H disjoint from  G). 
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Unary operations   :     

 

 Forget   a   source  label  

 
       Forgeta(G)   is  G  without  a-source:  the  source  is  no longer distinguished ;  

(it  is  made  "internal"). 

       Source  renaming : 

 
Rena     b(G)  exchanges  source  labels  a  and b     

(replaces  a  by  b   if  b is not  the label  of  a  source) 
 

 

 

 Nullary operations denote basic graphs :  

         the connected graphs with at most one edge.  
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Tree-decompositions 
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Proposition:  A  graph  has  tree-width  ≤  k  if and only if  it  can  be  constructed   from  

basic  graphs  with   ≤  k+1  labels  by  using  the  operations    // , Rena     b  and  Forgeta.  

Example : Trees are of tree-width 1, constructed with two source labels, r  (root) and n  (new root):  

Fusion of two trees at their roots  :  

 

Extension of a tree by parallel composition 

with a new edge,  forgetting the old root, 

making   the "new root" as current root :  

e  =  r  •_________•  n 

Renn      r  (Forgetr (G // e )) 
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From  an algebraic  expression  to  a   tree-decomposition 

Example : cd // Rena       c (ab // Forgetb(ab // bc)) (Constant  ab  denotes  an edge from  a   to  b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                         The   tree-decomposition   associated  with   this term. 
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Automata  can  be  constructed  as  shown  for  terms  over  the  VR  operations. 
 

 There  is  a  difficulty  with  the bijection  between  occurrences in the term 

and the vertices and edges of the graph. 
 

There are two possibilities : 

(1) Vertices  are  in bijection with  the  occurrences of  Forgeta. Then, the 

edges  are  at  the leaves of  the syntactic tree,  below   the  nodes  

representing  their ends. The basic automaton for adjacency has  2O(k.k)  

states. Too  bad for a  basic  property. 

(2) Vertices  are  at  the  leaves, the  edges  are  at  nodes  above  the  nodes  

representing their ends. Because  of  //  which fuses  vertices  of   the 

argument graphs,  each vertex  is  represented  by several  leaves. (Equality 

of vertices  is  then  an  equivalence relation).   
    We  get the same exponential  blow-up. 



 33

    For  representing  path-decompositions,  //  is  not  needed. This  drawback 

disappears  (Solution (2) is  then  OK ). The  operations of  the  VR  algebra can  

be  used because :           

     LinearCliqueWidth(G)   <   PathWidth(G) + 2. 

 

 The  VR  operations are  simple, and  they  can  represent  with “linear (comb)  

terms” graphs of  unbounded  path-width (but  bounded  linear  clique-width).  

 

  Furthermore, the  constructed   automata  have  less  transitions  for  the  

same  numbers  of  states,  because  they  only  use   unary  operations. 

  

 

 


