

Bruno Courcelle, LaBRI

000

Graph decompositions of finite graphs : useful for FPT algorithms and graph structure (Graph Minor Theorem, perfect graphs). Width measures are frequently associated with decompositions : tree-width, path-width, rank-width, linear rank-width, clique-width.

Graph decompositions and widths of countable graphs : Definitions ?

Compactness results : is wd(G) the least upper bound of wd(H), for all H, finite subgraphs of G ?

Yes for tree-width by Kriz & Thomas.

This talk : rank-width of countable graphs. Two notions of linear rank-width based on two different linear orders : **Q** and **Z**

Two notions of rank-width based on two types of trees : quasi-trees (cf. **Q**) and trees (cf. **Z**).

Different compactness results :

Rank-width (quasi-trees)	Yes
Discrete rank-with (trees)	Yes with gap: $n \rightarrow 2.n$
Linear rank-width (Q)	Yes
Discrete linear rwd (Z)	No

Rank-width : Countable, simple, undirected graphs.

If X and Y are disjoint sets of vertices, A[X,Y] is the adjacency matrix of G between vertices in X and in Y.

The rank over GF(2) of a countable matrix A[X,Y] is the *lub* (least upper bound) of ranks of its finite submatrices. A layout of a graph G is a pair (T, f): T is a tree (without root) of degree at most 3, f : injective mapping : V(G) \rightarrow Leaves(T) Each edge e of T yields a bipartition (X_e, X_e^c) of V(G) $(X_e \text{ or } X_e^{c} \text{ may be empty}).$ $rk(e) := rank of A[X_e, X_e^c]$ over GF(2) $rk(T,f) := lub \{rk(e) / e, edge of tree T\}.$ rwd(G) := minimal rk(T,f) over all layouts (T,f).

Property : (1) rwd(H) ≤ rwd(G) if H \subseteq_i G (induced subgraph) (2) If, between X and X^c, there are k pairwise disjoint edges, then rk(A[X,X^c]) ≥ k.

Examples : Trees have rank-width 1, cycles have rank-width 2; nxn square grids have rank-width n-1 (Jelinek, difficult proof).

Linear rank-width

Defined from layouts of the special form

Equivalent to a < b <c < d < e < f : a linear order on vertices. Edge bipartitions (X_e , X_e^c) are replaced by **Dedekind cuts** : bipartitions (X, X^c) such that X < X^c These definitions work for countable graphs.

Terminology : discrete rank-width, drwd(G); the good notion of "rank-width" will be different (for countable graphs).

Theorem : Discrete rank-width has compactness, but "only" with gap:

 $drwd(G) \le 2$. $Sup\{rwd(H) / H \subseteq_i G, H finite\}$

Proof : Compactness with gap : will come later.

No compactness. Counter-example :

G has vertex set Q partitioned into two dense subsets A and B.

If x < y, then x - y (edge) if and only if $y \in A$.

Every finite induced subgraph of G is a *threshold graph*, hence of rank-width 1. But $drwd(G) \ge 2$ (actually drwd(G) = 2 by the first fact).

Wanted: a definition of rank-width giving exact compactness. Linear rank-width as warming up.

Same as rank-width with layout = linear order on V(G). Bipartitions are defined from Dedekind cuts (X, X^c) (such that X < X^c).

There are 3 types of layout :

N, **Z**, suborder of **Q** (arbitrary linear order). Hence 3 notions of linear rank-width with: Lrwd_Q(G) < Lrwd_Z(G) < Lrwd_N(G) < 2.Lrwd_Z(G) Lrwd_N(G) is called *discrete linear rank-width*, denoted by dLrwd(G).

Lrwd(G) called *linear rank-width* is based on arbitrary linear orders.

Theorem : (1) Lrwd has the compactness property.

(2) dLrwd has not, even with a gap function.

Proofs : (1) Using Koenig's lemma.

(2) Counter-example :

P = the infinite path isomorphic to **N**

G = the union of ω disjoint copies of PLrwd(G) = 1 for order N + N + N + ... dLrwd(G) = ω . Rank-width based on quasi-trees.

In order to apply Koenig's lemma, we need a notion of tree closed under countably many insertions of nodes on a path, hence has least upper bounds for topological ordering.

We will define quasi-trees whose "paths" between two nodes can have countably many nodes.

