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Two  ways  of  considering  graphs       
 

 A  graph  (finite, up to isomorphism)  is  an  algebraic object,  

   an  element  of  an  algebra  of  graphs  
   (similar  to  words, elements  of  monoids) 

 

 A  graph  is  a  logical structure ; 

   graph  properties  can  be  expressed  by  logical  formulas 
   (FO = first-order, MSO = monadic second-order) 
 

 Consequences:  

   a)  Language  Theory   concepts   extend   to  graphs 

   b)  Algorithmic  meta-theorems 
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An  overview  chart  

 

Graph                   "Context-free" 

operations             sets  of  graphs 

 

Fixed   parameter  tractable 

algorithms             Language  theory 

                      for  graphs  

              Recognizable 

                                 sets of graphs        

Monadic  2nd-order           Monadic  2nd -order  

logic              transductions 
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1.   Monadic Second-Order (MSO) Logic  
 

Graphs as logical structures:   G is directed or undirected, and simple  
 

G  =  ( VG , edgG(.,.) ) with edgG(u,v) ⇔  there is an edge  u  v (or u – v). 
 

We  cannot  write  an  equality  if  G  is  not  simple.  Graphs  with  multiple  edges  

will  be  considered  later. 
  

Monadic  second-order  logic  

=  First-order  logic  on  power-set  structures  
 

=  First-order  logic  extended  with  (quantified)  set  variables  

denoting  subsets  of  the  domains. 

For graphs, set  variables  denote  sets  of vertices.  

( “An arbitrary set  of  edges” is  here  a  binary  relation  over VG). 
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MSO  (expressible)  properties : k-colorability,   transitive closure,  

properties of paths,   connectivity,   planarity   
 
Examples   for     G  =  ( VG , edgG(.,.) ), undirected 
 
  Syntax  is  clear; shorthands  are  used  (example  X ∩ Y = ∅ ). 
 
(1)  G  is  3-colorable  : 

 
∃X,Y ( X ∩ Y = ∅  ∧   
  ∀u,v { edg(u,v) ⇒    
    [(u ∈ X  ⇒  v ∉ X) ∧ (u ∈ Y ⇒  v ∉ Y) ∧  
    (u ∉ X ∪ Y  ⇒  v ∈ X ∪ Y)  ] 
      } ) 
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(2)  G  is  not  connected : 

 
∃ Z ( ∃x ∈ Z  ∧  ∃y ∉ Z  ∧  (∀u,v (u ∈ Z  ∧  edg(u,v) ⇒ v ∈ Z)  ) 
 
 

(3)  Transitive  and  reflexive  closure  :   TC(R ; x, y) :   
 
 ∀ X { “X is R-closed”  ∧  x ∈ X  ⇒ y ∈ X  } 
 

       where   “X is R-closed”    is defined  by :   
  ∀u,v (u ∈ X  ∧  R(u,v) ⇒ v ∈ X)  
 
The  relation  R  can  be  defined   by  a   formula  as  in  (where  Y  is  free) : 
 
∀x,y (x ∈ Y  ∧  y ∈ Y ⇒   TC(“u ∈ Y  ∧ v ∈ Y ∧ edg(u,v)” ; x, y) 
 
expressing  Conn(Y)  i.e.  that G[Y]  is  connected.     
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(4)  Minors :  G   contains  a  fixed  graph  H  as  a  minor  with  VH = {1,…,p} : 

  there  exist  disjoint  sets  of   vertices  X1,…, Xp  in  G    

  such   that   each   G[Xi]  is  connected  and,   

  whenever  i – j  in  H,  there  is  an  edge  between   Xi   and  Xj. 

 
(5)  Planarity  is  expressible :  no minor  K5  or  K3,3   (Kuratowski-Wagner). 
 
 
(6) Has  a  cycle  (for  G  without  loops) :  

   
 ∃x,y,z [edg(x,y)  ∧  edg(y,z)  ∧ “there  is  a  path  from  x  to  z  avoiding  y” ]     
 
 

(7) Is  a  tree : connected  without  cycles. 
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Provably  non-expressible  properties  
 
 

-   G  is  isomorphic  to  Kp,p  for  some  p   (not  fixed;  needs  equal cardinalities  

of  two sets, hence  quantification  over  binary relations  to  find  a  bijection). 

 
-  G  has  a  nontrivial  automorphism,  or  has  all  vertices  of  same degree.     
 
 
-  Card(X)  is  a multiple  of  p.  (But   this  is  possible   if  the  graph is  linearly   

   ordered  or  if  some  linear  order  is  definable  by  an  MSO  formula). 
 
