The verification of monadic second-order properties of structured graphs

Bruno Courcelle

Université Bordeaux 1, LaBRI \& Institut Universitaire de France

References:

B.C. and J. Engelfriet: Graph structure and monadic second-order logic, book published by Cambridge University Press, June 2012.
B.C. and I. Durand: Fly-automata, their properties and applications, $16^{\text {th }}$ CIAA, 2011, LNCS 6807, pp. 264-272.

Full version accepted for publication in J. of Applied Logic

For other references see : http://www.labri.fr/perso/courcell/ActSci.html

Summary

1. Logic and construction of algorithms ; Monadic Second-Order (MSO) logic
2. Graph decompositions, tree-width and clique-width
3. From MSO formulas to automata
4. Practical difficulties and (some) remedies
5. Open problems and conclusion.
6. Logic and construction of algorithms.

Hard (NP-complete) graph problems:
3-vertex coloring, vertex cover, SATisfiability of a propositional formula (can be viewed as a problem about labelled graphs).

These problems have polynomial-time algorithms for graphs of particular classes.

Our objective : Meta-theorems giving algorithms for classes of structured graphs and classes of logically defined problems.

Logical expression of graph properties

Graphs as logical structures:

Let G be directed or undirected, and simple (no parallel edges).
$G=\left(V_{G}, e d g_{G}(.,).\right)$ with $\operatorname{edg}_{G}(u, v) \Leftrightarrow$ there is an edge $u \rightarrow v(o r u-v)$.
Logical languages : First-order logic

Examples:1. Every vertex has an outgoing edge: $\forall \mathrm{u} \exists \mathrm{v}$ edg($\mathrm{u}, \mathrm{v})$
2. G undirected has diameter at most k : here for $\mathrm{k}=2$: $\forall u, v(v \neq u \Rightarrow e d g(u, v) \vee \exists w[e d g(u, w) \wedge e d g(w, v)])$.

FO logic expresses only local properties (in a precise technical sense).

Monadic second-order logic
$=$ First-order logic on power-set structures
= First-order logic extended with (quantified) set variables denoting subsets of the domains.

For graphs, set variables denote sets of vertices.
("A set of edges of G " is here a binary relation over V_{G}).

MSO (expressible) properties: k-colorability, transitive closure, properties of paths, connectivity, planarity (via Kuratowski)

Examples for $G=\left(V_{G}, \operatorname{edg}_{G}(. .).\right)$, undirected
Syntax is clear; shorthands are used, example : $\mathrm{X} \cap \mathrm{Y}=\varnothing$.
(1) G is 3 -colorable :

$$
\begin{aligned}
& \exists X, Y(X \cap Y=\varnothing \wedge \\
& \forall u, v\{\operatorname{edg}(u, v) \Rightarrow \\
& \quad[(u \in X \Rightarrow v \notin X) \wedge(u \in Y \Rightarrow v \notin Y) \wedge \\
& (u \notin X \cup Y \Rightarrow v \in X \cup Y)]
\end{aligned}
$$

(2) G is not connected:
$\exists Z(\exists x \in Z \wedge \exists y \notin Z \wedge(\forall u, v(u \in Z \wedge e d g(u, v) \Rightarrow v \in Z))$
(3) Transitive and reflexive closure : $\mathrm{TC}(\mathrm{R} ; \mathrm{x}, \mathrm{y})$:
$\forall X\{$ " X is R-closed" $\wedge x \in X \Rightarrow y \in X\}$
where " X is R-closed" is :
$\forall u, v(u \in X \wedge R(u, v) \Rightarrow v \in X)$
The relation R can be defined by a formula as in :
$\forall x, y(x \in Y \wedge y \in Y \Rightarrow T C(" u \in Y \wedge v \in Y \wedge e d g(u, v)$ " $; x, y)$
(where Y is free) to expressing that $\mathrm{G}[\mathrm{Y}]$ is connected.
(4) Minors: G contains a fixed graph H as a minor with $\mathrm{V}_{\mathrm{H}}=\{1, \ldots, \mathrm{p}\}$: there exist disjoint sets of vertices X_{1}, \ldots, X_{p} in G such that each $G\left[X_{i}\right]$ is connected and, whenever $\mathrm{i}-\mathrm{j}$ in H , there is an edge between X_{i} and X_{j}.
(5) Planarity is expressible: no minor K_{5} or $\mathrm{K}_{3,3}$ (Kuratowski-Wagner).
(6) Has a cycle (for G without loops):
$\exists x, y, z[e d g(x, y) \wedge e d g(y, z) \wedge$ "there is a path from x to z avoiding $y "]$
(7) Is a tree: connected without cycles.
(Provably) non-expressible properties
G is isomorphic to $\mathrm{K}_{\mathrm{p}, \mathrm{p}}$ for some p (not fixed; needs equal cardinalities of two sets, hence quantification over binary relations to find a bijection).
G has all vertices of same degree.

