

The verification of monadic second-order

properties of structured graphs

Bruno Courcelle

Université Bordeaux 1, LaBRI & Institut Universitaire de France

 2

References:

B.C. and J. Engelfriet : Graph structure and monadic second-order

logic, book published by Cambridge University Press, June 2012.

B.C. and I. Durand: Fly-automata, their properties and applications,
16th CIAA, 2011, LNCS 6807, pp. 264 – 272.

 Full version accepted for publication in J. of Applied Logic

For other references see : http://www.labri.fr/perso/courcell/ActSci.html

 3

 Summary

1. Logic and construction of algorithms ;

 Monadic Second-Order (MSO) logic

2. Graph decompositions, tree-width and clique-width

3. From MSO formulas to automata

4. Practical difficulties and (some) remedies

5. Open problems and conclusion.

 4

1. Logic and construction of algorithms.

 Hard (NP-complete) graph problems :

 3-vertex coloring, vertex cover,

 SATisfiability of a propositional formula (can be

 viewed as a problem about labelled graphs).
These problems have polynomial-time algorithms for graphs of

particular classes.

Our objective : Meta-theorems giving algorithms for classes

of structured graphs and classes of logically defined

problems.

 5

Logical expression of graph properties

Graphs as logical structures:
 Let G be directed or undirected, and simple (no parallel edges).

G = (VG , edgG(.,.)) with edgG(u,v) ⇔ there is an edge u v (or u – v).

Logical languages : First-order logic

Examples : 1. Every vertex has an outgoing edge: ∀u ∃ v edg(u,v)

2. G undirected has diameter at most k : here for k = 2 :
 ∀u, v (v ≠ u ⇒ edg(u,v) ∨ ∃ w [edg(u,w) ∧ edg(w,v)]).

FO logic expresses only local properties (in a precise technical sense).

 6

Monadic second-order logic

 = First-order logic on power-set structures

 = First-order logic extended with (quantified) set variables

denoting subsets of the domains.

For graphs, set variables denote sets of vertices.

 (“A set of edges of G ” is here a binary relation over VG).

MSO (expressible) properties : k-colorability, transitive closure,

properties of paths, connectivity, planarity (via Kuratowski)

 7

Examples for G = (VG , edgG(.,.)), undirected

Syntax is clear; shorthands are used, example : X ∩ Y = ∅ .

(1) G is 3-colorable :

∃X,Y (X ∩ Y = ∅ ∧
 ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧
 (u ∉ X ∪ Y ⇒ v ∈ X ∪ Y)]
 })

(2) G is not connected :

∃ Z (∃x ∈ Z ∧ ∃y ∉ Z ∧ (∀u,v (u ∈ Z ∧ edg(u,v) ⇒ v ∈ Z))

 8

(3) Transitive and reflexive closure : TC(R ; x, y) :

 ∀ X { “X is R-closed” ∧ x ∈ X ⇒ y ∈ X }

 where “X is R-closed” is :
 ∀u,v (u ∈ X ∧ R(u,v) ⇒ v ∈ X)

The relation R can be defined by a formula as in :

∀x,y (x ∈ Y ∧ y ∈ Y ⇒ TC(“u ∈ Y ∧ v ∈ Y ∧ edg(u,v)” ; x, y)

(where Y is free) to expressing that G[Y] is connected.

(4) Minors : G contains a fixed graph H as a minor with VH = {1,…,p} :

 there exist disjoint sets of vertices X1,…, Xp in G

 such that each G[Xi] is connected and,

 whenever i – j in H, there is an edge between Xi and Xj.

 9

(5) Planarity is expressible : no minor K5 or K3,3 (Kuratowski - Wagner).

(6) Has a cycle (for G without loops) :

 ∃x,y,z [edg(x,y) ∧ edg(y,z) ∧ “there is a path from x to z avoiding y”]

(7) Is a tree : connected without cycles.

(Provably) non-expressible properties

G is isomorphic to Kp,p for some p (not fixed; needs equal cardinalities of

two sets, hence quantification over binary relations to find a bijection).

G has all vertices of same degree.

 10

Two problems for a class C of finite graphs and a logic:

Decidability? : Does a given sentence hold in some (or all) graphs of C ?

