
  

 

The  expression  in  monadic second-order  logic  of   

some  graph  polynomials 
 

Bruno  Courcelle   
 

Institut  Universitaire  de  France  &  Université  Bordeaux 1,  LaBRI  
 
 

Reference: A multivariate interlace polynomial and its computation for 

graphs of bounded clique-width,  
Electronic  Journal  of  Combinatorics  15 (2008), R69.  

Readable for free on : http://www.combinatorics.org   



Some  general  objectives : 
 

 Logical  descriptions  of  graph  polynomials 

 Application  to  their  computations 

 Systematic  construction  of  recursive  definitions 

 Building  a  Theory  of  Graph Polynomials  with methods  

from  Term  Rewriting  Systems  and  Logic,  rather  than  

accumulating  anecdotal  results.  

 (A  project  initiated  by  J. Makowsky; see  the dissertation  of   I. 

Averbouch, 2011, Technion, Haïfa). 



Many  graph  polynomials  (chromatic, interlace, matching, etc.) 

 have  been defined.   Some  questions  about them  are : 
 

- particular  values,  or  combinatorial  interpretation  

 of  their coefficients, or of their  roots, 

- equivalent  definitions, explicit  or  recursive, 

- relationships  with  other  polynomials 

I  will  consider : 

(1)  Logical  definitions  and  algorithmic applications 

(2)  Equivalences  of  definitions  by  bijective proofs 

(3)  Remarks  on recursive  definitions by elimination. 



0. Introduction:  Different  types  of  polynomials. 

 

    The  chromatic  polynomial :  The    function  

Pchrom(G)(x) := the number of proper x-colorings of G 

is a  polynomial  function  because  it  satisfies : 

          Pchrom(G)(x) = Pchrom(G – e)(x) - Pchrom(G / e)(x)  

          Pchrom(•)(x) = x  

G – e : edge  deletion;   G / e : edge  contraction. 

#  of  acyclic  orientations  of  G : =  (-1)n Pchrom(G)( - 1) 



Explicit  expression  :   Pchrom(G) = Σ A ⊆ E  (-1) ⎜A⎜. x k(A) 

 

E: edges, k(A) = #  of  connected  components  of  G[A]=(V,A).   

 

 

     The  recursive  definition  gives  proofs  of  these  facts, 

but  no  explanations. 

  

     The  values  matter; its coefficients also have combinatorial 
meanings.



Generating  functions 
 

The  Matching  polynomial : 

       M(G)(x) :=  Σ k   matchk. x k 
 

matchk  is  the  number  of  k-matchings  of  G  (= 0 if 2k > n). 
 

The Vertex Cover polynomial :  

        VC(G)(x) :=  Σ k   vcoverk. x k 
 

vcoverk  is  the  number  of  vertex  covers  of  G  of  size  k 

 

The coefficients matter more  than the values. 
The  chromatic polynomial, having negative coefficients, is not of this type



1.   Multivariate  (enumerating)  polynomials 
 

Idea: - variables are indexed by vertices or edges: xe, xv  

   - these variables may take meaningful values: 
probabilities, weights, etc. 

    If A  = {e1, …, ep}  ⊆  E,  then : 

     xA  :=  xe1…xep    with    x∅ := 1. 

    If  S  is  a  set  of  subsets  of E, then, the  polynomial  

    Enumx(S) := ΣA ∈ S  xA     

    describes  S   (with Enumx(∅) = 0). 

 Remark :  Enumx(S)[ xe    1 ; all  e ]  =  ⎜S ⎜. 



Polynomials  defined  as  generating  functions  “come  

from”  multivariate  enumerating  polynomials:  

 

M(G) :=  Enumx(set  of  matchings  of  G)   

with  variables  indexed  by  edges. Clearly, 

M(G) = M(G)[ xe   x ] 

 

A  “mixed”  example  (Sokal, “Potts model”  in  physics).  