Two problems for a class C of finite graphs and a logic:
Decidability? : Does a given sentence hold in some (or all) graphs of C ?
Model-checking (decidable): Its time/space complexity ?

Language, class	Decidability	Model-checking
FO, all graphs	Undecidable	Polynomial-time
MSO, clique-width $<\mathrm{k}$	Decidable	Cubic-time
MSO, unbdd cwd.	Undecidable	Conjecture : not FPT

Clique-width (cwd) is a graph parameter defined below.
FPT means here: takes time $f(k) . n^{c}$ where $k=c w d$ of input graph and
$\mathrm{f}($.$) and \mathrm{c}$ are fixed, depending on the property to check.

Model-checking problems

The 3-Coloring problem is NP-complete and MSO-expressible.

It is NP-complete for (even planar) graphs of degree ≤ 4 (Dailey, 1980). Hence the degree is not a good parameter for obtaining an FPT algorithm.

Tree-width and clique-width are good in this respect, and even for all MSO properties.

Both parameters are based on hierchical decompositions.
2. Graph decompositions : tree-width and clique-width.

Hierarchical graph decompositions :
many notions; all of them represent a graph as a tree of smaller components.

They are useful:
as preprocessings in algorithms,
for study of graph structure (modular decomposition for
comparability graphs, tree-decompositions for the Graph Minor Theorem), for graph grammars.

Here: formalized by terms over "graph concatenations".
\rightarrow graphs in an algebraic setting,
\rightarrow linear notation for graphs,

Example 1: Directed series-parallel graphs (tree-width 2 ; trees have tree-width 1)
Graphs with distinguished vertices marked 1 and 2, generated from $\mathrm{e}=1 \rightarrow 2$ by the operations of parallel-composition // and series-composition •

$((e / / e) \bullet e) / /(e \bullet e)$

The defining equation is $S=S / / S \cup S \bullet S \cup\{e\}$

Example 2: Cographs (clique-width 2 ; trees have clique-width ≤ 3)

Undirected graphs generated by \oplus, disjoint union and \otimes, complete join from a, a vertex without edges (up to isomorphism); \otimes is defined by:
$G \otimes H=G \oplus H$ with "all possible" undirected edges between G and H,

Cographs are recursively defined by: $C=C \oplus C \cup C \otimes C \cup\{a\}$ Example:
$(a \otimes a \otimes a) \otimes((a \otimes a) \oplus a)$

Definition: Clique-width

More powerful than tree-width ; the construction of automata is easier.

Graphs are simple, directed or not.
We use labels: a, b, c, \ldots, d. Each vertex has one label; several vertices may have the same label. A vertex labelled by a is an a-port

One binary operation: disjoint union : \oplus

Remark: If G and H are not disjoint, we replace H by an isomorphic disjoint copy to define $G \oplus H$. Hence $G \oplus H$ is well-defined up to isomorphism. No such problem in a "decomposition approach".

Unary operations: Edge-addition denoted by Add $_{a, b}$
Addition of undirected edges: $A d d_{a, b}(\mathrm{G})$ is G augmented with edges between every a-port and every b-port.

$$
\mathrm{H}=\operatorname{Add}^{2}, \mathrm{~b}(\mathrm{G}) \text {; only } 5 \text { edges added }
$$

The number of added edges depends on the argument graph.