Betweenness : If T is a tree, let $B_T(x,y,z)$ mean that y is on the path that links x and z. The following properties hold:

$$\begin{array}{l} \operatorname{A1}: B(x,y,z) \Rightarrow x \neq y \neq z \neq x.\\ \operatorname{A2}: B(x,y,z) \Rightarrow B(z,y,x).\\ \operatorname{A3}: B(x,y,z) \Rightarrow \neg B(x,z,y).\\ \operatorname{A4}: B(x,y,z) \wedge B(y,z,u) \Rightarrow B(x,y,u) \wedge B(x,z,u).\\ \operatorname{A5}: B(x,y,z) \wedge B(x,u,y) \Rightarrow B(x,u,z) \wedge B(u,y,z).\\ \operatorname{A6}: B(x,y,z) \wedge B(x,u,z) \Rightarrow\\ y = u \lor (B(x,u,y) \wedge B(u,y,z)) \lor (B(x,y,u) \wedge B(y,u,z)).\\ \operatorname{A7}: x \neq y \neq z \neq x \Rightarrow\\ B(x,y,z) \lor B(x,z,y) \lor B(y,x,z) \lor (\exists u.B(x,u,y) \wedge B(y,u,z) \wedge B(x,u,z)). \end{array}$$

Definition: A *quasi-tree* is a pair (N,B) where N is a set (its *nodes*) and B a ternary relation that satisfies Properties A1-A7. It is *discrete* if for each x, z, the set of nodes y *between* x *and* z (i.e., such that B(x,y,z) holds) is finite. Then $B = B_T$ for some tree T.

An increasing sequence of finite quasi-trees has a *lub* that is a quasi-tree.

A *cut* is a partition (X,X^c) such that X and X^c are convex; X is *convex* if $B(x,y,z) \land x \in X \land z \in X \Rightarrow y \in X$. **Degree.** Nodes y and z are in the same direction relative to node x if : $y = z \lor B(y,z,x) \lor B(z,y,x) \lor$

 \exists u (B(y,u,x) \land B(z,u,x) \land B(y,u,z)).

This is an equivalence relation. Its classes are the *directions relative* to x.

The *degree of* x is the number of directions relative to it. A *leaf* has degree 1 (it is not between two nodes). A *layout of* G is a quasi-tree S =(N,B) whose nodes have degree \leq 3 and such that V(G) \subseteq Leaves(S).

If (X,X^c) is a cut of S : $rk(X,X^c) := rk(A[X \cap V(G), X^c \cap V(G)])$ $rk(S) := Sup\{ rk(X,X^c) / (X,X^c) \text{ is a cut } \}$ $rwd(G) := Min\{ rk(S) / S \text{ is a layout } \}$ $drwd(G) := Min\{ rk(S) / S \text{ is a discrete layout } \}$ $= Min\{ rk(T,f) / (T,f) \text{ is a layout, T tree } \}$ Theorem : (1) rwd has the compactness property. (2) $drwd(G) \le 2$. rwd(G).

Proof: (1) With Koenig's lemma, as for Lrwd.

(2) $\operatorname{drwd}(G) \leq 2. \operatorname{rwd}(G)$.

First : $drwd(G) \le 2.Lrwd(G)$.

A countable linear order is *described* by a rooted binary tree.

Let \leq witness that $Lrwd(G) \leq k$. We describe < by a binary tree. We get as layout of G a tree of degree ≤ 3 . An edge e yields a bipartition of V(G)Z X of the form $(X \cup Z, Y)$. We have: $rk(A[X \cup Z, Y]) \leq rk(A[X, Y]) + rk(A[Z, Y])$ \leq rk(A[X, Y \cup Z]) + rk(A[X \cup Z, Y]) \leq 2k.

For proving that $drwd(G) \le 2$. rwd(G), we use essentially this idea: we encode a layout S by a binary r_{X_4} rooted tree.

Structuring of a quasi tree S. Choose a leaf r. Maximal *lines* N_0 , N_1 , ... containing r. $U_0 := N_0$, $U_1 := N_1 - U_0$ $U_2 := N_2 - (U_0 \cup U_1)$, etc.

Describe each line U_i by a binary tree T_i

Connect trees $T_0, T_1, T_2, ...$ into a single tree. w, This tree is a layout of G of rank $\leq 2.k$ where k = rk(S).