Definition : Adding  these  cardinality  set  predicates  to  MSO  logic  gives 

Counting  Monadic  Second-Order  (CMSO) logic:  all good  properties  of  

MSO   logic   hold   for  it.  
 

        (Adding   an  equicardinality  set  predicate  would  spoil  everything.) 
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Exercises 
 

1)  Write an MSO-formula  expressing that a simple directed  graph  a  rooted tree.  

2)  Write an MSO-formula  with  free variables  x,y,z  expressing that, in  a  tree (undirected 

and  unrooted), if one takes  x  as  root,  then  y  is  an  ancestor  of  z. 

3)  A  nonempty  word  over  alphabet {a,b} can  be  considered  as  a  directed  path  given 

with unary relations  laba  and  labb  representing  the sets  of  occurrences  of  letters  a  

and  b.     Prove   that  every  regular  language  over  {a,b}  is  MS-definable. 

4)  A  complete bipartite  graph  Kn,m  has  a  Hamiltonian  cycle  iff  n=m. Construct  such a  

graph  “over”  any  word  in  {a,b}+  having  at  least  one  a  and  at  least  one b. (It follows 

that  Hamiltonicty  is  not  MS-expressible because  the converse of 3)  holds). 

5)  Write an MSO-formula expressing acyclic p-colorability : every two colors induce a 

forest.  
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Two  problems  for  a  class  C  of  finite  graphs  and  a  logic:  
 

Decidability? : Does a  given  sentence hold in some (or all) graphs of  C ?      
 

Model-checking  (decidable) :  Its  time/space    complexity  ? 
  

Language,     class Decidability Model-checking 

FO,        all  graphs Undecidable Polynomial-time 

CMSO, clique-width < k Decidable  Cubic-time 

CMSO,  unbdd cwd. Undecidable Conjecture : not FPT (*) 
 

 

(*) A  related  fact  is  proved  by S. Kreutzer (LICS 2010)  for  unbounded tree-

width and  MSO  formulas with  edge quantifications.     
          (The  exact statement is very  technical.) 
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Model-checking  problems 
 

The  3-Coloring problem  is  NP-complete  and   MSO-expressible. 
 

Fixed-Parameter  Tractability  (FPT) : 
 

Definitions: (1)  An  algorithm  taking   time  f(k).nc  for  some  fixed  function   

f  and  constant  c   is  FPT. 

 The  value  k  is  a  parameter:  degree, diameter, tree-width, clique-width, 

etc. The  “hard part”  of  the  time  complexity depends  on  some  function  f  

(arbitrary in  the  definition; in  practice, it  must  be  “limited”)  whereas  the  size  of  

the  input   is   n.  So,  the  “main factor”  is polynomial. 

 (2) An algorithm  is  in  the  class  XP   if  it  takes time O(n g(k)). 

  It   takes  polynomial  time  for fixed  k, with  a  degree  depending  on  k. 
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3-colorability  again : 
 

It  is  NP-complete  for  (even  planar)  graphs  of  degree <  4    (Dailey, 1980) 

Hence  the  degree   is  not  a   good  parameter. 

 

Tree-width  is  good  because  the  time  complexity  is  O( (2 32.k.k.k + 3k ).n ). 

  (The  term  2 32.k.k.k   is  for  constructing  a  tree-decomposition). 

 

For  MSO  properties  the  good  parameters  are  tree-width  and  

clique-width : both  are  based  on  hierchical   decompositions.  
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2.  Graph   decompositions :  tree-width  and  clique-width. 
 

Example 1: Directed  series-parallel graphs (tree-width 2 ; trees have tree-width 1)  
 

Graphs   with  distinguished  vertices marked  1  and  2,  generated   from   

e = 1  2  by  the operations of parallel-composition //  and  series-composition  • 

              ((e // e) • e ) // ( e • e ) 
  

 

 

 

 

 
 

 
    The  defining  equation   is   S  =  S // S   ∪   S • S   ∪  { e } 
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Example  2 : Cographs   (clique-width 2 ; trees have clique-width  < 3) 

    
 

Undirected  graphs  generated  by  ⊕,  disjoint  union and ⊗,  complete  join      

from  a,  a  vertex without edges  (up  to  isomorphism);   ⊗   is  defined  by : 

G ⊗ H  = G ⊕ H  with  “all  possible”  undirected  edges  between  G  and  H, 
 

Cographs   are  recursively  defined   by :     C  =  C ⊕ C     ∪   C ⊗  C   ∪  { a } 

Example :  
 
 
(a ⊗ a ⊗ a) ⊗ ((a ⊗ a) ⊕ a) 
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Definition :   Clique-width 
 

More  powerful  than  tree-width ;    the construction  of  automata  is  easier. 
 

Graphs  are  simple, directed  or  not.   
     

