La vérification de propriétés de graphes exprimées en logique du second-ordre monadique.

Verification of monadic second-order graph properties

Bruno Courcelle

Université Bordeaux 1, LaBRI \& Institut Universitaire de France

References:

B.C. and J. Engelfriet: Graph structure and monadic second-order logic, book to be published by Cambridge University Press, May 2012.
B.C. and I. Durand: Fly-automata, their properties and applications, $16^{\text {th }}$ CIAA, 2011, LNCS 6807, pp. $264-272$.

All are readable on : http://www.labri.fr/perso/courcell/ActSci.html

Summary

1. Monadic Second-Order (MSO) logic
2. Graph decompositions, tree-width and clique-width
3. From MSO formulas to automata
4. Practical difficulties and (some) remedies
5. Tree-width and MSO formulas with edge quantifications
6. Open problems and conclusion.

Two ways of considering graphs

A graph (finite, up to isomorphism) is an algebraic object, an element of an algebra of graphs
(similar to words, elements of monoids)

A graph is a logical structure; graph properties can be expressed by logical formulas (FO = first-order, MSO = monadic second-order)

Consequences:
a) Language Theory concepts extend to graphs
b) Algorithmic meta-theorems

An overview chart

1. Monadic Second-Order (MSO) Logic

Graphs as logical structures: G is directed or undirected, and simple
$G=\left(V_{G}\right.$, edg $\left.g_{G}(.,).\right)$ with $\operatorname{edg}_{G}(u, v) \Leftrightarrow$ there is an edge $u \rightarrow v(o r u-v)$.
We cannot write an equality if G is not simple. Graphs with multiple edges will be considered later.

Monadic second-order logic
= First-order logic on power-set structures
= First-order logic extended with (quantified) set variables denoting subsets of the domains.
For graphs, set variables denote sets of vertices.
("An arbitrary set of edges" is here a binary relation over V_{G}).

MSO (expressible) properties: k-colorability, transitive closure, properties of paths, connectivity, planarity

Examples for $G=\left(\mathrm{V}_{\mathrm{G}}\right.$, edg $\left._{\mathrm{G}}(.,).\right)$, undirected
Syntax is clear; shorthands are used (example $X \cap Y=\varnothing$).
(1) G is 3 -colorable :

$$
\begin{aligned}
& \exists X, Y(X \cap Y=\varnothing \wedge \\
& \forall u, v\{\operatorname{edg}(u, v) \Rightarrow \\
& \quad[(u \in X \Rightarrow v \notin X) \wedge(u \in Y \Rightarrow v \notin Y) \wedge \\
& (u \notin X \cup Y \Rightarrow v \in X \cup Y)]
\end{aligned}
$$

(2) G is not connected:
$\exists Z(\exists x \in Z \wedge \exists y \notin Z \wedge(\forall u, v(u \in Z \wedge \operatorname{edg}(u, v) \Rightarrow v \in Z))$
(3) Transitive and reflexive closure : $\mathrm{TC}(\mathrm{R} ; \mathrm{x}, \mathrm{y})$:
$\forall X\{$ " X is R-closed" $\wedge x \in X \Rightarrow y \in X\}$
where " X is R-closed" is defined by:
$\forall u, v(u \in X \wedge R(u, v) \Rightarrow v \in X)$
The relation R can be defined by a formula as in (where Y is free) :
$\forall x, y(x \in Y \wedge y \in Y \Rightarrow T C(" u \in Y \wedge v \in Y \wedge \operatorname{edg}(u, v)$ " $; x, y)$
expressing Conn (Y) i.e. that $\mathrm{G}[\mathrm{Y}]$ is connected.
(4) Minors: G contains a fixed graph H as a minor with $\mathrm{V}_{\mathrm{H}}=\{1, \ldots, \mathrm{p}\}$: there exist disjoint sets of vertices X_{1}, \ldots, X_{p} in G such that each $G\left[X_{i}\right]$ is connected and, whenever $\mathrm{i}-\mathrm{j}$ in H , there is an edge between X_{i} and X_{j}.
(5) Planarity is expressible : no minor K_{5} or $\mathrm{K}_{3,3}$ (Kuratowski-Wagner).
(6) Has a cycle (for G without loops):
$\exists x, y, z[e d g(x, y) \wedge e d g(y, z) \wedge$ "there is a path from x to z avoiding $y "]$
(7) Is a tree: connected without cycles.

Provably non-expressible properties

- G is isomorphic to $K_{p, p}$ for some p (not fixed; needs equal cardinalities of two sets, hence quantification over binary relations to find a bijection).
- G has a nontrivial automorphism, or has all vertices of same degree.
- $\operatorname{Card}(X)$ is a multiple of p. (But this is possible if the graph is linearly ordered or if some linear order is definable by an MSO formula).

