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 Summary 
 

1. Logic  and  construction  of  algorithms ;  

    Monadic Second-Order (MSO)  logic 

 

2. Graph  decompositions,  tree-width  and  clique-width 

 

3. From  MSO  formulas  to  automata 

 

4. Practical  difficulties  and  (some)  remedies 

 

5. Open  problems  and  conclusion. 
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1. Logic  and  construction of algorithms. 

 
 Hard  (NP-complete)  graph  problems :  

   3-vertex coloring, vertex cover, 

   SATisfiability  of  a propositional formula  (can be    

   viewed  as  a  problem  about  labelled  graphs). 
These problems have polynomial-time algorithms  for  graphs  of  

particular classes. 
 

Our objective : Meta-theorems giving algorithms for  classes 

of structured graphs and classes of logically defined  

problems. 
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Logical  expression  of  graph  properties 
 

Graphs as  logical  structures:    
 Let  G  be  directed or undirected, and  simple (no parallel edges). 
 

G  =  ( VG , edgG(.,.) ) with edgG(u,v) ⇔  there is an edge  u  v (or u – v). 
 

Logical languages :  First-order logic  
 

Examples : 1.  Every  vertex  has  an  outgoing  edge:          ∀u ∃ v  edg(u,v) 

 
2.   G  undirected has  diameter  at  most  k : here  for  k = 2 : 
 ∀u, v ( v ≠ u   ⇒  edg(u,v)  ∨  ∃ w  [ edg(u,w)  ∧  edg(w,v) ] ). 
   

FO   logic expresses  only  local  properties  (in a precise technical sense).  
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Monadic  second-order  logic  
 

  =  First-order  logic  on  power-set  structures  

  =  First-order  logic  extended  with  (quantified)  set  variables  

denoting  subsets  of  the  domains. 
 

For graphs, set  variables  denote  sets  of vertices.  

 ( “A  set  of  edges of G ”  is  here  a  binary  relation  over  VG). 
 
 
MSO  (expressible)  properties :  k-colorability,   transitive closure,  

properties  of  paths,   connectivity,   planarity   (via  Kuratowski) 
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Examples   for     G  =  ( VG , edgG(.,.) ), undirected 
 
Syntax  is  clear; shorthands  are  used, example :  X ∩ Y = ∅ . 
 
(1)  G  is  3-colorable  : 

 
∃X,Y ( X ∩ Y = ∅  ∧   
  ∀u,v { edg(u,v) ⇒    
    [(u ∈ X  ⇒  v ∉ X) ∧ (u ∈ Y ⇒  v ∉ Y) ∧  
    (u ∉ X ∪ Y  ⇒  v ∈ X ∪ Y)  ] 
      } ) 
 

(2)  G  is  not  connected : 
 
∃ Z ( ∃x ∈ Z  ∧  ∃y ∉ Z  ∧  (∀u,v (u ∈ Z  ∧  edg(u,v) ⇒ v ∈ Z)  ) 
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(3)  Transitive  and  reflexive  closure  :   TC(R ; x, y) :   
 
 ∀ X { “X is R-closed”  ∧  x ∈ X  ⇒ y ∈ X  } 
 

       where   “X is R-closed”    is  :   
  ∀u,v (u ∈ X  ∧  R(u,v) ⇒ v ∈ X)  
 
The  relation  R  can  be  defined   by  a   formula  as  in  : 
 
∀x,y (x ∈ Y  ∧  y ∈ Y ⇒   TC(“u ∈ Y  ∧ v ∈ Y ∧ edg(u,v)” ; x, y) 
 
(where  Y  is  free)  to  expressing  that  G[Y]  is  connected.     
 

(4)  Minors :  G   contains  a  fixed  graph  H  as  a  minor  with  VH = {1,…,p} : 

  there  exist  disjoint  sets  of   vertices  X1,…, Xp  in  G    

  such   that   each   G[Xi]  is  connected  and,   

  whenever  i – j  in  H,  there  is  an  edge  between   Xi   and  Xj. 
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(5)  Planarity  is  expressible :  no minor  K5  or  K3,3   (Kuratowski - Wagner). 
 
 
(6) Has  a  cycle  (for  G  without  loops) :  

   
 ∃x,y,z [edg(x,y)  ∧  edg(y,z)  ∧ “there  is  a  path  from  x  to  z  avoiding  y” ]     
 
 

(7) Is  a  tree : connected  without  cycles. 
 