We   use   labels:  a, b, c, ..., d.   Each  vertex  has  one  and  only  one  label ;   

several  vertices  may  have  the  same  label.   We   call   x   labelled  by  a  an  a-port      
 

One   binary   operation :   disjoint  union  :   ⊕ 
 

Remark :  If  G  and H  are not disjoint, we replace  H  by  an  isomorphic  disjoint  

copy  to  define  G ⊕ H.  Hence  G ⊕ H  is  well-defined up to isomorphism.  No 

such  problem   in   a   “decomposition  approach”. 
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Unary   operations:  Edge-addition  denoted   by   Adda,b 
 

Addition of undirected edges:  Adda,b(G) is  G  augmented  with  edges  

between   every  a-port  and   every  b-port. 

 

 

      H = Adda,b(G) ; only  5  edges added  

The   number  of  added  edges  depends  on  the  argument graph. 
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Addition of directed edges:  Adda,b(G)   is  G  augmented  with  edges  from  

every  a-port  to  every  b-port. 

 

Vertex  relabellings :  
Relaba       b(G)  =  G  with  every vertex labelled by a  relabelled into b 

 

Basic graphs :   those  with  a  single  vertex. 

 

Definition: A  graph  G  has  clique-width ≤  k   ⇔  it can be constructed 

from  basic  graphs  with  the  operations ⊕, Adda,b  (or  Adda,b)  and   

Relaba     b  by using < k  labels.  Its clique-width  cwd(G)  is  the   

smallest   such   k 
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 Example  : Cliques  have  clique-width  2  (and   unbounded  tree-width) 

 
 

Kn  is   defined  by  tn  where  tn+1  =   Relabb      a( Adda,b(tn ⊕ b)) 
 

Cliques  are  defined  by  the   equation : 

K =  Relabb        a( Adda,b( K ⊕ b ) )  ∪  a  
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Examples  of  bounded  clique-width:  
 

 An  undirected  graph  is  a  cograph   ⇔    it  has   clique-width  at  most 2. 

  Distance  hereditary  graphs  have  clique-width  at  most  3.   

 

Examples  of  unbounded  clique-width:  
 

 Planar  graphs  (even  of  degree  3),  

 Interval graphs. 

 

Fact :   Unlike  tree-width, clique-width  is  sensible  to  edge directions :  

 Cliques have clique-width  2  but  tournaments  have unbounded  clique-width. 
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Exercises 

 
1) Write optimal terms that define  grids.  

(cwd(Gn x n) =  n+1 ;   m+1 < cwd(Gn x m)  < m+2 if n > m,  by Golumbic & Rotics).    

 

2) Give an upper bound  to  the clique-width of  a graph whose  biconnected  

components have  clique-width  at  most  k.  

 

3) Give  an  upper  bound  to  the clique-width of  a  series-parallel  graph.  
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3.  From  MSO  formulas  to  automata  

       k            ϕ    (MSO  formula)   

      

             Automaton Constructor  

                  Yes  

G                   Graph Analyzer                 t              A(ϕ, k)           

                  No  

       Error : wd(G) > k  

Steps       are  done  “once  for  all”, independently   of   G   

A(ϕ,k):  finite  automaton  on  terms  t  
wd  =  tree-width  or  clique-width  or equivalent,  

Tree-decompositions   also  have  algebraic expressions. 
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 Construction   of   A(ϕ, k)    for    “clique-width”   terms 
 

 

k  =  the number  of  vertex  labels  =  the  bound  on  clique-width 

 

F  =  the  corresponding  set  of  operations  and  constants : 

       a , ∅ ,  ⊕ , Adda,b , Adda,b ,  Relab a          b  

 

G(t)  =  the  graph  defined  by  a  term  t  in  T(F).   

 

Its  vertices  are  (in  bijection  with)  the  occurrences  of  the  

constants  (the nullary  symbols)  in  t   that  are  not  ∅ 
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Example  
 

 

 

 

 

 

 

             

                         Graph  G(t)    
 

 

 

       

      Term   t      
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 Terms  are  equipped  with  Booleans  that  encode  assignments  of  

vertex  sets  V1,…,Vn  to  the  free  set  variables  X1,…,Xn  of   MSO 

formulas   (formulas   are   written   without   first-order  variables): 

  1) we   replace  in   F  each  constant   a   by   the   constants    

  (a, (w1,…,wn))  where   wi ∈ {0,1}  :   we   get   F(n)    

          (only constants  are  modified); 

  2) a  term   s  in  T(F(n) )  encodes  a   term  t   in  T(F)  and  an  

 assignment  of  sets  V1,…,Vn   to  the  set  variables  X1,…,Xn :   

   if   u  is  an  occurrence  of  (a, (w1,..,wn)),  then    

   wi  =  1  if  and  only  if    u  ∈  Vi . 