Definition: Adding these cardinality set predicates to MSO logic gives Counting Monadic Second-Order (CMSO) logic: all good properties of MSO logic hold for it.
(Adding an equicardinality set predicate would spoil everything.)

Exercises

1) Write an MSO-formula expressing that a simple directed graph a rooted tree.
2) Write an MSO-formula with free variables x, y, z expressing that, in a tree (undirected and unrooted), if one takes x as root, then y is an ancestor of z.
3) A nonempty word over alphabet $\{a, b\}$ can be considered as a directed path given with unary relations $\mathrm{lab}_{\mathrm{a}}$ and $\mathrm{lab}_{\mathrm{b}}$ representing the sets of occurrences of letters a and b. Prove that every regular language over $\{a, b\}$ is MS-definable.
4) A complete bipartite graph $K_{n, m}$ has a Hamiltonian cycle iff $n=m$. Construct such a graph "over" any word in $\{a, b\}^{+}$having at least one a and at least one b. (It follows that Hamiltonicty is not MS-expressible because the converse of 3) holds).
5) Write an MSO-formula expressing acyclic p-colorability : every two colors induce a forest.

Two problems for a class C of finite graphs and a logic:
Decidability? : Does a given sentence hold in some (or all) graphs of C ?
Model-checking (decidable): Its time/space complexity ?

Language, class	Decidability	Model-checking
FO, all graphs	Undecidable	Polynomial-time
CMSO, clique-width $<\mathrm{k}$	Decidable	Cubic-time
CMSO, unbdd cwd.	Undecidable	Conjecture : not FPT (*)

(*) A related fact is proved by S. Kreutzer (LICS 2010) for unbounded treewidth and MSO formulas with edge quantifications.
(The exact statement is very technical.)

Model-checking problems

The 3-Coloring problem is NP-complete and MSO-expressible.

Fixed-Parameter Tractability (FPT) :

Definitions: (1) An algorithm taking time $f(k) . n^{C}$ for some fixed function f and constant c is FPT.

The value k is a parameter: degree, diameter, tree-width, clique-width, etc. The "hard part" of the time complexity depends on some function f (arbitrary in the definition; in practice, it must be "limited") whereas the size of the input is n. So, the "main factor" is polynomial.
(2) An algorithm is in the class $X P$ if it takes time $O\left(n^{g(k)}\right)$.

It takes polynomial time for fixed k , with a degree depending on k .

3-colorability again :

It is NP-complete for (even planar) graphs of degree ≤ 4 (Dailey, 1980) Hence the degree is not a good parameter.

Tree-width is good because the time complexity is $O\left(\left(2^{32 . k . k . k}+3^{k}\right)\right.$.n $)$. (The term $2^{32 . \text { k.k.k }}$ is for constructing a tree-decomposition).

For MSO properties the good parameters are tree-width and clique-width: both are based on hierchical decompositions.
2. Graph decompositions : tree-width and clique-width.

Example 1: Directed series-parallel graphs (tree-width 2 ; trees have tree-width 1)
Graphs with distinguished vertices marked 1 and 2, generated from $\mathrm{e}=1 \rightarrow 2$ by the operations of parallel-composition // and series-composition •

$G \cdot H$

((e // e) •e) // (e •e)

The defining equation is $S=S / / S \cup S \bullet S \cup\{e\}$

Example 2: Cographs (clique-width 2 ; trees have clique-width ≤ 3)
Undirected graphs generated by \oplus, disjoint union and \otimes, complete join from a, a vertex without edges (up to isomorphism); \otimes is defined by:
$G \otimes H=G \oplus H$ with "all possible" undirected edges between G and H,

Cographs are recursively defined by: $C=C \oplus C \cup C \otimes C \cup\{a\}$
Example :
$(a \otimes a \otimes a) \otimes((a \otimes a) \oplus a)$

Definition: Clique-width

More powerful than tree-width ; the construction of automata is easier.

Graphs are simple, directed or not.

We use labels: a, b, c, \ldots, d. Each vertex has one and only one label; several vertices may have the same label. We call x labelled by a an a-port

One binary operation: disjoint union : \oplus

Remark: If G and H are not disjoint, we replace H by an isomorphic disjoint copy to define $\mathrm{G} \oplus \mathrm{H}$. Hence $\mathrm{G} \oplus \mathrm{H}$ is well-defined up to isomorphism. No such problem in a "decomposition approach".