Model-checking (decidable) : Its time/space complexity ?

Language, class Decidability Model-checking

FO, all graphs Undecidable Polynomial-time

MSO, clique-width < k Decidable Cubic-time

MSO, unbdd cwd. Undecidable Conjecture : not FPT

Clique-width (cwd) is a graph parameter defined below.

FPT means here : takes time f(k).nc where k = cwd of input graph and

f(.) and c are fixed, depending on the property to check.

 11

Model-checking problems

The 3-Coloring problem is NP-complete and MSO-expressible.

It is NP-complete for (even planar) graphs of degree < 4 (Dailey, 1980).

Hence the degree is not a good parameter for obtaining an FPT

algorithm.

Tree-width and clique-width are good in this respect, and even for all

MSO properties.

 Both parameters are based on hierchical decompositions.

 12

2. Graph decompositions : tree-width and clique-width.

Hierarchical graph decompositions :

 many notions;
 all of them represent a graph as a tree of smaller components.

They are useful :

 as preprocessings in algorithms,

 for study of graph structure (modular decomposition for

comparability graphs, tree-decompositions for the Graph Minor Theorem),

 for graph grammars.

Here: formalized by terms over “graph concatenations”.

 graphs in an algebraic setting,
 linear notation for graphs,

 13

Example 1: Directed series-parallel graphs (tree-width 2 ; trees have tree-width 1)

Graphs with distinguished vertices marked 1 and 2, generated from

e = 1 2 by the operations of parallel-composition // and series-composition •

 ((e // e) • e) // (e • e)

 The defining equation is S = S // S ∪ S • S ∪ { e }

 14

Example 2 : Cographs (clique-width 2 ; trees have clique-width < 3)

Undirected graphs generated by ⊕, disjoint union and ⊗, complete join

from a, a vertex without edges (up to isomorphism); ⊗ is defined by :

G ⊗ H = G ⊕ H with “all possible” undirected edges between G and H,

Cographs are recursively defined by : C = C ⊕ C ∪ C ⊗ C ∪ { a }

Example :

(a ⊗ a ⊗ a) ⊗ ((a ⊗ a) ⊕ a)

 15

Definition : Clique-width

More powerful than tree-width ; the construction of automata is easier.

Graphs are simple, directed or not.

We use labels: a, b, c, ..., d. Each vertex has one label ; several vertices

may have the same label. A vertex labelled by a is an a-port

One binary operation : disjoint union : ⊕

Remark : If G and H are not disjoint, we replace H by an isomorphic disjoint

copy to define G ⊕ H. Hence G ⊕ H is well-defined up to isomorphism. No

such problem in a “decomposition approach”.

 16

Unary operations: Edge-addition denoted by Adda,b

Addition of undirected edges: Adda,b(G) is G augmented with edges

between every a-port and every b-port.

 H = Adda,b(G) ; only 5 edges added

The number of added edges depends on the argument graph.

 17

Addition of directed edges: Adda,b(G) is G augmented with edges from

every a-port to every b-port.

Vertex relabellings :
Relaba b(G) = G with every vertex labelled by a relabelled into b

Basic graphs : those with a single labelled vertex.

Definition: A graph G has clique-width ≤ k ⇔ it can be constructed

from basic graphs with the operations ⊕, Adda,b (or Adda,b) and

Relaba b by using < k labels. Its clique-width cwd(G) is the

smallest such k

 18

 Example : Cliques have cwd 2 (and unbounded tree-width)

Kn is defined by tn where tn+1 = Relabb a(Adda,b(tn ⊕ b))

Cliques are defined by the equation :

K = Relabb a(Adda,b(K ⊕ b)) ∪ a

 19

Examples of bounded clique-width:

 An undirected graph is a cograph ⇔ it has clique-width at most 2.

 Trees and distance hereditary graphs have clique-width at most 3.

 Tree-width < k implies clique-width < f(k).

Examples of unbounded clique-width:

 Planar graphs (even of maximum degree 3),

 Interval graphs.

Fact : Clique-width is sensible to edge directions :

 Cliques have clique-width 2 but tournaments have unbounded clique-width.