 
(Provably)  non-expressible  properties  
 
 

G  is  isomorphic  to  Kp,p  for  some  p   (not  fixed;  needs  equal  cardinalities  of  

two sets, hence  quantification  over  binary relations  to  find  a  bijection). 

 
G  has  all  vertices  of  same degree.     
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Two  problems  for  a  class  C  of  finite  graphs  and  a  logic:  
 

Decidability? : Does a  given  sentence hold in some (or all) graphs of  C ?      
 

Model-checking  (decidable) :  Its  time/space    complexity  ? 
  

Language,     class Decidability Model-checking 

FO,        all  graphs Undecidable Polynomial-time 

MSO, clique-width < k Decidable  Cubic-time 

MSO,  unbdd cwd. Undecidable Conjecture : not FPT  
 

 

Clique-width  (cwd)  is  a  graph  parameter  defined below. 

FPT  means  here : takes  time  f(k).nc  where k = cwd  of input graph and  

f(.)  and  c  are  fixed, depending  on  the  property  to  check. 
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Model-checking  problems 
 

The  3-Coloring  problem  is  NP-complete  and   MSO-expressible. 
 

It  is  NP-complete  for  (even  planar)  graphs  of  degree  <  4    (Dailey, 1980).  

Hence  the  degree   is  not  a   good  parameter  for obtaining  an FPT 

algorithm. 

 

Tree-width  and   clique-width  are  good  in  this  respect, and even for  all  

MSO  properties.   

 Both  parameters  are  based  on  hierchical   decompositions.  
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2.  Graph   decompositions :  tree-width  and  clique-width. 
 

Hierarchical graph decompositions :  
 

 many notions;  
 all  of them represent a graph as a tree of smaller components. 
 
They  are  useful : 

 as  preprocessings  in  algorithms, 

 for  study  of  graph structure  (modular decomposition  for 

comparability  graphs, tree-decompositions  for  the Graph  Minor Theorem), 

 for  graph  grammars. 
 
Here: formalized  by  terms  over  “graph  concatenations”.  

 graphs  in  an  algebraic  setting, 
 linear  notation  for graphs, 
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Example 1: Directed  series-parallel graphs (tree-width 2 ; trees have tree-width 1)  
 

Graphs   with  distinguished  vertices marked  1  and  2,  generated   from   

e = 1  2  by  the operations of parallel-composition //  and  series-composition  • 

              ((e // e) • e ) // ( e • e ) 
  

 

 

 

 

 
 

 
    The  defining  equation   is   S  =  S // S   ∪   S • S   ∪  { e } 
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Example  2 : Cographs   (clique-width 2 ; trees have clique-width  < 3) 
    

 

Undirected  graphs  generated  by  ⊕,  disjoint  union and ⊗,  complete  join      

from  a,  a  vertex without edges  (up  to  isomorphism);   ⊗   is  defined  by : 

G ⊗ H  = G ⊕ H  with  “all  possible”  undirected  edges  between  G  and  H, 
 

Cographs   are  recursively  defined   by :     C  =  C ⊕ C     ∪   C ⊗  C   ∪  { a } 

Example :  
 
 
(a ⊗ a ⊗ a) ⊗ ((a ⊗ a) ⊕ a) 
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Definition :   Clique-width 
 

More  powerful  than  tree-width ;    the construction  of  automata  is  easier. 
 

Graphs  are  simple, directed  or  not.   
     

We   use   labels:  a, b, c, ..., d.   Each  vertex  has  one  label ;   several  vertices  

may  have  the  same  label.   A  vertex  labelled   by  a  is  an  a-port      
 

One   binary   operation :   disjoint  union  :   ⊕ 
 

Remark :  If  G  and H  are not disjoint, we replace  H  by  an  isomorphic  disjoint  

copy  to  define  G ⊕ H.  Hence  G ⊕ H  is  well-defined up  to isomorphism.  No 

such   problem   in   a   “decomposition  approach”. 
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Unary   operations:  Edge-addition  denoted   by   Adda,b 
 

Addition of undirected edges:  Adda,b(G) is  G  augmented  with  edges  

between   every  a-port  and   every  b-port. 