  3)  s   is  denoted  by  t * (V1,…,Vn)    
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Example   (continued)  

 

 

 

 

 

               V1  =  {1,3,4},  V2  =  {2,3}   

 

 

 

 

 

   Term   t * (V1,V2)       
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 By  an  induction  on  ϕ,  we  construct  for  each  ϕ(X1,…,Xn)   a  finite  

(bottom-up)  deterministic   automaton   A(ϕ(X1,…,Xn), k)  that  recognizes: 

L(ϕ(X1,…,Xn)) : =  { t * (V1,…,Vn) ∈ T(F(n) )  /  ( G( t ), V1,…,Vn )  ⎜ =  ϕ } 

 

Theorem : For  each  sentence  ϕ,  the  automaton  A(ϕ, k)  accepts  in 

time   f(ϕ, k). ⎜ t  ⎜   the  terms  t   in  T(F)   such that    G(t)  ⎜ =  ϕ    
 

 

 It gives  a  fixed-parameter  linear  model-checking  algorithm  for  

input  t, and  a  fixed-parameter  cubic  one  if  the  graph  has  to  be  

parsed.  (The  parameter  is  clique-width;  the  parsing  algorithm  is  based on 

results  by  Oum,  Seymour, Hlineny and myself; it  uses  rank-width, equivalent            

to  clique-width  for  undirected  graphs).    
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The   inductive   construction   of   A(ϕ, k)  

  

 Atomic   formulas  :  discussed  below.  

 

 For   ∧  :   product   of   two  automata       (deterministic  or  not) 

 

 For   ∨  :   union  of  two  automata   (or  product  of   two  complete  

automata;  product   preserves   determinism) 

 

 For  negation : exchange  accepting / non-accepting  states  

       for   a   complete   deterministic   automaton 
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 Quantifications:  Formulas   are   written   without   ∀  
 

  L(  ∃ Xn+1 . ϕ(X1, ..., Xn+1) )   = pr( L ( ϕ(X1, ..., Xn+1)  ) 

  A(  ∃ Xn+1 . ϕ(X1, ..., Xn+1),  k )   = pr( A ( ϕ(X1, ..., Xn+1),  k ) 
 

where   pr  is  the  projection   that  eliminates   the  last  Boolean;         

    a   non-deterministic   automaton. 
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Some   tools   for   constructing   automata 
 

 Substitutions   and   inverse  images  (cylindrifications). 
 

 1) If   we   know  A( ϕ(X1, X2),  k) , we  get  A( ϕ(X4, X3),  k) because : 

   L( ϕ(X4, X3) ) =  h-1 ( L( ϕ(X1, X2))  )     where  

 h   maps  (a , (w1, w2 , w3, w4))   to   (a , (w4, w3)).      We   take   

    A( ϕ(X4, X3),  k) =  h-1 ( A( ϕ(X1, X2)),  k  )  

 This  construction preserves  determinism  and  the number  of  states.  
                         Set   term    

     2)  From  A( ϕ(X1, X2),k), we  get  A(  ϕ ( X3, X1∪ (X2 \ X4 )),k)  by h-1 

 with  h  mapping  (a , (w1, w2 , w3, w4))  to  (a , (w3, w1 ∨(w2 ∧ ¬w4 )))   
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   Relativization   to    subsets   by   inverse   images. 

 

 If   ϕ  is  a  closed  formula  expressing  a  graph  property  P, its 

relativization  ϕ [X1]   to  X1  expresses  that  the  subgraph  induced  on  

X1   satisfies  P.   To   construct   it,  we  replace  recursively  

     ∃ y. θ   by    ∃ y. y ∈ X1  ∧ θ,  etc… 

 However,   there   is  an  easy  transformation  of  automata :   

 Let   h   map  (a , 0)   to   ∅    and   (a ,1)   to   a.   

L( ϕ [X1] ) =  h-1 ( L( ϕ) )  

 Hence:   

A( ϕ [X1] ,  k) : =  h-1 ( A( ϕ),  k)  
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The   inductive   construction  (continued) :   
 

Complete   deterministic   automata   for  atomic  formulas  and   basic   

graph  properties :  automaton   over   F(n)  recognizing  the  set of  terms  

     t * (V1,…,Vn)   in   L(ϕ(X1,…,Xn))   
 

 Intuition :  in all cases,  the  state  reached  at  node  u  represents  a  

finite  information   q(u)   about   the  graph  G(t / u)  and  the restriction of 

V1,…,Vn   to   the   vertices   below   u     (vertices  =  leaves) 

 1)  if  u =  f(v,w),   we  want  that  q(u)  is  defined  from  q(v)  and  q(w)  

by   a   fixed   function  :     the  transition  function ;  

 2)  whether  (G(t), V1,…,Vn)   satisfies   ϕ(X1,…,Xn)  must   be  

checkable  from  q(root) :      the accepting states.  
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Atomic  and   basic  formulas   :   

 

X1  ⊆  X2 ,    X1 = ∅ ,    Single(X1), 

 

Card p,q (X1) :  cardinality of  X1  is  =  p   mod.  q, 

 

Card < q (X1) :  cardinality of  X1  is   <  q. 
 