 20

 3. From MSO formulas to automata

 k ϕ (MSO formula)

 Automaton Constructor

 Yes

G Graph Analyzer t A(ϕ, k)

 No

 Error : wd(G) > k

Steps are done “once for all”, independently of G

A(ϕ,k): finite automaton on terms t
wd = tree-width or clique-width or equivalent,
 (Tree-decompositions also have algebraic expressions).

 21

 Finite automata on terms

Example : Integer / real type of an

arithmetic expression

Bottom-up computation of i / r / Error type using the rules above.

 22

Construction of automaton A(ϕ, k) for “clique-width” terms

k = the number of vertex labels = the bound on clique-width

F = the corresponding set of operations and constants :

 a , ⊕ , Adda,b , Adda,b , Relab a b

G(t) = the graph defined by a term t in T(F). Its vertices are (in

bijection with) the occurrences of the nullary symbols in t .

 By induction on the structure of ϕ, one constructs a finite

(bottom-up) deterministic automaton A(ϕ, k) that recognizes:

{ t ∈ T(F) / G(t) ⎜ = ϕ }

 23

Theorem : For each sentence ϕ, the automaton A(ϕ, k) accepts

in time f(ϕ, k). ⎜ t ⎜ the terms t in T(F) such that G(t) ⎜ = ϕ

 It gives a fixed-parameter linear model-checking algorithm for

input t, and

 a fixed-parameter cubic one if the term t defining the input graph

must be constructed. (This construction is similar to the parsing step in

compilation).

 24

 4. Practical difficulties and (some) remedies.

1. Parsing : Checking if a graph has clique-width < k is NP-

complete (with k in the input ; Fellows et al.).

 The cubic approximate parsing algorithm (by Oum et al.) based

 on rank-width is difficult to implement.

 The situation is similar if tree-decompositions and tree-width

 are used instead of “clique-width” terms.

 25

2. Sizes of automata :

 The number of states of A(ϕ, k) is bounded by an h-iterated

exponential where h is the number of quantifier alternations of ϕ

(because ∃ introduces nondeterminism and each negation needs a

determinization that can produce 2n states for an automaton with n states.)

 There is no alternative construction giving a fixed bound on

nestings of exponentiations (Meyer & Stockmeyer, Frick & Grohe).

 The construction by induction on the structure of ϕ may need

intermediate automata of huge size, even if the unique minimal

deterministic automaton equivalent to A(ϕ ,k) has a manageable

number of states.

 26

Soguet et al. using MONA have constructed automata for the

following cases ; no success for clique-width 4 :

 Clique-width 2 Clique-width 3

 MaxDegree<3 91 states Space-Out

 Connected 11 states Space-Out

 IsConnComp(X) 48 states Space-Out

 Has<4-VertCov 111 states 1037 states

 HasClique > 4 21 states 153 states

 2-colorable 11 states 57 states

 27

One can avoid the inductive construction and construct “directly”

deterministic automata for basic properties : NoEdge, Connected, Cycle

 Property Partition
(X1,…,Xp)

edg(X,Y) NoEdge

Connected,

Cycle
for degree <p

Path(X,Y) Connected,

Cycle

Number of
states
N(k)

2

k2+k+3

2k

2O(p.k.k)

2O(k.k)

O(k)

 22

 Examples of automata too large to be constructed, i.e., “compiled”:

 for k = 2 : 4-colorability, 3-acyclic-colorability, Cycle (i.e., has cycles).

 for k = 4 : connectedness, for k = 5 : 3-colorability, clique. k/2
 The minimal deterministic automaton for Conn(X) has more than 2 2
 states.

 28

An issue : Fly-automata

 States and transitions are not listed in huge tables :

 they are specified (in uniform ways for all k) by “small” programs.

 Example of a state for connectedness :

 q = { {a}, {a,b}, {b,c,d}, {b,d,f} },

 a,b,c,d,f are vertex labels; q is the set of types of the connected

 components of the current graph. (type(H) = set of labels of its vertices)

 Some transitions :

 Adda,c : q { {a,b,c,d}, {b,d,f } },

 Relaba b: q { {b}, {b,c,d}, {b,d,f } }

 Transitions for ⊕ : union of sets of types.