 

 

      H = Adda,b(G) ; only  5  edges added  

The   number  of  added  edges  depends  on  the  argument graph. 
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Addition of directed edges:  Adda,b(G)   is  G  augmented  with  edges  from  

every  a-port  to  every  b-port. 

 

Vertex  relabellings :  
Relaba       b(G)  =  G  with  every vertex labelled by a  relabelled into b 

 

Basic graphs :   those  with  a  single  labelled  vertex. 

 

Definition: A  graph  G  has  clique-width ≤  k   ⇔  it can be constructed 

from  basic  graphs  with  the  operations ⊕, Adda,b  (or  Adda,b)  and   

Relaba     b  by using < k  labels.  Its clique-width  cwd(G)  is  the   

smallest   such   k 
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 Example  : Cliques  have  cwd   2  (and   unbounded  tree-width) 

 
 

Kn  is   defined  by  tn  where  tn+1  =   Relabb      a( Adda,b(tn ⊕ b)) 
 

Cliques  are  defined  by  the   equation : 

K =  Relabb        a( Adda,b( K ⊕ b ) )  ∪  a  
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Examples  of  bounded  clique-width:  
 

 An  undirected  graph  is  a  cograph   ⇔    it  has   clique-width  at  most 2. 

  Trees and distance  hereditary  graphs  have  clique-width  at  most  3.  

 Tree-width  < k  implies  clique-width <  f(k).  

 

Examples  of  unbounded  clique-width:  
 

 Planar  graphs  (even  of  maximum  degree  3),  

 Interval graphs. 

 

Fact :   Clique-width  is  sensible  to  edge  directions :  

 Cliques have clique-width  2  but  tournaments  have unbounded  clique-width. 
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 3.  From  MSO  formulas  to  automata  

       k            ϕ    (MSO  formula)   

      

             Automaton  Constructor  

                  Yes  

G                   Graph Analyzer                 t              A(ϕ, k)           

                  No  

       Error : wd(G) > k  

Steps       are  done  “once  for  all”, independently   of   G   

A(ϕ,k):  finite  automaton  on  terms  t  
wd  =  tree-width  or  clique-width  or  equivalent,  
   (Tree-decompositions   also  have  algebraic expressions). 
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  Finite  automata  on   terms  
 

Example  :  Integer / real  type  of  an  

arithmetic  expression  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bottom-up  computation  of  i / r / Error   type   using   the   rules   above.  
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Construction  of  automaton  A(ϕ, k)  for   “clique-width”  terms 
 

k  =  the  number  of  vertex  labels  =  the  bound  on  clique-width 
 

F  =  the  corresponding  set  of  operations  and  constants : 

       a , ⊕ , Adda,b , Adda,b ,  Relab a          b  
 

G(t)  =  the  graph  defined  by  a  term  t  in  T(F).  Its  vertices  are  (in  

bijection  with)  the  occurrences  of  the  nullary  symbols in  t . 
 

 By induction on the structure of  ϕ,  one  constructs  a  finite   

(bottom-up)  deterministic   automaton   A(ϕ, k)  that  recognizes: 

{ t ∈ T(F)  /    G( t )    ⎜ =  ϕ } 
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Theorem : For  each  sentence  ϕ,  the  automaton  A(ϕ, k)  accepts  

in  time  f(ϕ, k). ⎜ t  ⎜   the  terms  t   in  T(F)  such that    G(t)  ⎜ =  ϕ    

 
 It gives  a  fixed-parameter  linear  model-checking  algorithm  for  

input  t, and  

  a  fixed-parameter  cubic  one  if  the  term  t  defining the  input  graph  

must  be constructed.  (This  construction  is  similar  to  the  parsing  step  in 

compilation). 
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  4.  Practical   difficulties   and  (some)  remedies. 
 

1. Parsing :  Checking  if  a  graph  has  clique-width <  k  is  NP-

complete  (with k  in  the  input ; Fellows  et  al.).  

    The  cubic  approximate  parsing  algorithm  (by  Oum et al.)  based   

       on  rank-width   is difficult  to  implement. 