 

 Easy constructions with  small  numbers  of  states :  

  respectively  2,  2,  3,  q,  q+1. 

 

Example :  for  X1  ⊆  X2 ,  the term  must  have  no  constant  (a, 10).
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Atomic  formula  :   edg(X1,X2)   for  directed  edges    
 

 edg(X1,X2)  means :   X1  = { x }  ∧  X2 = { y }    ∧   x                y 

 Vertex   labels  belong  to  a   set    C   of   k   labels.  

 k2+k+3   states  :  0, Ok, a(1), a(2), ab, Error,      for a,b  in   C , a  ≠  b 

Meaning  of  states  (at   node  u  in  t ; its  subterm  t/u   defines    G(t/u)  ⊆  G(t) ).  

 0   : X1 = ∅  , X2 = ∅   

 Ok        Accepting   state :    X1 = {v}  , X2 = {w}  ,  edg(v,w)  in  G(t/u)   

 a(1) : X1 = {v}  , X2 = ∅ ,  v  has  label  a  in  G(t/u)   

 a(2)  : X1 = ∅  , X2 = {w}  ,  w  has  label  a  in  G(t/u)   

 ab  : X1 = {v}  , X2 = {w}  , v  has  label  a, w  has  label  b  (hence v ≠  w) 
             and  ¬edg(v,w)   in  G(t/u)    

 Error   : all  other  cases
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 Transition  rules  

 For  the  constants  based  on    a : 

 (a,00)   0  ;  (a,10)   a(1)  ;  (a,01)    a(2)  ;    (a,11)    Error 
 

 For  the  binary  operation  ⊕:           ⊕                     r     

 (p,q,r  are  states)        p               q  

 

  If  p = 0  then  r := q  

  If  q = 0  then  r := p 

  If  p = a(1),  q =  b(2)  and  a  ≠  b   then   r  := ab 

  If  p = b(2),  q =  a(1)  and  a  ≠  b   then   r  := ab 

  Otherwise  r  : =  Error 
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 For  unary  operations   Adda,b       Adda,b                 r      
 

                        p     

  If  p = ab   then  r  :=  Ok   else  r  : =  p 

 

 For  unary  operations   Relaba         b  

 

  If   p = a(i) where   i = 1 or 2       then     r : = b(i)  

  If   p =  ac   where  c ≠ a  and  c  ≠  b    then     r : =  bc      

  If   p =  ca   where  c ≠ a  and  c  ≠  b   then     r : =  cb       

  If   p =  Error  or  0  or  Ok  or  c(i)  or  cd   or  dc   where   c ≠ a   

            then     r : = p   
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 4.  Practical   difficulties   and  (some)  remedies. 
 

 Parsing :   
 

 Case  of  clique-width: 

  Checking  if  a  graph  has  clique-width <  k  is  NP-complete  (with 

k  in  the  input ; Fellows  et  al.) 

 

  The  cubic  approximate  parsing  algorithm  (by  Oum et al.) based  

on  rank-width   is  not  (directly)  implementable. 
 

 

Remark: For certain classes  of  graphs  of  bounded  clique-width  defined  by  forbidden  

induced  subgraphs,  optimal  clique-width  terms  can  be  constructed  in  polynomial  

time, by  using  in many cases,  modular  decomposition. 
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Case  of  tree-width:  (bounded  tree-width  implies  bounded  clique-width) 

   

  Checking  if  a  graph  has  tree-width <  k  is  NP-complete  (with k  

in  the input ; Arnborg  et  al.) 

 
 

  The  linear-time  exact   parsing  algorithm  by  Bodlaender (for  

tree-width)  takes  time  O( 2 32.k.k.k . n ).  There  are  usable   algorithms  

for  (non-random)  graphs  with  50  vertices  and  tree-width < 35 

(Bodlaender &  Koster).    
 

Specific  algorithms : Flow-graphs  of  structured  programs  have  tree-width  at  most 6  

and  tree-decompositions  are  easy  to get from  the  parse  trees  of  programs  (Thorup). 
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Sizes   of   automata : 

 The  number  of  states  of  A(ϕ, k)   is  bounded  by  an  h-iterated  

exponential  where  h  is  the  number  of  quantifier alternations  of  ϕ .  