Unary operations: Edge-addition denoted by Add $_{a, b}$
Addition of undirected edges: $A d d_{a, b}(\mathrm{G})$ is G augmented with edges between every a-port and every b-port.

$$
\mathrm{H}=\operatorname{Add}^{2}, \mathrm{~b}(\mathrm{G}) \text {; only } 5 \text { edges added }
$$

The number of added edges depends on the argument graph.

Addition of directed edges: $\overrightarrow{\operatorname{Adda}, b}(\mathrm{G})$ is G augmented with edges from every a-port to every b-port.

Vertex relabellings:

$$
\text { Relaba } \longrightarrow b(G)=G \text { with every vertex labelled by a relabelled into } b
$$

Basic graphs: those with a single vertex.

Definition: A graph G has clique-width $\leq k \Leftrightarrow$ it can be constructed from basic graphs with the operations $\oplus, A d d a, b$ (or $\overrightarrow{A d d} a, b$) and Relaba $\longrightarrow b$ by using $\leq k$ labels. Its clique-width $\operatorname{cwd}(\mathrm{G})$ is the smallest such k

Example : Cliques have clique-width 2 (and unbounded tree-width)

K_{n} is defined by $\mathrm{t}_{\mathbf{n}}$ where $\mathrm{t}_{\mathrm{n}+\mathbf{1}}=$ Relabb $\longrightarrow a\left(\right.$ Adda, $\left.b\left(\mathrm{t}_{\mathbf{n}} \oplus \mathbf{b}\right)\right)$

Cliques are defined by the equation:

$$
\mathrm{K}=\text { Relabb } \longrightarrow a(\text { Adda, } b(\mathrm{~K} \oplus \mathbf{b})) \cup \mathbf{a}
$$

Examples of bounded clique-width:

An undirected graph is a cograph \Leftrightarrow it has clique-width at most 2. Distance hereditary graphs have clique-width at most 3.

Examples of unbounded clique-width:
Planar graphs (even of degree 3),
Interval graphs.

Fact: Unlike tree-width, clique-width is sensible to edge directions:
Cliques have clique-width 2 but tournaments have unbounded clique-width.

Exercises

1) Write optimal terms that define grids.
$\left(\operatorname{cwd}\left(G_{n \times n}\right)=n+1 ; m+1 \leq \operatorname{cwd}\left(G_{n \times m}\right) \leq m+2\right.$ if $n>m$, by Golumbic \& Rotics).
2) Give an upper bound to the clique-width of a graph whose biconnected components have clique-width at most k .
3) Give an upper bound to the clique-width of a series-parallel graph.
3. From MSO formulas to automata

Steps \longrightarrow are done "once for all", independently of G
$\mathrm{A}(\varphi, \mathrm{k})$: finite automaton on terms t
wd = tree-width or clique-width or equivalent,
Tree-decompositions also have algebraic expressions.
$\mathrm{k}=$ the number of vertex labels $=$ the bound on clique-width

F = the corresponding set of operations and constants:

$$
\mathrm{a}, \varnothing, \oplus, \text { Adda }^{2} b, \overrightarrow{A d d_{a}, b}, \text { Relab } a \longrightarrow b
$$

$\mathrm{G}(t)=$ the graph defined by a term t in $\mathrm{T}(\mathrm{F})$.

Its vertices are (in bijection with) the occurrences of the constants (the nullary symbols) in t that are not \varnothing

Example

Terms are equipped with Booleans that encode assignments of vertex sets $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$ to the free set variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ of MSO formulas (formulas are written without first-order variables):

1) we replace in F each constant a by the constants
(a, $\left.\left(w_{1}, \ldots, w_{n}\right)\right)$ where $w_{i} \in\{0,1\}$: we get $F^{(n)}$
(only constants are modified);
2) a term s in $\mathbf{T}\left(F^{(n)}\right)$ encodes a term t in $\mathbf{T}(F)$ and an assignment of sets $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$ to the set variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$:
if u is an occurrence of $\left(a,\left(w_{1}, . ., w_{n}\right)\right)$, then
$w_{i}=1$ if and only if $u \in V_{i}$.
3) s is denoted by $t *\left(V_{1}, \ldots, V_{n}\right)$

By an induction on φ, we construct for each $\varphi\left(X_{1}, \ldots, X_{n}\right)$ a finite (bottom-up) deterministic automaton $\mathrm{A}\left(\varphi\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right), k\right)$ that recognizes:

$$
\mathrm{L}\left(\varphi\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)\right):=\left\{t *\left(\mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right) \in \mathbf{T}\left(\mathrm{F}^{(\mathrm{n})}\right) /\left(\mathrm{G}(t), \mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right) \mid=\varphi\right\}
$$

Theorem: For each sentence φ, the automaton $A(\varphi, k)$ accepts in time $\mathrm{f}(\varphi, \mathrm{k}) .|t|$ the terms t in $\mathbf{T}(\mathrm{F})$ such that $\mathrm{G}(t) \mid=\varphi$

It gives a fixed-parameter linear model-checking algorithm for input t, and a fixed-parameter cubic one if the graph has to be parsed. (The parameter is clique-width; the parsing algorithm is based on results by Oum, Seymour, Hlineny and myself; it uses rank-width, equivalent to clique-width for undirected graphs).