 

     The situation  is  similar  if  tree-decompositions  and  tree-width  

       are  used  instead  of  “clique-width”  terms. 
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2.       Sizes   of   automata : 

 The  number  of  states  of  A(ϕ, k)   is  bounded  by  an  h-iterated  

exponential  where  h  is  the  number  of  quantifier alternations  of  ϕ  

(because  ∃  introduces  nondeterminism and  each  negation  needs  a 

determinization  that  can  produce  2n states  for an automaton with n states.)  
 

 There  is  no  alternative  construction  giving  a  fixed bound  on  

nestings  of  exponentiations   (Meyer & Stockmeyer, Frick & Grohe). 

 

    The  construction  by  induction  on  the  structure  of  ϕ  may  need  

intermediate  automata  of  huge  size,  even  if   the  unique   minimal  

deterministic   automaton  equivalent   to   A(ϕ ,k)   has  a  manageable  

number of  states. 
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Soguet  et  al.  using   MONA  have constructed  automata   for   the 

following  cases ;  no success  for  clique-width  4  : 
 

 

       Clique-width 2      Clique-width  3  

  MaxDegree<3    91   states     Space-Out 

  Connected       11   states              Space-Out 

  IsConnComp(X)       48   states                 Space-Out 

  Has<4-VertCov  111 states    1037    states 

  HasClique > 4         21 states    153      states 

  2-colorable               11   states     57       states 
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One  can  avoid  the  inductive construction  and  construct   “directly”  

deterministic  automata  for  basic  properties : NoEdge, Connected, Cycle 
  

  Property  Partition 
(X1,…,Xp) 

edg(X,Y) NoEdge

  

Connected,

Cycle 
for degree <p

Path(X,Y) Connected, 

Cycle 

Number  of
states 
N(k) 

 

2 

 

k2+k+3

 

2k 

 

2O(p.k.k) 

 

2O(k.k) 

O(k) 
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 Examples   of   automata   too   large   to   be   constructed,  i.e.,  “compiled”: 

 for k  = 2 :  4-colorability, 3-acyclic-colorability, Cycle  (i.e., has cycles).  

 for  k = 4 :   connectedness,      for  k = 5 :   3-colorability, clique.            k/2 
 The  minimal  deterministic  automaton  for  Conn(X) has  more  than 2 2 
 states.  
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An  issue  : Fly-automata  
  

 States  and  transitions  are  not  listed  in  huge  tables :    

 they  are  specified  (in uniform ways for all  k) by  “small”  programs. 
  

 Example  of  a  state  for  connectedness : 

  q = { {a}, {a,b}, {b,c,d}, {b,d,f} },                    

  a,b,c,d,f  are  vertex labels; q  is  the  set  of  types  of  the  connected 

  components  of  the  current  graph.  (type(H)  =  set of labels of its vertices) 

 Some  transitions :               

  Adda,c :    q            { {a,b,c,d}, {b,d,f } },                    

  Relaba       b: q            { {b}, {b,c,d}, {b,d,f } }   

  Transitions   for   ⊕ :  union  of  sets  of  types.  
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 Using  fly  automata  works  for  formulas  with  no  (or  few)  quantifier  

alternation   that  use  “new”  atomic   formulas   for  “basic”  properties 
 

 Examples :  p-acyclic  colorability   
 

 ∃ X1,…,Xp (Partition(X1,…,Xp)  ∧  NoEdge(X1)  ∧ ..... ∧  NoEdge(Xp)  ∧ ... 

   ...... ∧  NoCycle(Xi ∪ Xj)  ∧ ...)      
      (all  i < j ; set terms Xi ∪ Xj  avoid  some  quantifications). 

  

Minor  inclusion : H  simple, loop-free.  Vertices(H)  =  { v1,…,vp }  
 

 ∃X1,…,Xp (Disjoint(X1,…,Xp)  ∧  Conn(X1)  ∧ ... ∧  Conn(Xp)  ∧ ... 
   ...  ∧  Link(Xi , Xj)  ∧ ...  ) 
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Some   experiments,  by  Irène  Durand. 
 
 3-colorability  of  the  6 x 7  grid  (of  clique-width  8)  in  7 minutes, 

  of  the  6 x 33  grid  (of  clique-width  8)  in  10  minutes. 
 

 3-colorability  of  the  Petersen  graph  (clique-width 7)  in  1.1 second,   

 its  4-acyclic-colorability  in  4  minutes (*). 
 