 

 There  is  no  alternative  construction  giving  a  fixed bound  on  

nestings  of  exponentiations   (Meyer & Stockmeyer, Weyer, Frick & Grohe). 
 

     The  construction  by  induction  on  the  structure  of  ϕ  may  need  

intermediate  automata  of  huge  size,  even  if   the  unique   minimal  

deterministic   automaton  equivalent   to   A(ϕ ,k)   has  a  manageable  

number of  states.  
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Soguet  et  al.  using   MONA  have constructed  automata   for   the 

following  cases ;  no success  for  clique-width  4  : 
 

 

       Clique-width 2      Clique-width  3  

  MaxDegree<3    91   states     Space-Out 

  Connected       11   states              Space-Out 

  IsConnComp(X)       48   states                 Space-Out 

  Has<4-VertCov  111 states    1037    states 

  HasClique > 4         21 states    153      states 

  2-colorable               11   states     57       states 
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One  can  avoid  the  inductive construction  and  construct   “directly”  

deterministic  automata  for  basic  properties : NoEdge, Connected, NoCycle 
  

  Property  Partition 
(X1,…,Xp) 

edg(X,Y) NoEdge

  

Connected,

NoCycle 
for degree <p

Path(X,Y) Connected, 

Nocycle 

Number  of
states 
N(k) 

 

2 

 

k2+k+3

 

2k 

 

2O(p.k.k) 

 

2O(k.k) 

O(k) 

   22 

 
 Examples   of   automata   too   large   to   be   constructed,  i.e.,  “compiled”: 

 for k  = 2 :  4-colorability, 3-acyclic-colorability, NoCycle   (i.e., is a forest)  

 for  k = 4 :   connectedness,      for  k = 5 :   3-colorability, clique.            k/2 
 The  minimal  deterministic  automaton  for  Conn(X) has  more  than 2 2 
 states.  
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An  issue  : Fly-automata  
  

 States  and  transitions  are  not  listed  in  huge  tables :    

 they  are  specified  (in uniform ways for all  k) by  “small”  programs. 

 Can be nondeterministic. 
 

 Closure   properties: 
 

  Union  ( for  ∨  ) 

  Product ( for   ∧  ) 

  Image   ( for  ∃ ) 

  Inverse   image   ( for  substitutions  and  relativization) 

  Determinization. 
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 Example  of  a  state  for  connectedness : 

  q = { {a}, {a,b}, {b,c,d}, {b,d,f} },                    

  a,b,c,d,f  are  vertex labels; q  is  the  set  of  types  of  the  connected 

  components  of  the  current  graph.  (type(H)  =  set of labels of its vertices) 

 Some  transitions :               

  Adda,c :    q            { {a,b,c,d}, {b,d,f } },                    

  Relaba       b: q            { {b}, {b,c,d}, {b,d,f } }   

  Transitions   for   ⊕ :  union  of  sets  of  types.  
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 Using  fly  automata  works  for  formulas  with  no  quantifier  

alternation   that  use  “new”  atomic   formulas   for  “basic”  properties 
 

 Examples :  p-acyclic  colorability   
 

 ∃ X1,…,Xp (Partition(X1,…,Xp)  ∧  NoEdge(X1)  ∧ ..... ∧  NoEdge(Xp)  ∧ ... 

   ...... ∧  NoCycle(Xi ∪ Xj)  ∧ ...)      
      (all  i < j ; set terms Xi ∪ Xj  avoid  some  quantifications). 

  

Minor  inclusion : H  simple, loop-free.  Vertices(H)  =  { v1,…,vp }  
 

 ∃X1,…,Xp (Disjoint(X1,…,Xp)  ∧  Conn(X1)  ∧ ... ∧  Conn(Xp)  ∧ ... 
   ...  ∧  Link(Xi , Xj)  ∧ ...  ) 
      

 Existence   of  “holes”   :  odd  induced  cycles  (to  check  perfectness ; one 

checks  “anti-holes”  on  the  edge-complement  of  the  given  graph).
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Some   experiments,  by  Irène  Durand. 
 
 3-colorability  of  the  6 x 7  grid  (of  clique-width  8)  in  7 minutes, 
  of  the  6 x 33  grid  (of  clique-width  8)  in  90  minutes. 
 
 3-colorability  of  the  Petersen  graph  (clique-width 7)  in  1.5 second,   
 its  4-acyclic-colorability  in  4  minutes (*). 
 
 (3-colorable  but  not  acyclically;  

 red  and  green  vertices  

 induce  a  cycle). 

 
 (*)  For a term with annotations. 
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The  McGee  graph 
 
24  vertices,  
36   edges, 
clique-width  < 10. 
 