 29

 Using fly automata works for formulas with no (or few) quantifier

alternation that use “new” atomic formulas for “basic” properties

 Examples : p-acyclic colorability

 ∃ X1,…,Xp (Partition(X1,…,Xp) ∧ NoEdge(X1) ∧ ∧ NoEdge(Xp) ∧ ...

 ∧ NoCycle(Xi ∪ Xj) ∧ ...)
 (all i < j ; set terms Xi ∪ Xj avoid some quantifications).

Minor inclusion : H simple, loop-free. Vertices(H) = { v1,…,vp }

 ∃X1,…,Xp (Disjoint(X1,…,Xp) ∧ Conn(X1) ∧ ... ∧ Conn(Xp) ∧ ...
 ... ∧ Link(Xi , Xj) ∧ ...)

 30

Some experiments, by Irène Durand.

 3-colorability of the 6 x 7 grid (of clique-width 8) in 7 minutes,

 of the 6 x 33 grid (of clique-width 8) in 10 minutes.

 3-colorability of the Petersen graph (clique-width 7) in 1.1 second,

 its 4-acyclic-colorability in 4 minutes (*).

 (3-colorable but not acyclically;

 red and green vertices

 induce a cycle).

 (*) For a term with annotations
 (a kind of preprocessing).

 31

The McGee graph

24 vertices,

36 edges,

clique-width < 10.

3-colorability in 7 minutes,

3-AC-colorability in 21 hours (11 hours with annotated term).

 32

5. Conclusion

 1. Using automata for model-checking of MS sentences on

graphs of bounded tree-width or clique-width is not hopeless if we

use fly-automata, built from (possibly non-deterministic) “small”

automata for basic graph properties (and their negations), and for

sentences with no (or few) quantifier alternation.

 2. More tests on significant examples are necessary, and also

comparison (theory and practice) with other approaches : games,

monadic Datalog, specific problems, “Boolean width”.

 3. One can adapt fly-automata to counting and optimization

problems. However, this extension should be tested.

 33

Bonus : Bounded tree-width.

 If we replace a graph G by its incidence graph inc(G) (where

each edge of G becomes a vertex), then, monadic second-order

formulas interpreted over inc(G) can use quantifications on sets of

edges. They have more expressive power.

 Model-checking with finite automata can be done for graphs

of bounded tree-width for such formulas.

 Tree-width is well-known. Below we show its algebraic

expression by means of appropriate graph operations.

 34

 Graph operations that characterize tree-width

Graphs have distinguished vertices called sources, (or terminals or boundary

vertices) pointed to by source labels from a finite set : {a, b, c, ..., d}.

Binary operation(s) : Parallel composition
G // H is the disjoint union of G and H and sources with same label are

fused.

(If G and H are not

disjoint, we use

a copy of H

disjoint from G).

 35

Unary operations :

 Forget a source label

 Forgeta(G) is G without a-source: the source is no longer distinguished

(it is made "internal").

 Source renaming :

Rena b(G) exchanges source labels a and b

(replaces a by b if b is not the label of any source)

Nullary operations denote basic graphs : 1-edge graphs, isolated vertices.

Terms over these operations denote graphs (with or without sources) that can

have parallel edges.

 36

Example : Trees

Constructed with two source labels, r (root) and n (new root).

Fusion of two trees

at their roots :

Trees are defined by : T = T // T ∪ extension(T) ∪ r

Extension of a tree by parallel composition

with a new edge, forgetting the old root,

making the "new root" as current root :

e = r •_________• n

Renn r (Forgetr (G // e))

 37

Relation to tree-decompositions and tree-width

 Tree T

 Graph G Tree-decomposition

 (T,f) of G

Dotted lines - - - - link copies of a same vertex.

Width = max. size of a box -1. Tree-width = min. width of a tree-dec.

 38

Proposition: A graph has tree-width ≤ k ⇔ it can be constructed from

edges by using the operations // , Rena b and Forgeta with ≤ k+1

labels a,b,….

Proposition : Bounded tree-width implies bounded clique-width

 (cwd(G) < 22twd(G)+1 for G directed), but not conversely.

 39

From an algebraic expression to a tree-decomposition

Example : cd // Rena c (ab // Forgetb(ab // bc)) (ab denotes an edge from a to b)

 The tree-decomposition associated with this term.