Atomic formulas : discussed below.

For \wedge : product of two automata (deterministic or not)

For \vee : union of two automata (or product of two complete automata; product preserves determinism)

For negation: exchange accepting / non-accepting states for a complete deterministic automaton

Quantifications: Formulas are written without \forall

$$
\begin{aligned}
& L\left(\exists X_{n+1} \cdot \varphi\left(X_{1}, \ldots, X_{n+1}\right)\right)=\operatorname{pr}\left(L\left(\varphi\left(X_{1}, \ldots, X_{n+1}\right)\right)\right. \\
& A\left(\exists X_{n+1} \cdot \varphi\left(X_{1}, \ldots, X_{n+1}\right), k\right)=\operatorname{pr}\left(A\left(\varphi\left(X_{1}, \ldots, X_{n+1}\right), k\right)\right.
\end{aligned}
$$

where pr is the projection that eliminates the last Boolean; \rightarrow a non-deterministic automaton.

Some tools for constructing automata
Substitutions and inverse images (cylindrifications).

1) If we know $A\left(\varphi\left(X_{1}, X_{2}\right), k\right)$, we get $A\left(\varphi\left(X_{4}, X_{3}\right), k\right)$ because :

$$
L\left(\varphi\left(X_{4}, X_{3}\right)\right)=h^{-1}\left(L\left(\varphi\left(X_{1}, X_{2}\right)\right)\right) \quad \text { where }
$$

h maps $\left(a,\left(w_{1}, w_{2}, w_{3}, w_{4}\right)\right)$ to $\left(a,\left(w_{4}, w_{3}\right)\right)$. We take

$$
A\left(\varphi\left(X_{4}, X_{3}\right), k\right)=h^{-1}\left(A\left(\varphi\left(X_{1}, X_{2}\right)\right), k\right)
$$

This construction preserves determinism and the number of states.
2) From $A\left(\varphi\left(X_{1}, X_{2}\right), k\right)$, we get $A\left(\varphi\left(X_{3}, \widehat{\left.\left.X_{1} \cup\left(X_{2} \backslash X_{4}\right)\right), k\right) \text { by } h^{-1} \text { Set term }}\right.\right.$ with h mapping $\left(a,\left(w_{1}, w_{2}, w_{3}, w_{4}\right)\right)$ to $\left(a,\left(w_{3}, w_{1} \vee\left(w_{2} \wedge \neg w_{4}\right)\right)\right)$

Relativization to subsets by inverse images.

If φ is a closed formula expressing a graph property P, its relativization $\varphi\left[\mathrm{X}_{1}\right]$ to X_{1} expresses that the subgraph induced on X_{1} satisfies P. To construct it, we replace recursively

$$
\exists y . \theta \text { by } \exists y . y \in X_{1} \wedge \theta, \text { etc } \ldots
$$

However, there is an easy transformation of automata:

$$
\begin{aligned}
& \text { Let } h \operatorname{map}(a, 0) \text { to } \varnothing \text { and }(a, 1) \text { to } a . \\
& \qquad L\left(\varphi\left[X_{1}\right]\right)=h^{-1}(L(\varphi))
\end{aligned}
$$

Hence:

$$
A\left(\varphi\left[X_{1}\right], k\right):=h^{-1}(A(\varphi), k)
$$

The inductive construction (continued) :
Complete deterministic automata for atomic formulas and basic graph properties: automaton over $F^{(n)}$ recognizing the set of terms

$$
t *\left(\mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right) \text { in } \mathrm{L}\left(\varphi\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)\right)
$$

Intuition: in all cases, the state reached at node u represents a finite information $\mathrm{q}(\mathrm{u})$ about the graph $\mathrm{G}(t / \mathrm{u})$ and the restriction of $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$ to the vertices below $\mathrm{u} \quad$ (vertices = leaves)

1) if $u=f(v, w)$, we want that $q(u)$ is defined from $q(v)$ and $q(w)$ by a fixed function: $\quad \rightarrow$ the transition function;
2) whether $\left(G(t), V_{1}, \ldots, V_{n}\right)$ satisfies $\varphi\left(X_{1}, \ldots, X_{n}\right)$ must be checkable from $\mathrm{q}(r o o t): \quad \rightarrow$ the accepting states.