 
 
 
 
 
 
 
 
 
 
3-colorability  in  7 minutes, 
 
3-AC-colorability  in  12  hours.   
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Annotations : an  additional  tool 
 

 At   some  positions  in   the  given  term,  we  attached  some  (finite)  

contextual  information. 
Example : 

 At  position  u  in   t,  we  attach  the  set   

 ADDt(u)  =   the  set  of  pairs  (a,b)  such  that   some   operation   

 Addc,d  above  u  (hence, in  its  “context”)  adds   edges   between  the   

 (eventual)  vertices   below   u   labelled   by  a   and   b. 
 

 The sets  ADDt(u)   can   be  computed  in  linear time  by  means  of  a  top-

down   traversal  of  t.
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Motivation:  Certain   automata  on  annotated  terms  may  have  less  states.  

Example :  edg(X1, X2)  : 2k+3  states  instead  of  k2 +k +3         (cf.  page  34): 

     0, Ok, a(1), a(2), Error,      for a  in   C. 

 

 Transitions   for   ⊕  annotated   by   R :    ⊕,R                   r 

 (p, q, r  are  states)        p                  q  

 

  If  p = 0   then  r := q  ;  if  q = 0   then  r := p  ; 

  if  p = a(1),  q =  b(2)  and  (a , b ) ∈ R  ∧  then   r  := Ok ; 

           and  if  (a , b )  ∉ R  ∧  then  r  := Error ; 

  if  p = b(2),  q =  a(1)  :  idem ; 

  otherwise  r  : =  Error. 
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Other   examples : 

 

 For   Clique(X)   meaning   that   X   induces  a  clique :  

        2 k  +  2   states   instead  of  2 O(k.k) . 

 

 For   Connectedness  :  same   states   but   they  “shrink”  quicker  :  

    cf.  the   rules  for  Add a,c   on   page 43 

 

 Has been tested successfully  
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5.  Edge  set  quantifications  and  tree-width  
 

Incidence  graph  of  G  undirected,  Inc(G)  =  ( VG ∪ EG, incG(.,.).) 
 

incG(v,e)   ⇔   v  is  a  vertex  of  edge   e. 
 
 

Monadic  second-order   formulas   written  with  inc   can  use  

quantifications   on  sets  of  edges  :   

they  define   MSO2 –expressible  graph  properties. 

 
 

 The  existence  of  a  perfect  matching  or  a  Hamiltonian  circuit  is  

 MSO2 -expressible   but   not   MSO-expressible. 
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Exercises 
 

1)  Write an  MSO2-sentence  expressing  that  a  graph has  a  Hamiltonian cycle. 

 

2)  Write an MSO2-sentence  expressing  that  a  graph  has  a  spanning  tree  of   

degree  <  3.  (This  property  is  not  MSO-expressible). 
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MSO2   model-checking 
 

-  For  an  FPT  algorithm,  the  parameter  is  tree-width  and  cannot  

be  clique-width.  By Kreutzer, Makowsky et al. MSO2 model-checking needs 

restriction to  bounded   tree-width  unless  P=NP,  ETH,  Exptime=NExptime.    

-  MSO2- model-checking  reduces  to  MSO- model-checking:  

 Given  G (can have mult. edges) we build  a  tree-decomposition of  G, 

 then  a  tree-decomposition of  its  Inc(G)  of   same width  k  (easy), 

 then  a  “clique-width”  term  for  Inc(G)  of   width  <  2O(k)   
          (exponential  blow-up, not avoidable). 

An  MSO2   property  is  MSO  on  Inc(G): hence, we can  apply the  

previous algorithm.   

Problem :  the  exponential  clique-width of  Inc(G)   
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  Graph  operations  that  characterize   tree-width 
 

 

Graphs have  distinguished vertices called sources, (or terminals or boundary 

vertices) pointed  to  by  source  labels  from  a  finite set  :    {a, b, c,  ..., d}. 
 

Binary operation(s)  : Parallel  composition 
G // H   is  the  disjoint  union of  G  and  H  and sources  with  same  label  are   

fused.  
 

(If  G  and  H  are  not  

disjoint,  we  use  

a  copy  of  H 

disjoint  from  G). 
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Unary operations   :     

 Forget   a   source   label  
     

    Forgeta(G)  is  G  without  a-source:  the  source  is  no  longer  distinguished  

(it  is  made  "internal"). 

       Source renaming : 
 

Rena      b(G)  exchanges  source  labels  a  and b     

(replaces  a  by  b   if  b  is not  the label of any source) 
 

Nullary operations   denote   basic graphs  : 1-edge  graphs,  isolated  vertices. 
 