Z(G)(u ; xe,  e ∈ E)  =  Σ A ⊆ E  xA . u 
k(A) 

  



Multivariate  polynomials  can  be  defined  with Logic 

      

       A  general  and  basic  form (enumerating  polynomials  of  

sets  of  triples  of sets): 

          Σ ψ(A,B,C)   xA . yB . zC  

where  ψ(A,B,C)   is  a  condition  on  sets  of  vertices  and/or 

edges  expressed  in  a  logical  language:  first-order  or  monadic 

second-order  logic. 



Example of monadic  second-order  property: 

for G = (VG ∪ EG , < , inG )  

with  inG(e,v) if and only if  v is an edge of e. 

 

For  A  ⊆  EG , G[A]  is not connected  iff  G satisfies: 

∃ X, set of vertices  (∃x ∈ X ∧ ∃y ∈ VG - X ∧  
          ∀e ∈ A (∀u,v (in(e,u) ∧ in(e,v) ∧ u ∈ X  ⇒ v ∈ X)  ) 

 



 

Example   of   Z(G)  (using  < ) 

        Z(G)(u ; xe, e ∈ E) = Σ ψ(A,B)   xA . u ⎜B ⎜  

ψ(A,B)   means :  

   A  is  a  set  of  edges, B  is  the  set  of  minimal  vertices  of   

   the  connected  components  of   G[A].     Hence  k(A) =  ⎜B ⎜ 

The linear  order  associates  a  unique  B  with  each  A. 

Z(G)  is order-invariant. 

Z(G) =( Σ ψ(A,B)   xA . u B)[ uv   u ; all  vertices v ] 

 



Evaluations   and  computations 

 

   Evaluation : for  given  values  of  the  variables 

   Computation : the polynomial, or  part  of  it, typically  its 

monomials  of  degree  at  most  given   d. 

   Usually difficult:  

 Pchrom(G)(3) > 0  if and only if  G is 3-colorable (NP-

complete). 

 VC(G)  has a  non-null coefficient  for xk if and only if  G 

has a vertex cover of size k (NP-complete).



 

Theorem : Monadic  second-order  polynomials  can  be 

computed  in  linear time  for  input  graphs  of  bounded tree-

width  or  clique-width. 

“linear”  =  O(size of input + size of output). 

This  result  covers  the following ones (non-multivariate) : 

1) Tutte polynomial for graphs of bounded tree-width (Noble, 

Andrzejak, 1998) 

2) Interlace polynomial for distance-hereditary graphs (of 

clique-width 3) (Ellis-Monagham,Sarmiento, 2006) and graphs of 

bounded tree-width (Bläser, Hoffman 2010) 



Ideas  behind  that: 
(1)  graphs  of  bounded  tree-width  or clique-width  are  built with  

disjoint  union  ⊕ and  certain  quantifier-free  unary operations 

(edge complement, relabelling  of  vertices, addition of new edges 

specified by vertex labels, …)  

 

 

 

 

 

 

             

            
 

 

 



(2) Sat(G, ϕ, X1,…,Xn) := the set of n-tuples  of  sets  in  G that  

satisfy  ϕ  is  computable  inductively  on  any  term 

representing  G.  Main  facts: 

(2.1) Splitting  Theorem :  One can construct formulas  ψi, θi , i = 

1,…,p,  of  no larger quantifier-height  than  ϕ   such  that  for  all  

disjoint  G  and  H  : 

Sat(G ⊕ H, ϕ, X1,…,Xn)  is  the  disjoint  union  of   the sets  

    Sat(G, ψi, X1,…,Xn)  ◊  Sat(H, θi, X1,…,Xn),  i = 1,…,p, 

where   ◊   combines  “partial  answers”  as  follows :   

A ◊ B = { (A1 ∪ B1,…,An ∪ Bn) /  (A1,…,An)  ∈ A , (B1,…,Bn) ∈ B }   



    (2.2)  Backwards  Translation Lemma :  If  f  is  a  quantifier-free   

mapping, every  ϕ  has  a  backwards translation  f #(ϕ) relative  to  

f such  that  for  all   G: 

    Sat(f (G), ϕ, X1,…,Xn)  =   Sat(G, f #(ϕ), X1,…,Xn)   

where   f #(ϕ)   has  no larger  quantifier-height   than   ϕ. 
 