Atomic and basic formulas :
$X_{1} \subseteq X_{2}, \quad X_{1}=\varnothing, \quad \operatorname{Single}\left(X_{1}\right)$,
$\operatorname{Card}_{\mathrm{p}, \mathrm{q}}\left(\mathrm{X}_{1}\right)$: cardinality of X_{1} is $=\mathrm{p}$ mod. q ,

Card ${ }_{<q}\left(X_{1}\right)$: cardinality of X_{1} is $<q$.
\rightarrow Easy constructions with small numbers of states:
respectively $2,2,3, q, q+1$.

Example : for $\mathrm{X}_{1} \subseteq \mathrm{X}_{2}$, the term must have no constant (a, 10).

Atomic formula : edg $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ for directed edges
edg $\left(X_{1}, X_{2}\right)$ means: $X_{1}=\{x\} \wedge X_{2}=\{y\} \wedge x \longrightarrow y$
Vertex labels belong to a set C of k labels.
$k^{2}+k+3$ states: $0, O k, a(1), a(2)$, $a b$, Error, for a, b in $C, a \neq b$
Meaning of states (at node u in t; its subterm t / u defines $G(t / u) \subseteq G(t)$).
$0 \quad: x_{1}=\varnothing, x_{2}=\varnothing$
Ok Accepting state: $X_{1}=\{v\}, X_{2}=\{w\}$, edg (v, w) in $G(t / u)$
$a(1): X_{1}=\{v\}, X_{2}=\varnothing, v$ has label a in $G(t / u)$
$a(2): X_{1}=\varnothing, X_{2}=\{w\}, w$ has label a in $G(t / u)$
$a b \quad: X_{1}=\{v\}, X_{2}=\{w\}, v$ has label a, w has label b (hence $v \neq w$) and $\neg e d g(v, w)$ in $G(t / u)$
Error : all other cases

Transition rules

For the constants based on a :

$$
(\mathrm{a}, 00) \rightarrow 0 ;(\mathrm{a}, 10) \rightarrow \mathrm{a}(1) ;(\mathrm{a}, 01) \rightarrow \mathrm{a}(2) ;(\mathrm{a}, 11) \rightarrow \text { Error }
$$

For the binary operation \oplus : ($\mathrm{p}, \mathrm{q}, \mathrm{r}$ are states)

If $p=0$ then $r:=q$
If $q=0$ then $r:=p$
If $p=a(1), q=b(2)$ and $a \neq b$ then $r:=a b$
If $p=b(2), q=a(1)$ and $a \neq b$ then $r:=a b$
Otherwise r := Error

For unary operations $\overrightarrow{A d d}_{\mathrm{a}, \mathrm{b}}$ $\underset{p}{A \overrightarrow{d d}_{a, b} \longrightarrow r}$ If $p=a b$ then $r:=$ Ok else $r:=p$

For unary operations Relaba $\longrightarrow \mathrm{b}$

$$
\begin{array}{lr}
\text { If } p=a(i) \text { where } i=1 \text { or } 2 & \text { then } r:=b(i) \\
\text { If } p=a c \text { where } c \neq a \text { and } c \neq b & \text { then } r:=b c \\
\text { If } p=c a \text { where } c \neq a \text { and } c \neq b & \text { then } r:=c b \\
\text { If } p=\text { Error or } 0 \text { or Ok or } c(i) \text { or cd or dc where } c \neq a \\
\text { then } r:=p
\end{array}
$$

4. Practical difficulties and (some) remedies.

Parsing :

Case of clique-width:
Checking if a graph has clique-width $\leq k$ is NP-complete (with k in the input; Fellows et al.)

The cubic approximate parsing algorithm (by Oum et al.) based on rank-width is not (directly) implementable.

Remark: For certain classes of graphs of bounded clique-width defined by forbidden induced subgraphs, optimal clique-width terms can be constructed in polynomial time, by using in many cases, modular decomposition.

Case of tree-width: (bounded tree-width implies bounded clique-width)

Checking if a graph has tree-width $\leq k$ is NP-complete (with k in the input ; Arnborg et al.)

The linear-time exact parsing algorithm by Bodlaender (for tree-width) takes time $\mathrm{O}\left(2^{32 . k . k . k} . \mathrm{n}\right)$. There are usable algorithms for (non-random) graphs with 50 vertices and tree-width ≤ 35 (Bodlaender \& Koster).

