

La vérification de propriétés de graphes

exprimées en logique du second-ordre monadique.

Verification of monadic second-order graph properties

Bruno Courcelle

Université Bordeaux 1, LaBRI & Institut Universitaire de France

 2

References:

B.C. and J. Engelfriet : Graph structure and monadic second-order

logic, book to be published by Cambridge University Press, May 2012.

B.C. and I. Durand: Fly-automata, their properties and applications,
16th CIAA, 2011, LNCS 6807, pp. 264 – 272.

All are readable on : http://www.labri.fr/perso/courcell/ActSci.html

 3

 Summary

1. Monadic Second-Order (MSO) logic

2. Graph decompositions, tree-width and clique-width

3. From MSO formulas to automata

4. Practical difficulties and (some) remedies

5. Tree-width and MSO formulas with edge quantifications

6. Open problems and conclusion.

 4

Two ways of considering graphs

 A graph (finite, up to isomorphism) is an algebraic object,

 an element of an algebra of graphs
 (similar to words, elements of monoids)

 A graph is a logical structure ;

 graph properties can be expressed by logical formulas
 (FO = first-order, MSO = monadic second-order)

 Consequences:

 a) Language Theory concepts extend to graphs

 b) Algorithmic meta-theorems

 5

An overview chart

Graph "Context-free"

operations sets of graphs

Fixed parameter tractable

algorithms Language theory

 for graphs

 Recognizable

 sets of graphs

Monadic 2nd-order Monadic 2nd -order

logic transductions

 6

1. Monadic Second-Order (MSO) Logic

Graphs as logical structures: G is directed or undirected, and simple

G = (VG , edgG(.,.)) with edgG(u,v) ⇔ there is an edge u v (or u – v).

We cannot write an equality if G is not simple. Graphs with multiple edges

will be considered later.

Monadic second-order logic

= First-order logic on power-set structures

= First-order logic extended with (quantified) set variables

denoting subsets of the domains.

For graphs, set variables denote sets of vertices.

(“An arbitrary set of edges” is here a binary relation over VG).

 7

MSO (expressible) properties : k-colorability, transitive closure,

properties of paths, connectivity, planarity

Examples for G = (VG , edgG(.,.)), undirected

 Syntax is clear; shorthands are used (example X ∩ Y = ∅).

(1) G is 3-colorable :

∃X,Y (X ∩ Y = ∅ ∧
 ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧
 (u ∉ X ∪ Y ⇒ v ∈ X ∪ Y)]
 })

 8

(2) G is not connected :

∃ Z (∃x ∈ Z ∧ ∃y ∉ Z ∧ (∀u,v (u ∈ Z ∧ edg(u,v) ⇒ v ∈ Z))

(3) Transitive and reflexive closure : TC(R ; x, y) :

 ∀ X { “X is R-closed” ∧ x ∈ X ⇒ y ∈ X }

 where “X is R-closed” is defined by :
 ∀u,v (u ∈ X ∧ R(u,v) ⇒ v ∈ X)

The relation R can be defined by a formula as in (where Y is free) :

∀x,y (x ∈ Y ∧ y ∈ Y ⇒ TC(“u ∈ Y ∧ v ∈ Y ∧ edg(u,v)” ; x, y)

expressing Conn(Y) i.e. that G[Y] is connected.

 9

(4) Minors : G contains a fixed graph H as a minor with VH = {1,…,p} :

 there exist disjoint sets of vertices X1,…, Xp in G

 such that each G[Xi] is connected and,

 whenever i – j in H, there is an edge between Xi and Xj.

(5) Planarity is expressible : no minor K5 or K3,3 (Kuratowski-Wagner).

(6) Has a cycle (for G without loops) :

 ∃x,y,z [edg(x,y) ∧ edg(y,z) ∧ “there is a path from x to z avoiding y”]

(7) Is a tree : connected without cycles.

 10

Provably non-expressible properties

- G is isomorphic to Kp,p for some p (not fixed; needs equal cardinalities

of two sets, hence quantification over binary relations to find a bijection).

- G has a nontrivial automorphism, or has all vertices of same degree.

- Card(X) is a multiple of p. (But this is possible if the graph is linearly

 ordered or if some linear order is definable by an MSO formula).