    For  the edge complement, replace in  ϕ  edg(x,y)  by  ¬edg(x,y) 

   

     In  (2.2) :  f #(ϕ) has  no larger  quantifier- height   than  ϕ  

because  f is quantifier-free. 



Application  to  polynomials 

 

Take the case n=1.  Then  A ◊ B= { A1 ∪ B1 /  A1∈ A , B1 ∈ B}   

Let     Pϕ(G)(x) := Enumx( Sat(G, ϕ, X1) ).  

Enumx( A ◊ B) = Enumx(A) . Enumx(B)  

                            if A and B are over disjoint sets. 

Enumx(A∪B) = Enumx(A) + Enumx(B) if A and B are disjoint  



The  Splitting Theorem  gives : 

Pϕ(G ⊕ H)(x)  = Σi  Pψi (G)(x) . Pθi (H)(x) 

The polynomials  Pψi  and  Pθi   must splitted similarly. 

       For  the unary operations, the Backwards Translation 
Lemma   gives : 

                  Pϕ(f (G))(x) =  Pf #(ϕ) (G)(x)  

 For  elementary graphs  B,   Pϕ(B)  is computed from the 
definitions. 

 We get the simultaneous computation in “linear” (sic!) 
time of finitely many polynomials, for the given ϕ and the 
generated auxiliary formulas. 



Substitutions:  

Pϕ(G ⊕ H)(x)  = Σi  Pψi (G)(x) . Pθi (H)(x) 

gives  : 

Pϕ(G ⊕ H)(x) […] = Σi  Pψi (G)(x) […]. Pθi (H)(x) […] 

where  […] is a substitution of integer or real values, or of 

variables or   terms to the variables.  

        The same inductive computation applies for the 

evaluation or the  computation  of  other polynomials 

obtained  by  substitutions. 



3. Equivalent  definitions of  the  Tutte  polynomial: 

             A  bijective  proof  at  the multivariate level. 

The  Tutte  polynomial     (also  for  matroids). 

T(G)(x,y) = x . T(G / e)(x,y)             if  e  is  a   “bridge”   

                                                     (if  deleted, yields one more c.c.) 

T(G)(x,y) = y . T(G  -  e)(x,y)        if  e  is  a  loop,  and otherwise   

T(G)(x,y) = T(G - e)(x,y)  +  T(G / e)(x,y)   

T(•)(x,y) = 1 

Well-defined (same value  independently of the order of 
elimination of edges).   



Meanings :     

   

T(G)(1,1) = #  of spanning trees, 

T(G)(2,1) =  #  of  forests  ⊆  G,      

T(G)(2,0) = #  of  acyclic orientations,     

 

probability  of  connectedness  if  one  deletes edges  with  

probability p. 

 

Pchrom(G)(x) = (-1)n - k(G) xk(G) T(1 - x,0)  



Other  expressions   (for  G  connected) : 

(1)  T(G)(x,y)  = Σ A ⊆ E  (x - 1) k(A) - k(E)  (y - 1) ⎜A ⎜ + k(A) - ⎜V ⎜. 

     k(A) - k(E) = r(E) – r(A) ;  ⎜A ⎜ + k(A) - ⎜V ⎜ =  ⎜A ⎜ - r(A)   (matroid rank)  

     = R(G) [x  x -1 ; y   y-1 ]   (R(G)  the “rank”  polynomial) 

Its  “spanning tree expansion”: 

(2)  T(G,<)(x,y) = Σ i, j  t i, j . x i y j  

  where  t i, j  is the number of spanning trees  that  have i  internally  

active  edges  and  j  externally  active  ones; these notions are  

relative  to  the  linear  order  <,  but  T(G,<) is  order-invariant. 



A  bijective  proof  that     T(G,<)  =  T(G).   

      (Usual proofs, cf. Bollobas, show that the 2 definitions satisfy the  

       recursive definition; they explain nothing.)  