Terms  over  these  operations  define  (or denote)  graphs  (with or without 

sources). They   can  have  parallel  edges. 
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Example : Trees  

Constructed  with  two  source  labels, r  (root)  and   n  (new root).  

Fusion   of   two   trees   

at  their  roots  :  

 

 

 

 

 

 

 

 

 

Trees   are  defined  by  :    T =  T // T  ∪  extension(T)  ∪  r  

 

Extension of a tree by parallel composition 

with a new edge,  forgetting the old root, 

making   the "new root"  as  current  root : 

e  =  r  •_________•  n 

Renn         r  (Forgetr (G // e ))  
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 Relation   to   tree-decompositions   and    tree-width 

 

 

                                                  Tree   T 

 

         Graph  G                                                                                 Tree-decomposition  

                   (T,f)   of   G  

Dotted  lines  - - - -   link  copies  of  a  same  vertex.  

Width  = max. size  of  a  box  -1.      Tree-width    =  min.  width  of   a  tree-dec. 
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Proposition:    A  graph  has   tree-width  ≤  k    ⇔   it  can  be  constructed   from  

edges   by   using   the  operations  // , Rena     b  and  Forgeta   with  ≤  k+1  

labels  a,b,….   

 

Proposition :   Bounded   tree-width   implies   bounded   clique-width  

        (cwd(G) < 22twd(G)+1  for   G   directed), but   not   conversely. 
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From  an  algebraic  expression  to  a   tree-decomposition 

Example : cd // Rena       c (ab // Forgetb(ab // bc))            (ab  denotes  an edge from  a   to  b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                         The   tree-decomposition  associated  with  this  term. 
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Automata  for  the  model-checking  of  MSO2  formulas 
 

  

 To  extend the  method  used  for  bounded clique-width,  we  need  a  

representation  of  vertices  and  edges  by  occurrences  of  operations  

and  constants  in  the terms representing  tree-decompositions. 

  

 Undirected  graphs  of  tree-width  <  k-1  are  denoted  by  terms  over  

the operations :  //, Forgeta  and  the  constants a, ab  for  a,b  ∈  

[k]={1,…,k},   without   renamings   of   labels. 
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        First    method 

 

Vertices  are  represented  at   

the occurrences of Forget  operations.  

The  edges  are  at   the  leaves   

of   the  tree,  below   the  nodes   

representing  their ends.  

 

The   automaton   for  edg(X,Y)   

has   2Θ (k.k)    states  (compare   with  O(k2 )  , cf. page  34 
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 Second    method  
 

 

Vertices  are  represented  at   

the  leaves,  the  edges  are   

at  nodes  close  to  those  repre- 

senting  their  ends.  

Because   of   //  which  fuses  some  

vertices,   each  vertex   is   

represented   by  several  leaves. 
 

On   the   figure,  vertex  a   is  

represented   by   two  leaves. 
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Equality  of  vertices  is  an   equivalence  relation   ~   on  leaves.   

 

Hence:    there  exists  a   set  of  vertices  X  such  that …   

 

is   expressed  by: 
     

    there  exists  a  set  of  leaves  X, saturated  for   ~  such that … 
 

Same   exponential   blow   up  as   with  the  first  possibility. 
 

Note :  The   responsible   is   //.    
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Improving   the  first  method  by  annotations   
 

  

 Recall:  the   vertices   are  in   bijection  with   the  occurrences  of  the  

Forget  operations.   
 

 The  annotation :  at  each occurrence  u  of  Forgeta   representing  a  

vertex x  is  attached  the  set  of  labels b  such  that  the  first 

occurrence  of  Forgetb   above  u  represents  a  vertex  adjacent  to  x. 

  

The   automaton  for  edg(X,Y)  has    22k +2 states  (instead of  2Θ (k.k) ).  

The   automaton  for  in(X,Y)  has    k(k-1)/2 + 3 states.  

Incidence  and  adjacency  are  handled separately  on  “redundant”   

representations  of   graphs  by   terms (edg  by using  the  annotation).
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Conclusion 
 

  1.  Using  automata  for  model-checking  of  MS  sentences  on  

graphs  of  bounded  tree-width  or  clique-width  is  not  hopeless  if  we 

use fly-automata, built  from  (possibly  non-deterministic)  “small”  

automata  for  basic  graph  properties  (and their  negations), and  for  

sentences  without  quantifier alternation.   
 

  2.  More  tests  on  significant  examples  are  necessary,  and also  

comparison  (theory  and  practice)  with  other  approaches : games,  

monadic  Datalog,  specific  problems,  “Boolean  width”. 
 

  3. One can  adapt  fly-automata  to  counting  and  optimization  

problems  ?  However, this extension should be tested.  