Definition : Adding these cardinality set predicates to MSO logic gives

Counting Monadic Second-Order (CMSO) logic: all good properties of

MSO logic hold for it.

 (Adding an equicardinality set predicate would spoil everything.)

 11

Exercises

1) Write an MSO-formula expressing that a simple directed graph a rooted tree.

2) Write an MSO-formula with free variables x,y,z expressing that, in a tree (undirected

and unrooted), if one takes x as root, then y is an ancestor of z.

3) A nonempty word over alphabet {a,b} can be considered as a directed path given

with unary relations laba and labb representing the sets of occurrences of letters a

and b. Prove that every regular language over {a,b} is MS-definable.

4) A complete bipartite graph Kn,m has a Hamiltonian cycle iff n=m. Construct such a

graph “over” any word in {a,b}+ having at least one a and at least one b. (It follows

that Hamiltonicty is not MS-expressible because the converse of 3) holds).

5) Write an MSO-formula expressing acyclic p-colorability : every two colors induce a

forest.

 12

Two problems for a class C of finite graphs and a logic:

Decidability? : Does a given sentence hold in some (or all) graphs of C ?

Model-checking (decidable) : Its time/space complexity ?

Language, class Decidability Model-checking

FO, all graphs Undecidable Polynomial-time

CMSO, clique-width < k Decidable Cubic-time

CMSO, unbdd cwd. Undecidable Conjecture : not FPT (*)

(*) A related fact is proved by S. Kreutzer (LICS 2010) for unbounded tree-

width and MSO formulas with edge quantifications.
 (The exact statement is very technical.)

 13

Model-checking problems

The 3-Coloring problem is NP-complete and MSO-expressible.

Fixed-Parameter Tractability (FPT) :

Definitions: (1) An algorithm taking time f(k).nc for some fixed function

f and constant c is FPT.

 The value k is a parameter: degree, diameter, tree-width, clique-width,

etc. The “hard part” of the time complexity depends on some function f

(arbitrary in the definition; in practice, it must be “limited”) whereas the size of

the input is n. So, the “main factor” is polynomial.

 (2) An algorithm is in the class XP if it takes time O(n g(k)).

 It takes polynomial time for fixed k, with a degree depending on k.

 14

3-colorability again :

It is NP-complete for (even planar) graphs of degree < 4 (Dailey, 1980)

Hence the degree is not a good parameter.

Tree-width is good because the time complexity is O((2 32.k.k.k + 3k).n).

 (The term 2 32.k.k.k is for constructing a tree-decomposition).

For MSO properties the good parameters are tree-width and

clique-width : both are based on hierchical decompositions.

 15

2. Graph decompositions : tree-width and clique-width.

Example 1: Directed series-parallel graphs (tree-width 2 ; trees have tree-width 1)

Graphs with distinguished vertices marked 1 and 2, generated from

e = 1 2 by the operations of parallel-composition // and series-composition •

 ((e // e) • e) // (e • e)

 The defining equation is S = S // S ∪ S • S ∪ { e }

 16

Example 2 : Cographs (clique-width 2 ; trees have clique-width < 3)

Undirected graphs generated by ⊕, disjoint union and ⊗, complete join

from a, a vertex without edges (up to isomorphism); ⊗ is defined by :

G ⊗ H = G ⊕ H with “all possible” undirected edges between G and H,

Cographs are recursively defined by : C = C ⊕ C ∪ C ⊗ C ∪ { a }

Example :

(a ⊗ a ⊗ a) ⊗ ((a ⊗ a) ⊕ a)

 17

Definition : Clique-width

More powerful than tree-width ; the construction of automata is easier.

Graphs are simple, directed or not.

We use labels: a, b, c, ..., d. Each vertex has one and only one label ;

several vertices may have the same label. We call x labelled by a an a-port

One binary operation : disjoint union : ⊕

Remark : If G and H are not disjoint, we replace H by an isomorphic disjoint

copy to define G ⊕ H. Hence G ⊕ H is well-defined up to isomorphism. No

such problem in a “decomposition approach”.

 18

Unary operations: Edge-addition denoted by Adda,b

Addition of undirected edges: Adda,b(G) is G augmented with edges

between every a-port and every b-port.