Addition of directed edges: $\overrightarrow{A d d a, b}(G)$ is G augmented with edges from every a-port to every b-port.

Vertex relabellings:

$$
\text { Relaba } \longrightarrow b(G)=G \text { with every vertex labelled by a relabelled into } b
$$

Basic graphs: those with a single labelled vertex.

Definition: A graph G has clique-width $\leq k \Leftrightarrow$ it can be constructed from basic graphs with the operations $\oplus, A d d a, b$ (or $\overrightarrow{A d d} a, b$) and Relaba $\longrightarrow b$ by using $\leq k$ labels. Its clique-width $\operatorname{cwd}(\mathrm{G})$ is the smallest such k

Example : Cliques have cwd 2 (and unbounded tree-width)

K_{n} is defined by t_{n} where $\mathrm{t}_{\mathrm{n}+\boldsymbol{1}}=\operatorname{Relabb} \longrightarrow \mathrm{a}\left(\right.$ Adda, $\left.b\left(\mathrm{t}_{\mathrm{n}} \oplus \mathbf{b}\right)\right)$

Cliques are defined by the equation:

$$
\mathrm{K}=\operatorname{Relabb} \longrightarrow a(A d d a, b(\mathrm{~K} \oplus \mathbf{b})) \cup \mathbf{a}
$$

Examples of bounded clique-width:

An undirected graph is a cograph \Leftrightarrow it has clique-width at most 2. Trees and distance hereditary graphs have clique-width at most 3. Tree-width $\leq \mathrm{k}$ implies clique-width $\leq \mathrm{f}(\mathrm{k})$.

Examples of unbounded clique-width:
Planar graphs (even of maximum degree 3), Interval graphs.

Fact: Clique-width is sensible to edge directions:
Cliques have clique-width 2 but tournaments have unbounded clique-width.
3. From MSO formulas to automata

Steps \longrightarrow are done "once for all", independently of G
$\mathrm{A}(\varphi, \mathrm{k})$: finite automaton on terms t
$w d=$ tree-width or clique-width or equivalent,
(Tree-decompositions also have algebraic expressions).

Finite automata on terms
Example : Integer / real type of an
 arithmetic expression

$$
[(x+y) / z+x * y]!
$$

Bottom-up computation of $\mathrm{i} / \mathrm{r} /$ Error type using the rules above.

Construction of automaton $\mathrm{A}(\varphi, \mathrm{k})$ for "clique-width" terms
$\mathrm{k}=$ the number of vertex labels $=$ the bound on clique-width
$\mathrm{F}=$ the corresponding set of operations and constants :

$$
\mathrm{a}, \oplus, \text { Adda } a, b, \overrightarrow{A d d} a, b, R e l a b a \longrightarrow b
$$

$\mathrm{G}(t)=$ the graph defined by a term t in $\mathbf{T}(\mathrm{F})$. Its vertices are (in bijection with) the occurrences of the nullary symbols in t.

By induction on the structure of φ, one constructs a finite (bottom-up) deterministic automaton $\mathrm{A}(\varphi, \mathrm{k})$ that recognizes:

$$
\{t \in \mathbf{T}(\mathrm{~F}) / \mathrm{G}(t) \mid=\varphi\}
$$

Theorem : For each sentence φ, the automaton $A(\varphi, k)$ accepts in time $f(\varphi, k) .|t|$ the terms t in $\mathbf{T}(F)$ such that $G(t) \mid=\varphi$

It gives a fixed-parameter linear model-checking algorithm for input t, and
a fixed-parameter cubic one if the term t defining the input graph must be constructed. (This construction is similar to the parsing step in compilation).
4. Practical difficulties and (some) remedies.

1. Parsing: Checking if a graph has clique-width $\leq k$ is NPcomplete (with k in the input ; Fellows et al.).

The cubic approximate parsing algorithm (by Oum et al.) based on rank-width is difficult to implement.

The situation is similar if tree-decompositions and tree-width are used instead of "clique-width" terms.