 (3-colorable  but  not  acyclically;  

 red  and  green  vertices  

 induce  a  cycle). 

 
 (*)  For  a  term  with  annotations   
 (a kind of preprocessing). 
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The  McGee  graph 
 
24  vertices,  

36   edges, 

clique-width  < 10. 

 
 
 
 
 
 
 
 
 
 
3-colorability  in  7 minutes, 
 
3-AC-colorability  in  21  hours (11 hours with annotated term).   
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5. Conclusion  
 

  1.  Using  automata  for  model-checking  of  MS  sentences  on  

graphs  of  bounded  tree-width  or  clique-width  is  not  hopeless  if  we 

use fly-automata, built  from  (possibly  non-deterministic)  “small”  

automata  for  basic  graph  properties  (and their  negations), and  for  

sentences  with  no  (or  few)  quantifier alternation.   
 

  2.  More  tests  on  significant  examples  are  necessary,  and also  

comparison  (theory  and  practice)  with  other  approaches : games,  

monadic  Datalog,  specific  problems,  “Boolean  width”. 
 

  3. One can  adapt  fly-automata  to  counting  and  optimization  

problems.  However, this extension should be tested.  
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Bonus  :  Bounded tree-width. 
 
 If  we replace  a  graph  G  by  its  incidence graph inc(G) (where 

each edge  of  G becomes a vertex), then, monadic second-order  

formulas interpreted over  inc(G)  can  use quantifications on sets of 

edges. They  have  more expressive  power. 

 

 Model-checking  with  finite  automata  can  be done  for  graphs 

of  bounded  tree-width  for  such  formulas. 

 

 Tree-width  is  well-known.  Below  we show its algebraic 

expression by means of appropriate  graph operations. 
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 Graph  operations  that  characterize   tree-width 
 

 

Graphs have  distinguished vertices  called sources, (or terminals or boundary 

vertices) pointed  to  by  source  labels  from  a  finite set  :    {a, b, c,  ..., d}. 
 

Binary operation(s)  : Parallel  composition 
G // H   is  the  disjoint  union of  G  and  H  and sources  with  same  label  are   

fused.  
 

(If  G  and  H  are  not  

disjoint,  we  use  

a  copy  of  H 

disjoint  from  G). 
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Unary operations   :     

 Forget   a   source   label  
     

    Forgeta(G)  is  G  without  a-source:  the  source  is  no  longer  distinguished  

(it  is  made  "internal"). 

       Source renaming : 
 

Rena      b(G)  exchanges  source  labels  a  and b     

(replaces  a  by  b   if  b  is not  the label of any source) 
 

Nullary operations  denote  basic graphs  : 1-edge  graphs,  isolated  vertices. 
 

Terms  over  these  operations  denote  graphs  (with or without sources)  that can  

have  parallel  edges. 
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Example : Trees  

Constructed  with  two  source  labels, r  (root)  and   n  (new root).  

Fusion   of   two   trees   

at  their  roots  :  

 

 

 

 

 

 

 

 

 

Trees  are  defined  by :    T =  T // T  ∪  extension(T)  ∪  r  

 

Extension of a tree by parallel composition 

with a new edge,  forgetting the old root, 

making   the "new root"  as  current  root : 

e  =  r  •_________•  n 

Renn         r  (Forgetr (G // e ))  
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Relation   to   tree-decompositions   and    tree-width 

 

 

                                                  Tree   T 

 

         Graph  G                                                                                 Tree-decomposition  

                   (T,f)   of   G  

Dotted  lines  - - - -   link  copies  of  a  same  vertex.  

Width  = max. size  of  a  box  -1.      Tree-width    =  min.  width  of   a  tree-dec. 
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Proposition:    A  graph  has   tree-width  ≤  k    ⇔   it  can  be  constructed   from  

edges   by   using   the  operations  // , Rena     b  and  Forgeta   with  ≤  k+1  

labels  a,b,….   

 

Proposition :   Bounded   tree-width   implies   bounded   clique-width  

        (cwd(G) < 22twd(G)+1  for   G   directed), but   not   conversely. 
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From  an  algebraic  expression  to  a   tree-decomposition 

Example : cd // Rena       c (ab // Forgetb(ab // bc))            (ab  denotes  an edge from  a   to  b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                         The   tree-decomposition  associated  with  this  term. 