 H = Adda,b(G) ; only 5 edges added

The number of added edges depends on the argument graph.

 19

Addition of directed edges: Adda,b(G) is G augmented with edges from

every a-port to every b-port.

Vertex relabellings :
Relaba b(G) = G with every vertex labelled by a relabelled into b

Basic graphs : those with a single vertex.

Definition: A graph G has clique-width ≤ k ⇔ it can be constructed

from basic graphs with the operations ⊕, Adda,b (or Adda,b) and

Relaba b by using < k labels. Its clique-width cwd(G) is the

smallest such k

 20

 Example : Cliques have clique-width 2 (and unbounded tree-width)

Kn is defined by tn where tn+1 = Relabb a(Adda,b(tn ⊕ b))

Cliques are defined by the equation :

K = Relabb a(Adda,b(K ⊕ b)) ∪ a

 21

Examples of bounded clique-width:

 An undirected graph is a cograph ⇔ it has clique-width at most 2.

 Distance hereditary graphs have clique-width at most 3.

Examples of unbounded clique-width:

 Planar graphs (even of degree 3),

 Interval graphs.

Fact : Unlike tree-width, clique-width is sensible to edge directions :

 Cliques have clique-width 2 but tournaments have unbounded clique-width.

 22

Exercises

1) Write optimal terms that define grids.

(cwd(Gn x n) = n+1 ; m+1 < cwd(Gn x m) < m+2 if n > m, by Golumbic & Rotics).

2) Give an upper bound to the clique-width of a graph whose biconnected

components have clique-width at most k.

3) Give an upper bound to the clique-width of a series-parallel graph.

 23

3. From MSO formulas to automata

 k ϕ (MSO formula)

 Automaton Constructor

 Yes

G Graph Analyzer t A(ϕ, k)

 No

 Error : wd(G) > k

Steps are done “once for all”, independently of G

A(ϕ,k): finite automaton on terms t
wd = tree-width or clique-width or equivalent,

Tree-decompositions also have algebraic expressions.

 24

 Construction of A(ϕ, k) for “clique-width” terms

k = the number of vertex labels = the bound on clique-width

F = the corresponding set of operations and constants :

 a , ∅ , ⊕ , Adda,b , Adda,b , Relab a b

G(t) = the graph defined by a term t in T(F).

Its vertices are (in bijection with) the occurrences of the

constants (the nullary symbols) in t that are not ∅

 25

Example

 Graph G(t)

 Term t

 26

 Terms are equipped with Booleans that encode assignments of

vertex sets V1,…,Vn to the free set variables X1,…,Xn of MSO

formulas (formulas are written without first-order variables):

 1) we replace in F each constant a by the constants

 (a, (w1,…,wn)) where wi ∈ {0,1} : we get F(n)

 (only constants are modified);

 2) a term s in T(F(n)) encodes a term t in T(F) and an

 assignment of sets V1,…,Vn to the set variables X1,…,Xn :

 if u is an occurrence of (a, (w1,..,wn)), then

 wi = 1 if and only if u ∈ Vi .

 3) s is denoted by t * (V1,…,Vn)

 27

Example (continued)

 V1 = {1,3,4}, V2 = {2,3}

 Term t * (V1,V2)

 28

 By an induction on ϕ, we construct for each ϕ(X1,…,Xn) a finite

(bottom-up) deterministic automaton A(ϕ(X1,…,Xn), k) that recognizes:

L(ϕ(X1,…,Xn)) : = { t * (V1,…,Vn) ∈ T(F(n)) / (G(t), V1,…,Vn) ⎜ = ϕ }

Theorem : For each sentence ϕ, the automaton A(ϕ, k) accepts in

time f(ϕ, k). ⎜ t ⎜ the terms t in T(F) such that G(t) ⎜ = ϕ

 It gives a fixed-parameter linear model-checking algorithm for

input t, and a fixed-parameter cubic one if the graph has to be

parsed. (The parameter is clique-width; the parsing algorithm is based on

results by Oum, Seymour, Hlineny and myself; it uses rank-width, equivalent

to clique-width for undirected graphs).