2. Sizes of automata:

The number of states of $A(\varphi, k)$ is bounded by an h-iterated exponential where h is the number of quantifier alternations of φ (because \exists introduces nondeterminism and each negation needs a determinization that can produce 2^{n} states for an automaton with n states.)

There is no alternative construction giving a fixed bound on nestings of exponentiations (Meyer \& Stockmeyer, Frick \& Grohe).

The construction by induction on the structure of φ may need intermediate automata of huge size, even if the unique minimal deterministic automaton equivalent to $A(\varphi, k)$ has a manageable number of states.

Soguet et al. using MONA have constructed automata for the following cases; no success for clique-width 4 :

	Clique-width 2	Clique-width 3
MaxDegree ≤ 3	91 states	Space-Out
Connected	11 states	Space-Out
IsConnComp(X)	48 states	Space-Out
Has ≤ 4-VertCov	111 states	1037 states
HasClique ≥ 4	21 states	$153 \quad$ states
2-colorable	11 states	$57 \quad$ states

One can avoid the inductive construction and construct "directly" deterministic automata for basic properties: NoEdge, Connected, Cycle

Property	Partition $\left(X_{1}, \ldots, X_{p}\right)$	edg(X,Y)	NoEdge	Connected, Cycle for degree $\leq p$	Path (X, Y)	Connected, Cycle
Number of states $N(k)$	2	$k^{2}+k+3$	2^{k}	$2^{\mathrm{O}(\text { p...k } k)}$	$2^{\mathrm{O}(\mathrm{k} . \mathrm{k})}$	$2^{2^{\mathrm{O}(k)}}$

Examples of automata too large to be constructed, i.e., "compiled":
for $k=2$: 4-colorability, 3-acyclic-colorability, Cycle (i.e., has cycles).
for $k=4$: connectedness, for $k=5$: 3-colorability, clique.
The minimal deterministic automaton for Conn (X) has more than $2^{2^{k / 2}}$ states.

An issue : Fly-automata

States and transitions are not listed in huge tables:
they are specified (in uniform ways for all k) by "small" programs.

Example of a state for connectedness:
$q=\{\{a\},\{a, b\},\{b, c, d\},\{b, d, f\}\}$,
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}$ are vertex labels; q is the set of types of the connected
components of the current graph. (type $(\mathrm{H})=$ set of labels of its vertices)
Some transitions:
Add $_{\mathrm{a}, \mathrm{c}}: \mathrm{q} \longrightarrow\{\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{d}, \mathrm{f}\}\}$,
Relab $_{\mathrm{a}} \rightarrow \mathrm{b}: \mathrm{q} \longrightarrow\{\{\mathrm{b}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{d}, \mathrm{f}\}\}$
Transitions for \oplus : union of sets of types.

Using fly automata works for formulas with no (or few) quantifier alternation that use "new" atomic formulas for "basic" properties

Examples: p-acyclic colorability
$\exists X_{1}, \ldots, X_{p}\left(\right.$ Partition $\left(X_{1}, \ldots, X_{p}\right) \wedge \operatorname{NoEdge}\left(X_{1}\right) \wedge \ldots . . \wedge \operatorname{NoEdge}\left(X_{p}\right) \wedge \ldots$ $\left.\wedge \operatorname{NoCycle}\left(X_{i} \cup X_{j}\right) \wedge \ldots\right)$
(all $\mathrm{i}<\mathrm{j}$; set terms $\mathrm{X}_{\mathrm{i}} \cup \mathrm{X}_{\mathrm{j}}$ avoid some quantifications).
Minor inclusion : H simple, loop-free. Vertices(H) $=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{p}}\right\}$

$$
\begin{aligned}
& \exists X_{1}, \ldots, X_{p}\left(\operatorname{Disjoint}\left(X_{1}, \ldots, X_{p}\right) \wedge \operatorname{Conn}\left(X_{1}\right) \wedge \ldots \wedge \operatorname{Conn}\left(X_{p}\right) \wedge \ldots\right. \\
& \left.\quad \ldots \wedge \operatorname{Link}\left(X_{i}, X_{j}\right) \wedge \ldots\right)
\end{aligned}
$$

Some experiments, by Irène Durand.
3 -colorability of the 6×7 grid (of clique-width 8) in 7 minutes, of the 6×33 grid (of clique-width 8) in 10 minutes.