Specific algorithms: Flow-graphs of structured programs have tree-width at most 6 and tree-decompositions are easy to get from the parse trees of programs (Thorup).

Sizes of automata:

The number of states of $A(\varphi, \mathrm{k})$ is bounded by an h-iterated exponential where h is the number of quantifier alternations of φ.

There is no alternative construction giving a fixed bound on nestings of exponentiations (Meyer \& Stockmeyer, Weyer, Frick \& Grohe).

The construction by induction on the structure of φ may need intermediate automata of huge size, even if the unique minimal deterministic automaton equivalent to $A(\varphi, \mathrm{k})$ has a manageable number of states.

Soguet et al. using MONA have constructed automata for the following cases; no success for clique-width 4 :

	Clique-width 2	Clique-width 3
MaxDegree ≤ 3	91 states	Space-Out
Connected	11 states	Space-Out
IsConnComp(X)	48 states	Space-Out
Has ≤ 4-VertCov	111 states	1037 states
HasClique ≥ 4	21 states	$153 \quad$ states
2-colorable	11 states	$57 \quad$ states

One can avoid the inductive construction and construct "directly" deterministic automata for basic properties: NoEdge, Connected, NoCycle

Property	Partition $\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{p}}\right)$	edg(X,Y)	NoEdge	Connected, NoCycle for degree $\leq \mathrm{p}$	Path(X,Y)	Connected, Nocycle
Number of states $N(k)$	2	$k^{2}+k+3$	2^{k}	$2^{\mathrm{O}(\text { p...k })}$	$2^{\mathrm{O}(\mathrm{k} . \mathrm{k})}$	$2^{2^{\mathrm{O}(\mathrm{k})}}$

Examples of automata too large to be constructed, i.e., "compiled":
for $k=2$: 4-colorability, 3-acyclic-colorability, NoCycle (i.e., is a forest)
for $k=4$: connectedness, for $k=5$: 3-colorability, clique.
The minimal deterministic automaton for Conn (X) has more than $2^{2^{k / 2}}$ states.

An issue : Fly-automata

States and transitions are not listed in huge tables:
they are specified (in uniform ways for all k) by "small" programs.
Can be nondeterministic.

Closure properties:
Union (for \vee)
Product (for \wedge)
Image (for \exists)
Inverse image (for substitutions and relativization)
Determinization.

Example of a state for connectedness:
$q=\{\{a\},\{a, b\},\{b, c, d\},\{b, d, f\}\}$,
a, b, c, d, f are vertex labels; q is the set of types of the connected
components of the current graph. (type $(\mathrm{H})=$ set of labels of its vertices)
Some transitions:
Add $_{\mathrm{a}, \mathrm{c}}: \quad \mathrm{q} \longrightarrow\{\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{d}, \mathrm{f}\}\}$,
Relab $_{\mathrm{a}} \rightarrow \mathrm{b}: \mathrm{q} \longrightarrow\{\{\mathrm{b}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{d}, \mathrm{f}\}\}$
Transitions for \oplus : union of sets of types.

Using fly automata works for formulas with no quantifier alternation that use "new" atomic formulas for "basic" properties

Examples: p-acyclic colorability
$\exists X_{1}, \ldots, X_{p}\left(\operatorname{Partition}\left(X_{1}, \ldots, X_{p}\right) \wedge \operatorname{NoEdge}\left(X_{1}\right) \wedge \ldots \ldots \wedge \operatorname{NoEdge}\left(X_{p}\right) \wedge \ldots\right.$ $\left.\wedge \operatorname{NoCycle}\left(X_{i} \cup X_{j}\right) \wedge \ldots\right)$
(all $\mathrm{i}<\mathrm{j}$; set terms $\mathrm{X}_{\mathrm{i}} \cup \mathrm{X}_{\mathrm{j}}$ avoid some quantifications).
Minor inclusion : H simple, loop-free. Vertices(H) $=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{p}}\right\}$

$$
\begin{aligned}
& \exists X_{1}, \ldots, X_{p}\left(\operatorname{Disjoint}\left(X_{1}, \ldots, X_{p}\right) \wedge \operatorname{Conn}\left(X_{1}\right) \wedge \ldots \wedge \operatorname{Conn}\left(X_{p}\right) \wedge \ldots\right. \\
& \left.\quad \ldots \wedge \operatorname{Link}\left(X_{i}, X_{j}\right) \wedge \ldots\right)
\end{aligned}
$$

Existence of "holes" : odd induced cycles (to check perfectness; one checks "anti-holes" on the edge-complement of the given graph).

Some experiments, by Irène Durand.
3 -colorability of the 6×7 grid (of clique-width 8) in 7 minutes, of the 6×33 grid (of clique-width 8) in 90 minutes.