 29

The inductive construction of A(ϕ, k)

 Atomic formulas : discussed below.

 For ∧ : product of two automata (deterministic or not)

 For ∨ : union of two automata (or product of two complete

automata; product preserves determinism)

 For negation : exchange accepting / non-accepting states

 for a complete deterministic automaton

 30

 Quantifications: Formulas are written without ∀

 L(∃ Xn+1 . ϕ(X1, ..., Xn+1)) = pr(L (ϕ(X1, ..., Xn+1))

 A(∃ Xn+1 . ϕ(X1, ..., Xn+1), k) = pr(A (ϕ(X1, ..., Xn+1), k)

where pr is the projection that eliminates the last Boolean;

 a non-deterministic automaton.

 31

Some tools for constructing automata

 Substitutions and inverse images (cylindrifications).

 1) If we know A(ϕ(X1, X2), k) , we get A(ϕ(X4, X3), k) because :

 L(ϕ(X4, X3)) = h-1 (L(ϕ(X1, X2))) where

 h maps (a , (w1, w2 , w3, w4)) to (a , (w4, w3)). We take

 A(ϕ(X4, X3), k) = h-1 (A(ϕ(X1, X2)), k)

 This construction preserves determinism and the number of states.
 Set term

 2) From A(ϕ(X1, X2),k), we get A(ϕ (X3, X1∪ (X2 \ X4)),k) by h-1

 with h mapping (a , (w1, w2 , w3, w4)) to (a , (w3, w1 ∨(w2 ∧ ¬w4)))

 32

 Relativization to subsets by inverse images.

 If ϕ is a closed formula expressing a graph property P, its

relativization ϕ [X1] to X1 expresses that the subgraph induced on

X1 satisfies P. To construct it, we replace recursively

 ∃ y. θ by ∃ y. y ∈ X1 ∧ θ, etc…

 However, there is an easy transformation of automata :

 Let h map (a , 0) to ∅ and (a ,1) to a.

L(ϕ [X1]) = h-1 (L(ϕ))

 Hence:

A(ϕ [X1] , k) : = h-1 (A(ϕ), k)

 33

The inductive construction (continued) :

Complete deterministic automata for atomic formulas and basic

graph properties : automaton over F(n) recognizing the set of terms

 t * (V1,…,Vn) in L(ϕ(X1,…,Xn))

 Intuition : in all cases, the state reached at node u represents a

finite information q(u) about the graph G(t / u) and the restriction of

V1,…,Vn to the vertices below u (vertices = leaves)

 1) if u = f(v,w), we want that q(u) is defined from q(v) and q(w)

by a fixed function : the transition function ;

 2) whether (G(t), V1,…,Vn) satisfies ϕ(X1,…,Xn) must be

checkable from q(root) : the accepting states.

 34

Atomic and basic formulas :

X1 ⊆ X2 , X1 = ∅ , Single(X1),

Card p,q (X1) : cardinality of X1 is = p mod. q,

Card < q (X1) : cardinality of X1 is < q.

 Easy constructions with small numbers of states :

 respectively 2, 2, 3, q, q+1.

Example : for X1 ⊆ X2 , the term must have no constant (a, 10).

 35

Atomic formula : edg(X1,X2) for directed edges

 edg(X1,X2) means : X1 = { x } ∧ X2 = { y } ∧ x y

 Vertex labels belong to a set C of k labels.

 k2+k+3 states : 0, Ok, a(1), a(2), ab, Error, for a,b in C , a ≠ b

Meaning of states (at node u in t ; its subterm t/u defines G(t/u) ⊆ G(t)).

 0 : X1 = ∅ , X2 = ∅

 Ok Accepting state : X1 = {v} , X2 = {w} , edg(v,w) in G(t/u)

 a(1) : X1 = {v} , X2 = ∅ , v has label a in G(t/u)

 a(2) : X1 = ∅ , X2 = {w} , w has label a in G(t/u)

 ab : X1 = {v} , X2 = {w} , v has label a, w has label b (hence v ≠ w)
 and ¬edg(v,w) in G(t/u)

 Error : all other cases

 36

 Transition rules

 For the constants based on a :