3-colorability of the Petersen graph (clique-width 7) in 1.1 second, its 4 -acyclic-colorability in 4 minutes (*).
(3-colorable but not acyclically; red and green vertices induce a cycle).
(*) For a term with annotations (a kind of preprocessing).

The McGee graph
24 vertices,
36 edges,
clique-width ≤ 10.

3-colorability in 7 minutes,

3-AC-colorability in 21 hours (11 hours with annotated term).

5. Conclusion

1. Using automata for model-checking of MS sentences on graphs of bounded tree-width or clique-width is not hopeless if we use fly-automata, built from (possibly non-deterministic) "small" automata for basic graph properties (and their negations), and for sentences with no (or few) quantifier alternation.
2. More tests on significant examples are necessary, and also comparison (theory and practice) with other approaches: games, monadic Datalog, specific problems, "Boolean width".
3. One can adapt fly-automata to counting and optimization problems. However, this extension should be tested.

Bonus : Bounded tree-width.

If we replace a graph G by its incidence graph inc(G) (where each edge of G becomes a vertex), then, monadic second-order formulas interpreted over inc(G) can use quantifications on sets of edges. They have more expressive power.

Model-checking with finite automata can be done for graphs of bounded tree-width for such formulas.

Tree-width is well-known. Below we show its algebraic expression by means of appropriate graph operations.

Graph operations that characterize tree-width

Graphs have distinguished vertices called sources, (or terminals or boundary vertices) pointed to by source labels from a finite set : $\{a, b, c, \ldots, d\}$.

Binary operation(s) : Parallel composition
$\mathrm{G} / / \mathrm{H}$ is the disjoint union of G and H and sources with same label are fused.
(If G and H are not disjoint, we use a copy of H disjoint from G).

Unary operations

Forget a source label

Forgeta(G) is G without a-source: the source is no longer distinguished (it is made "internal").

Source renaming :
Ren $a \leftrightarrow b(\mathrm{G})$ exchanges source labels a and b (replaces a by b if b is not the label of any source)

Nullary operations denote basic graphs: 1-edge graphs, isolated vertices.
Terms over these operations denote graphs (with or without sources) that can have parallel edges.

Example : Trees

Constructed with two source labels, r (root) and n (new root).
Fusion of two trees at their roots :

H

G // H

Extension of a tree by parallel composition with a new edge, forgetting the old root, making the "new root" as current root :

$$
\begin{aligned}
\mathrm{e}=r & \bullet n \\
\operatorname{Ren}_{n} & \longleftrightarrow r\left(\operatorname{Forget}_{r}(\mathrm{G} / / \mathrm{e})\right)
\end{aligned}
$$

G

Trees are defined by: $\mathrm{T}=\mathrm{T} / / \mathrm{T} \cup$ extension $(\mathrm{T}) \cup r$

Relation to tree-decompositions and tree-width

Dotted lines ---- link copies of a same vertex.
Width = max. size of a box -1.

Proposition: A graph has tree-width $\leq \mathrm{k} \Leftrightarrow$ it can be constructed from edges by using the operations $/ /$, Ren $_{\leftrightarrow} \leftrightarrow b$ and Forgeta with $\leq k+1$ labels $\mathrm{a}, \mathrm{b}, \ldots$.

Proposition: Bounded tree-width implies bounded clique-width

$$
\left(\mathrm{cwd}(\mathrm{G}) \leq 2^{2 \mathrm{twd}(\mathrm{G})+1} \text { for } \mathrm{G}\right. \text { directed), but not conversely. }
$$

From an algebraic expression to a tree-decomposition
Example : cd // Ren $\mathrm{a}_{\mathrm{a}_{\rightarrow} \mathrm{c}}\left(\mathrm{ab} / /\right.$ Forget $\left._{\mathrm{b}}(\mathrm{ab} / / \mathrm{bc})\right)$
(ab denotes an edge from a to b)

The tree-decomposition associated with this term.