3 -colorability of the Petersen graph (clique-width 7) in 1.5 second, its 4 -acyclic-colorability in 4 minutes (*).
(3-colorable but not acyclically; red and green vertices induce a cycle).
(*) For a term with annotations.

The McGee graph
24 vertices,
36 edges,
clique-width ≤ 10.

3-colorability in 7 minutes,

$3-A C-c o l o r a b i l i t y ~ i n ~ 12 ~ h o u r s . ~$

Annotations: an additional tool

At some positions in the given term, we attached some (finite) contextual information.

Example :
At position u in t, we attach the set
$A D D_{t}(u)=$ the set of pairs (a, b) such that some operation
Add $_{\mathrm{c}, \mathrm{d}}$ above u (hence, in its "context") adds edges between the (eventual) vertices below u labelled by a and b .

The sets $\mathrm{ADD}_{t}(\mathrm{u})$ can be computed in linear time by means of a topdown traversal of t.

Motivation: Certain automata on annotated terms may have less states. Example : $e d g\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right): 2 \mathrm{k}+3$ states instead of $\mathrm{k}^{2}+\mathrm{k}+3$ (cf. page 34): $0, \mathrm{Ok}, \mathrm{a}(1), \mathrm{a}(2)$, Error, for a in C.

Transitions for \oplus annotated by R: ($\mathrm{p}, \mathrm{q}, \mathrm{r}$ are states)


```
If \(\mathrm{p}=0\) then \(\mathrm{r}:=\mathrm{q}\); if \(\mathrm{q}=0\) then \(\mathrm{r}:=\mathrm{p}\);
if \(p=a(1), q=b(2)\) and \((a, b) \in R \wedge\) then \(r:=O k\);
    and if \((\mathrm{a}, \mathrm{b}) \notin \mathrm{R} \wedge\) then \(\mathrm{r}:=\) Error ;
if \(p=b(2), q=a(1): i d e m\);
otherwise \(r:=\) Error.
```

Other examples:

For Clique (X) meaning that X induces a clique:

$$
2^{k}+2 \text { states instead of } 2^{\mathrm{O}(\mathrm{k} . \mathrm{k})} .
$$

For Connectedness : same states but they "shrink" quicker : cf. the rules for Add $_{\mathrm{a}, \mathrm{c}}$ on page 43

Has been tested successfully

5. Edge set quantifications and tree-width

Incidence graph of G undirected, $\operatorname{Inc}(G)=\left(\mathrm{V}_{\mathrm{G}} \cup \mathrm{E}_{\mathrm{G}}\right.$, inc $\left._{\mathrm{G}}(.,)..\right)$
$\operatorname{inc}_{\mathrm{G}}(\mathrm{v}, \mathrm{e}) \Leftrightarrow \mathrm{v}$ is a vertex of edge e .

Monadic second-order formulas written with inc can use quantifications on sets of edges :
they define MSO_{2}-expressible graph properties.

The existence of a perfect matching or a Hamiltonian circuit is
MSO_{2}-expressible but not MSO-expressible.

Exercises

1) Write an MSO_{2}-sentence expressing that a graph has a Hamiltonian cycle.
2) Write an MSO_{2}-sentence expressing that a graph has a spanning tree of degree ≤ 3. (This property is not MSO-expressible).
MSO_{2} model-checking

- For an FPT algorithm, the parameter is tree-width and cannot be clique-width. By Kreutzer, Makowsky et al. MSO_{2} model-checking needs restriction to bounded tree-width unless P=NP, ETH, Exptime=NExptime.
- MSO_{2} - model-checking reduces to MSO- model-checking:

Given G (can have mult. edges) we build a tree-decomposition of G , then a tree-decomposition of its $\operatorname{Inc}(\mathrm{G})$ of same width k (easy),
then a "clique-width" term for $\operatorname{Inc}(\mathrm{G})$ of width $\leq 2^{\mathrm{O}(\mathrm{k})}$
(exponential blow-up, not avoidable).
An MSO_{2} property is MSO on $\operatorname{Inc}(\mathrm{G})$: hence, we can apply the previous algorithm.

Problem : the exponential clique-width of $\operatorname{Inc}(\mathrm{G})$

Graph operations that characterize tree-width

Graphs have distinguished vertices called sources, (or terminals or boundary vertices) pointed to by source labels from a finite set : $\{a, b, c, \ldots, d\}$.

Binary operation(s) : Parallel composition
$\mathrm{G} / / \mathrm{H}$ is the disjoint union of G and H and sources with same label are fused.
(If G and H are not disjoint, we use a copy of H disjoint from G).