 (a,00) 0 ; (a,10) a(1) ; (a,01) a(2) ; (a,11) Error

 For the binary operation ⊕: ⊕ r

 (p,q,r are states) p q

 If p = 0 then r := q

 If q = 0 then r := p

 If p = a(1), q = b(2) and a ≠ b then r := ab

 If p = b(2), q = a(1) and a ≠ b then r := ab

 Otherwise r : = Error

 37

 For unary operations Adda,b Adda,b r

 p

 If p = ab then r := Ok else r : = p

 For unary operations Relaba b

 If p = a(i) where i = 1 or 2 then r : = b(i)

 If p = ac where c ≠ a and c ≠ b then r : = bc

 If p = ca where c ≠ a and c ≠ b then r : = cb

 If p = Error or 0 or Ok or c(i) or cd or dc where c ≠ a

 then r : = p

 38

 4. Practical difficulties and (some) remedies.

 Parsing :

 Case of clique-width:

 Checking if a graph has clique-width < k is NP-complete (with

k in the input ; Fellows et al.)

 The cubic approximate parsing algorithm (by Oum et al.) based

on rank-width is not (directly) implementable.

Remark: For certain classes of graphs of bounded clique-width defined by forbidden

induced subgraphs, optimal clique-width terms can be constructed in polynomial

time, by using in many cases, modular decomposition.

 39

Case of tree-width: (bounded tree-width implies bounded clique-width)

 Checking if a graph has tree-width < k is NP-complete (with k

in the input ; Arnborg et al.)

 The linear-time exact parsing algorithm by Bodlaender (for

tree-width) takes time O(2 32.k.k.k . n). There are usable algorithms

for (non-random) graphs with 50 vertices and tree-width < 35

(Bodlaender & Koster).

Specific algorithms : Flow-graphs of structured programs have tree-width at most 6

and tree-decompositions are easy to get from the parse trees of programs (Thorup).

 40

Sizes of automata :

 The number of states of A(ϕ, k) is bounded by an h-iterated

exponential where h is the number of quantifier alternations of ϕ .

 There is no alternative construction giving a fixed bound on

nestings of exponentiations (Meyer & Stockmeyer, Weyer, Frick & Grohe).

 The construction by induction on the structure of ϕ may need

intermediate automata of huge size, even if the unique minimal

deterministic automaton equivalent to A(ϕ ,k) has a manageable

number of states.

 41

Soguet et al. using MONA have constructed automata for the

following cases ; no success for clique-width 4 :

 Clique-width 2 Clique-width 3

 MaxDegree<3 91 states Space-Out

 Connected 11 states Space-Out

 IsConnComp(X) 48 states Space-Out

 Has<4-VertCov 111 states 1037 states

 HasClique > 4 21 states 153 states

 2-colorable 11 states 57 states

 42

One can avoid the inductive construction and construct “directly”

deterministic automata for basic properties : NoEdge, Connected, NoCycle

 Property Partition
(X1,…,Xp)

edg(X,Y) NoEdge

Connected,

NoCycle
for degree <p

Path(X,Y) Connected,

Nocycle

Number of
states
N(k)

2

k2+k+3

2k

2O(p.k.k)

2O(k.k)

O(k)

 22

 Examples of automata too large to be constructed, i.e., “compiled”:

 for k = 2 : 4-colorability, 3-acyclic-colorability, NoCycle (i.e., is a forest)

 for k = 4 : connectedness, for k = 5 : 3-colorability, clique. k/2
 The minimal deterministic automaton for Conn(X) has more than 2 2
 states.

 43

An issue : Fly-automata

 States and transitions are not listed in huge tables :

 they are specified (in uniform ways for all k) by “small” programs.

 Can be nondeterministic.

 Closure properties:

 Union (for ∨)

 Product (for ∧)

 Image (for ∃)

 Inverse image (for substitutions and relativization)

 Determinization.

 44

 Example of a state for connectedness :

 q = { {a}, {a,b}, {b,c,d}, {b,d,f} },

 a,b,c,d,f are vertex labels; q is the set of types of the connected

 components of the current graph. (type(H) = set of labels of its vertices)

 Some transitions :

 Adda,c : q { {a,b,c,d}, {b,d,f } },

 Relaba b: q { {b}, {b,c,d}, {b,d,f } }

 Transitions for ⊕ : union of sets of types.