Lemma 1:(1) If B ⊆ E, xB[xe  xe+1; all e] =  Enumx(P(B)) 

(2) For S ⊆ P(E):  

       Enumx(S)[xe  xe-1; all e]  has  positive  coefficients   

if and only if  S = P(B) for some B ⊆  E. In this case, it is 

equal  to xB =Enumx({B})  

Example: S = { ∅, {a}, {b}, {a,b} }  

Enumx(S)[xe  xe - 1]= 1+xa-1+xb-1+(xa-1).(xb-1)= x{a,b}



The  bijective proof  that: 

T(G) := Σ A ⊆ E (x - 1) k(A) - k(E) (y - 1) ⎜A ⎜ + k(A) - ⎜V ⎜  

          = R(G)[x  x-1; y  y-1]          (“rank polynomial”) 

         = T(G,<) := Σi, j  t i, j . x i y j  

We  have  T(G,<) = T(G,<)[xe  x ; ye  y]     where  

T(G,<) := Σ B spanning tree x IIIAAA(((BBB))) yEEEAAA(((BBB))) 

Hence (Lemma 1) : T(G,<)[xe  xe+1 ; ye  ye+1]  

        = Σ B spanning tree Σ C ⊆ IIIAAA(((BBB))),,, D ⊆ EEEAAA(((BBB)))  xCCC yDDD 



Lemma 2 : For  every  set  of  edges  A, there  is  a  unique 
spanning  tree  B  of  G  such  that    A - B  ⊆  EA(B)   and    B - A  
⊆  IA(B). 

   Let    B(A):= B,    C(A):= B - A,  D(A):= A - B. 

             ⎜C(A) ⎜ =  r(E) – r(A) =  k(A) - k(E) 

             ⎜D(A) ⎜ =   ⎜A ⎜ – r(A) =   ⎜A ⎜ + k(A) - ⎜V ⎜. 
   

 We have  a  bijection :   

     A  (B(A), C(A), D(A)). 

T(G,<)[xe  xe+1 ; ye  ye+1]  

= Σ B sp.tree Σ C ⊆ IIIAAA(((BBB))),,, D ⊆ EEEAAA(((BBB))) xCCC yDDD 

= ΣA⊆EEE ΣxCCC(((AAA)))yDDD(((AAA)))   ...   



   

T(G,<)[xe  xe+1 ; ye  ye+1] = ΣA⊆EEE ΣxCCC(((AAA)))yDDD(((AAA)))   ... 

   BBByyy   aaapppppplllyyyiiinnnggg   ttthhheee   sssuuubbbssstttiiitttuuutttiiiooonnn   [[[xe  x; ye  y]]],,,   wwweee   gggeeettt      

T(G,<)[x  x+1 ; y  y+1] = ΣA ⊆ EEE Σ x ⎜ CCC(((AAA))) ⎜ y ⎜ DDD(((AAA))) ⎜ ===   RRR(((GGG)))... 

    Hence, T(G,<) =R(G)[x  x - 1 ; y  y - 1]. 

 

Conclusion : Now  we  know  the  property  that yields the 

equality :  T(G,<) =R(G)[x  x - 1; y  y - 1] 

and (with Lemma 1(2)), we understand why the coefficients of 

R(G)[x  x -1; y  y -1] are not negative. 



Remarks :  

(1) There is a monadic second-order formula  θ(A,C,D)  

expressing in  (G,<)  that  C=C(A)  and  D=D(A). Hence, 

R(G) is an  MS-definable  polynomial. 

(2) There  is  a monadic second-order formula  ψ(B,J,K)  

expressing in (G, <)  that  B is a  spanning tree, J = IA(B)  

and K= EA(B). Hence, T(G,<) is an MS-definable  

polynomial: 

      T(G,<) = (Σ ψ(B,J,K)xJJJ yKKKzzzBBB   )))[[[xxxeee xxx   ;;;   yyye yyy   ;;;   zzz 111]]] 

This  fact  shows the  existence  of  a  polynomial  algorithm  

for computing it on graphs of bounded tree-width. 



3.  Recursive  definitions  of  polynomials 

Two   types: 

- Induction  of  the  structure  of  graphs  of  bounded tree-
width  or clique-width  : yields  polynomial  algorithms. 