Unary operations :
Forget a source label

Forgeta(G) is G without a-source: the source is no longer distinguished (it is made "internal").

Source renaming :
$R e n a \leftrightarrow b(G)$ exchanges source labels a and b (replaces a by b if b is not the label of any source)

Nullary operations denote basic graphs : 1-edge graphs, isolated vertices.

Terms over these operations define (or denote) graphs (with or without sources). They can have parallel edges.

Example : Trees

Constructed with two source labels, r (root) and n (new root).
Fusion of two trees at their roots :

H

G // H

Extension of a tree by parallel composition with a new edge, forgetting the old root, making the "new root" as current root :

$$
\begin{aligned}
\mathrm{e}=r & \bullet n \\
\operatorname{Ren}_{n} & \longleftrightarrow r\left(\operatorname{Forget}_{r}(\mathrm{G} / / \mathrm{e})\right)
\end{aligned}
$$

G

Trees are defined by : $\mathrm{T}=\mathrm{T} / / \mathrm{T} \cup$ extension $(\mathrm{T}) \cup r$

Relation to tree-decompositions and tree-width

Dotted lines --- link copies of a same vertex.
Width $=$ max. size of a box -1 .

Proposition: A graph has tree-width $\leq \mathrm{k} \Leftrightarrow$ it can be constructed from edges by using the operations $/ /$, Ren $_{\leftrightarrow} \leftrightarrow b$ and Forgeta with $\leq k+1$ labels $\mathrm{a}, \mathrm{b}, \ldots$.

Proposition: Bounded tree-width implies bounded clique-width

$$
\left(\mathrm{cwd}(\mathrm{G}) \leq 2^{2 \mathrm{twd}(\mathrm{G})+1} \text { for } \mathrm{G}\right. \text { directed), but not conversely. }
$$

From an algebraic expression to a tree-decomposition
Example : cd // Ren $\mathrm{a}_{\mathrm{a}_{\rightarrow} \mathrm{c}}\left(\mathrm{ab} / /\right.$ Forget $\left._{\mathrm{b}}(\mathrm{ab} / / \mathrm{bc})\right)$
(ab denotes an edge from a to b)

The tree-decomposition associated with this term.

Automata for the model-checking of MSO_{2} formulas

To extend the method used for bounded clique-width, we need a representation of vertices and edges by occurrences of operations and constants in the terms representing tree-decompositions.

Undirected graphs of tree-width $\leq \mathrm{k}-1$ are denoted by terms over the operations : //, Forget ${ }_{\mathrm{a}}$ and the constants a, ab for $\mathrm{a}, \mathrm{b} \in$ $[k]=\{1, \ldots, k\}$, without renamings of labels.

Vertices are represented at the occurrences of Forget operations. The edges are at the leaves of the tree, below the nodes representing their ends.

The automaton for edg (X, Y) has $2^{\Theta(k . k)}$ states (compare with $O\left(k^{2}\right)$, cf. page 34

Second method

Vertices are represented at the leaves, the edges are at nodes close to those representing their ends.
Because of II which fuses some vertices, each vertex is represented by several leaves.

On the figure, vertex a is represented by two leaves.

Equality of vertices is an equivalence relation \simeq on leaves.

Hence: there exists a set of vertices X such that \ldots
is expressed by:
there exists a set of leaves X, saturated for \simeq such that \ldots

Same exponential blow up as with the first possibility.

Note: The responsible is I/.

Improving the first method by annotations

Recall: the vertices are in bijection with the occurrences of the Forget operations.

The annotation: at each occurrence u of Forget $_{\mathrm{a}}$ representing a vertex x is attached the set of labels b such that the first occurrence of Forgetb $_{\mathrm{b}}$ above u represents a vertex adjacent to x .

The automaton for edg (X, Y) has $2^{2 \mathrm{k}}+2$ states (instead of $2^{\Theta(\mathrm{k} . \mathrm{k})}$). The automaton for $i n(X, Y)$ has $k(k-1) / 2+3$ states. Incidence and adjacency are handled separately on "redundant" representations of graphs by terms (edg by using the annotation).

Conclusion

1. Using automata for model-checking of MS sentences on graphs of bounded tree-width or clique-width is not hopeless if we use fly-automata, built from (possibly non-deterministic) "small" automata for basic graph properties (and their negations), and for sentences without quantifier alternation.
2. More tests on significant examples are necessary, and also comparison (theory and practice) with other approaches: games, monadic Datalog, specific problems, "Boolean width".
3. One can adapt fly-automata to counting and optimization problems ? However, this extension should be tested.