 45

 Using fly automata works for formulas with no quantifier

alternation that use “new” atomic formulas for “basic” properties

 Examples : p-acyclic colorability

 ∃ X1,…,Xp (Partition(X1,…,Xp) ∧ NoEdge(X1) ∧ ∧ NoEdge(Xp) ∧ ...

 ∧ NoCycle(Xi ∪ Xj) ∧ ...)
 (all i < j ; set terms Xi ∪ Xj avoid some quantifications).

Minor inclusion : H simple, loop-free. Vertices(H) = { v1,…,vp }

 ∃X1,…,Xp (Disjoint(X1,…,Xp) ∧ Conn(X1) ∧ ... ∧ Conn(Xp) ∧ ...
 ... ∧ Link(Xi , Xj) ∧ ...)

 Existence of “holes” : odd induced cycles (to check perfectness ; one

checks “anti-holes” on the edge-complement of the given graph).

 46

Some experiments, by Irène Durand.

 3-colorability of the 6 x 7 grid (of clique-width 8) in 7 minutes,
 of the 6 x 33 grid (of clique-width 8) in 90 minutes.

 3-colorability of the Petersen graph (clique-width 7) in 1.5 second,
 its 4-acyclic-colorability in 4 minutes (*).

 (3-colorable but not acyclically;

 red and green vertices

 induce a cycle).

 (*) For a term with annotations.

 47

The McGee graph

24 vertices,
36 edges,
clique-width < 10.

3-colorability in 7 minutes,

3-AC-colorability in 12 hours.

 48

Annotations : an additional tool

 At some positions in the given term, we attached some (finite)

contextual information.
Example :

 At position u in t, we attach the set

 ADDt(u) = the set of pairs (a,b) such that some operation

 Addc,d above u (hence, in its “context”) adds edges between the

 (eventual) vertices below u labelled by a and b.

 The sets ADDt(u) can be computed in linear time by means of a top-

down traversal of t.

 49

Motivation: Certain automata on annotated terms may have less states.

Example : edg(X1, X2) : 2k+3 states instead of k2 +k +3 (cf. page 34):

 0, Ok, a(1), a(2), Error, for a in C.

 Transitions for ⊕ annotated by R : ⊕,R r

 (p, q, r are states) p q

 If p = 0 then r := q ; if q = 0 then r := p ;

 if p = a(1), q = b(2) and (a , b) ∈ R ∧ then r := Ok ;

 and if (a , b) ∉ R ∧ then r := Error ;

 if p = b(2), q = a(1) : idem ;

 otherwise r : = Error.

 50

Other examples :

 For Clique(X) meaning that X induces a clique :

 2 k + 2 states instead of 2 O(k.k) .

 For Connectedness : same states but they “shrink” quicker :

 cf. the rules for Add a,c on page 43

 Has been tested successfully

 51

5. Edge set quantifications and tree-width

Incidence graph of G undirected, Inc(G) = (VG ∪ EG, incG(.,.).)

incG(v,e) ⇔ v is a vertex of edge e.

Monadic second-order formulas written with inc can use

quantifications on sets of edges :

they define MSO2 –expressible graph properties.

 The existence of a perfect matching or a Hamiltonian circuit is

 MSO2 -expressible but not MSO-expressible.

 52

Exercises

1) Write an MSO2-sentence expressing that a graph has a Hamiltonian cycle.

2) Write an MSO2-sentence expressing that a graph has a spanning tree of

degree < 3. (This property is not MSO-expressible).

 53

MSO2 model-checking

- For an FPT algorithm, the parameter is tree-width and cannot

be clique-width. By Kreutzer, Makowsky et al. MSO2 model-checking needs

restriction to bounded tree-width unless P=NP, ETH, Exptime=NExptime.

- MSO2- model-checking reduces to MSO- model-checking:

 Given G (can have mult. edges) we build a tree-decomposition of G,

 then a tree-decomposition of its Inc(G) of same width k (easy),

 then a “clique-width” term for Inc(G) of width < 2O(k)
 (exponential blow-up, not avoidable).

An MSO2 property is MSO on Inc(G): hence, we can apply the

previous algorithm.