-  

- Elimination  of edges or vertices (cf. chromatic polynomial) : 

       Useful to prove properties, but proofs are not informative 
(as can be bijective proofs, cf. Tutte polynomial) 

       No efficient algorithms ;    not always well-defined 

       Do  not  help  to  understand  the  “meaning”  of  the 
considered  polynomial. 

        But  give  some  criteria  to  classify  and  compare  
graph  polynomials. 



Examples  illustrating  these  points. 

The  following  definitions  are  all  “multiplicative” : 

      P(∅) = 1 ,  P(G ⊕ H ) = P(G).P(H)     (⊕ :  disjoint union) 

(1)  The most general “chromatic” polynomial: 

Uchrom(x,y,z) = z . Uchrom(G - e) + y . Uchrom(G / e)  

Uchrom(•)(x,y,z) = x 
 

Fact 1 :  Uchrom(G)  is  well-defined  (same  result  for  every 
order  of  elimination  of  edges)  because  edge deletions 
and  contractions  commute:   

G - e - f  =  G - f - e,         G / e / f  =  G / e / f,  
 G - e / f   =  G / f  - e. 



Fact 2 : Every  polynomial  of  “chromatic type”  is  obtained 

from  Uchrom(G)  by  a  substitution  to  x,y,z 

 

Fact  3 : We get  the explicit  expression of Uchrom(G): 

Uchrom(G)(x,y,z)  = Σ A ⊆ E  x k(A) y ⎜A ⎜ z ⎜E - A ⎜. 

Hence : 

Uchrom(G)(x,y,z)  = z ⎜E ⎜. Uchrom(G)(x,y/z,1)   

        Two  variables  suffice (in Uchrom(G)(x,y,1)  ) to get the 

full expressive power. 



(2)  Other  families  of  polynomials  based  on edge 

elimination : 

“Universal  Matching  polynomial”: 

Umatch(G) =  α . Umatch(G  -  e)  +  β . Umatch(G ↓ e)    

Umatch(•)  = γ 

where  G ↓ e  is  the  induced  subgraph G[ V- the  ends  of  e]. 

Origin: the  “matching  polynomial” : α = γ = 1, β = x. 

M(G)(x) = Σ k  m(G,k) x k,      m(G,k) =  # of k-matchings. 

Fact :  Umatch  is  well-defined  if  and  only  if  (α - 1) β = 0.  



“Universal  edge  elimination polynomial” : 

Uedgelim(G) =   

     α .Uedgelim(G  -  e)  +  β .Uedgelim(G ↓ e)   +  δ . Uedgelim(G/e)    

Uedgelim(•)  = γ 

Fact 1 : well-defined  if  and  only  if  (α - 1) β = 0.  
which  gives  two  types : 

        α .Uchrom(G  -  e)  +   δ .Uchrom(G/ e)    

        Uvcover(G  -  e)  +  β .Uvcover(G ↓ e)   +  δ .Uvcover(G/ e)    
 

Fact 2 : For  α = δ =1,  β = x,  γ  = x+1,  we   get  

VC(G)= Σk  vc(G,k) x k    (vc(G,k) =  #  of vertex covers of size k)



Conclusions 

   1. Computation  and  evaluation  are  difficult in general. 

   2. Almost  all  graph polynomials are  MS  definable (using 

substitutions in “basic MS polynomials”), hence have 

“efficient”  algorithms  for graphs of bounded *-width. But  

more direct  algorithms are  interesting (Bläser,Hoffmann, STACS 

2008). 

   3. Bijective  proofs  at  the  multivariate  level  help to 

understand  matters: see above  for Tutte’s  (and Gioan’s 

work). 



   4. Explicit definitions are more informative than 

“vertex/edge eliminating recursive definitions”. Are there  

general tools for obtaining such  recursive  definitions  from 

explicit ones, and/or  vice versa ? 

           Which  “elimination rules”  are appropriate  for  which 

polynomials? 

           Relationships with well-quasi orders (minors, vertex 

minors) ? 

   5.  Some definitions look arbitrary: p.ex., the (x-1) factors in 

the interlace polynomial (but not in Tutte’s  as seen above). A 

classification  should  uniformize  the  numerous  definitions. 