Problem : the exponential clique-width of Inc(G)

 54

 Graph operations that characterize tree-width

Graphs have distinguished vertices called sources, (or terminals or boundary

vertices) pointed to by source labels from a finite set : {a, b, c, ..., d}.

Binary operation(s) : Parallel composition
G // H is the disjoint union of G and H and sources with same label are

fused.

(If G and H are not

disjoint, we use

a copy of H

disjoint from G).

 55

Unary operations :

 Forget a source label

 Forgeta(G) is G without a-source: the source is no longer distinguished

(it is made "internal").

 Source renaming :

Rena b(G) exchanges source labels a and b

(replaces a by b if b is not the label of any source)

Nullary operations denote basic graphs : 1-edge graphs, isolated vertices.

Terms over these operations define (or denote) graphs (with or without

sources). They can have parallel edges.

 56

Example : Trees

Constructed with two source labels, r (root) and n (new root).

Fusion of two trees

at their roots :

Trees are defined by : T = T // T ∪ extension(T) ∪ r

Extension of a tree by parallel composition

with a new edge, forgetting the old root,

making the "new root" as current root :

e = r •_________• n

Renn r (Forgetr (G // e))

 57

 Relation to tree-decompositions and tree-width

 Tree T

 Graph G Tree-decomposition

 (T,f) of G

Dotted lines - - - - link copies of a same vertex.

Width = max. size of a box -1. Tree-width = min. width of a tree-dec.

 58

Proposition: A graph has tree-width ≤ k ⇔ it can be constructed from

edges by using the operations // , Rena b and Forgeta with ≤ k+1

labels a,b,….

Proposition : Bounded tree-width implies bounded clique-width

 (cwd(G) < 22twd(G)+1 for G directed), but not conversely.

 59

From an algebraic expression to a tree-decomposition

Example : cd // Rena c (ab // Forgetb(ab // bc)) (ab denotes an edge from a to b)

 The tree-decomposition associated with this term.

 60

Automata for the model-checking of MSO2 formulas

 To extend the method used for bounded clique-width, we need a

representation of vertices and edges by occurrences of operations

and constants in the terms representing tree-decompositions.

 Undirected graphs of tree-width < k-1 are denoted by terms over

the operations : //, Forgeta and the constants a, ab for a,b ∈

[k]={1,…,k}, without renamings of labels.

 61

 First method

Vertices are represented at

the occurrences of Forget operations.

The edges are at the leaves

of the tree, below the nodes

representing their ends.

The automaton for edg(X,Y)

has 2Θ (k.k) states (compare with O(k2) , cf. page 34

 62

 Second method

Vertices are represented at

the leaves, the edges are

at nodes close to those repre-

senting their ends.

Because of // which fuses some

vertices, each vertex is

represented by several leaves.

On the figure, vertex a is

represented by two leaves.

 63

Equality of vertices is an equivalence relation ~ on leaves.

Hence: there exists a set of vertices X such that …

is expressed by:

 there exists a set of leaves X, saturated for ~ such that …

Same exponential blow up as with the first possibility.

Note : The responsible is //.

 64

Improving the first method by annotations

 Recall: the vertices are in bijection with the occurrences of the

Forget operations.

 The annotation : at each occurrence u of Forgeta representing a

vertex x is attached the set of labels b such that the first

occurrence of Forgetb above u represents a vertex adjacent to x.

The automaton for edg(X,Y) has 22k +2 states (instead of 2Θ (k.k)).

The automaton for in(X,Y) has k(k-1)/2 + 3 states.

Incidence and adjacency are handled separately on “redundant”

representations of graphs by terms (edg by using the annotation).

 65

Conclusion

 1. Using automata for model-checking of MS sentences on

graphs of bounded tree-width or clique-width is not hopeless if we

use fly-automata, built from (possibly non-deterministic) “small”

automata for basic graph properties (and their negations), and for

sentences without quantifier alternation.

 2. More tests on significant examples are necessary, and also

comparison (theory and practice) with other approaches : games,

monadic Datalog, specific problems, “Boolean width”.

 3. One can adapt fly-automata to counting and optimization

problems ? However, this extension should be tested.

