
 Rank-width of countable graphs

Bruno Courcelle, LaBRI

oOo

Graph decompositions of finite graphs : useful for FPT
algorithms and graph structure (Graph Minor Theorem,
perfect graphs). Width measures are frequently associated
with decompositions : tree-width, path-width, rank-width,
linear rank-width, clique-width.

Graph decompositions and widths of countable
graphs : Definitions ?

Compactness results : is wd(G) the least upper bound
of wd(H), for all H, finite subgraphs of G ?

Yes for tree-width by Kriz & Thomas.

This talk : rank-width of countable graphs.

Two notions of linear rank-width based on two different
linear orders : Q and Z

Two notions of rank-width based on two types of trees :
quasi-trees (cf. Q) and trees (cf. Z).

 Different compactness results :

Rank-width (quasi-trees) Yes

Discrete rank-with (trees) Yes with gap: n � 2.n

Linear rank-width (Q) Yes

Discrete linear rwd (Z) No

Rank-width : Countable, simple, undirected graphs.

If X and Y are disjoint sets of vertices, A[X,Y] is the
adjacency matrix of G between vertices in X and in Y.

The rank over GF(2) of a countable matrix A[X,Y] is
the lub (least upper bound) of ranks of its finite sub-
matrices.

A layout of a graph G is a pair (T, f):

 T is a tree (without root) of degree at most 3,

f : injective mapping : V(G) � Leaves(T)

Each edge e of T yields a bipartition (Xe, Xe
c) of V(G)

(Xe or Xe
c may be empty).

rk(e) := rank of A[Xe, Xe
c] over GF(2)

rk(T,f) := lub {rk(e) / e, edge of tree T}.

rwd(G) := minimal rk(T,f) over all layouts (T,f).

Property : (1) rwd(H) < rwd(G) if H ⊆i G (induced subgraph)

(2) If, between X and Xc, there are k pairwise disjoint
edges, then rk(A[X,Xc]) > k.

Examples : Trees have rank-width 1,

cycles have rank-width 2;

nxn square grids have rank-width n-1

(Jelinek, difficult proof).

Linear rank-width

 Defined from layouts of the special form

 Equivalent to a < b <c < d < e < f : a linear order on
vertices. Edge bipartitions (Xe, Xe

c) are replaced by

Dedekind cuts : bipartitions (X, Xc) such that X < Xc

These definitions work for countable graphs.

Terminology : discrete rank-width, drwd(G); the good
notion of “rank-width” will be different (for countable graphs).

Theorem : Discrete rank-width has compactness, but
“only” with gap:

drwd(G) < 2. Sup{rwd(H) / H ⊆i G, H finite}

Proof : Compactness with gap : will come later.

No compactness. Counter-example :

G has vertex set Q partitioned into two dense subsets
A and B.

 If x < y, then x -- y (edge) if and only if y ∈ A.

Every finite induced subgraph of G is a threshold
graph, hence of rank-width 1. But drwd(G) > 2
(actually drwd(G) = 2 by the first fact).

 Wanted: a definition of rank-width giving exact compact-
ness.

 Linear rank-width as warming up.

 Same as rank-width with layout = linear order on V(G).
Bipartitions are defined from Dedekind cuts (X, Xc) (such
that X < Xc).

 There are 3 types of layout :

 N, Z, suborder of Q (arbitrary linear order).

 Hence 3 notions of linear rank-width with:

LrwdQ(G) < LrwdZ(G) < LrwdN(G) < 2.LrwdZ(G)

 LrwdN(G) is called discrete linear rank-width, denoted by
dLrwd(G).

Lrwd(G) called linear rank-width is based on arbitrary
linear orders.

Theorem : (1) Lrwd has the compactness property.

(2) dLrwd has not, even with a gap function.

Proofs : (1) Using Koenig’s lemma.

(2) Counter-example :

P = the infinite path isomorphic to N

G = the union of ω disjoint copies of P

Lrwd(G) = 1 for order N + N + N + …

dLrwd(G) = ω.

Rank-width based on quasi-trees.

In order to apply Koenig’s lemma, we need a notion of
tree closed under countably many insertions of nodes on a
path, hence has least upper bounds for topological ordering.

We will define quasi-trees whose “paths” between two
nodes can have countably many nodes.

Betweenness : If T is a tree, let BT(x,y,z) mean that y is on
the path that links x and z. The following properties hold:

Definition: A quasi-tree is a pair (N,B) where N is a set (its
nodes) and B a ternary relation that satisfies Properties A1-
A7. It is discrete if for each x, z, the set of nodes y between
x and z (i.e., such that B(x,y,z) holds) is finite. Then B = BT
for some tree T.

 An increasing sequence of finite quasi-trees has a lub
that is a quasi-tree.

 A cut is a partition (X,Xc) such that X and Xc are
convex; X is convex if B(x,y,z) ∧ x∈X ∧ z∈ X ⇒ y ∈ X.

 Degree. Nodes y and z are in the same direction relative

to node x if : y = z ∨ B(y,z,x) ∨ B(z,y,x) ∨

 ∃ u (B(y,u,x) ∧ B(z,u,x) ∧ B(y,u,z)).

 This is an equivalence relation. Its classes are the
directions relative to x.

 The degree of x is the number of directions relative to it.
A leaf has degree 1 (it is not between two nodes).

 A layout of G is a quasi-tree S =(N,B) whose nodes

have degree < 3 and such that V(G) ⊆ Leaves(S).

 If (X,Xc) is a cut of S :

 rk(X,Xc) := rk(A[X ∩ V(G), Xc ∩ V(G)])

 rk(S) := Sup{ rk(X,Xc) / (X,Xc) is a cut }

 rwd(G) := Min{ rk(S) / S is a layout }

 drwd(G) := Min{ rk(S) / S is a discrete layout }

 = Min{ rk(T,f) / (T,f) is a layout, T tree }

 Theorem : (1) rwd has the compactness property.

(2) drwd(G) < 2. rwd(G).

Proof : (1) With Koenig’s lemma, as for Lrwd.

 (2) drwd(G) < 2. rwd(G).

First : drwd(G) < 2.Lrwd(G).

A countable linear order is

described by a rooted

binary tree.

Let < witness that Lrwd(G) < k.

We describe <

by a binary tree.

We get as layout of G

a tree of degree < 3.

An edge e yields a

bipartition of V(G)

of the form (X ∪ Z, Y). We have:

rk(A[X∪ Z, Y]) < rk(A[X, Y]) + rk(A[Z, Y])

 < rk(A[X, Y∪ Z]) + rk(A[X ∪ Z, Y]) < 2k.

For proving that drwd(G) < 2. rwd(G), we use essentially
this idea: we encode a layout S by a binary

rooted tree.

Structuring of a quasi tree S.

Choose a leaf r.

Maximal lines N0, N1, …

containing r.

U0 := N0,

U1 := N1 - U0,

U2 := N2 - (U0 ∪ U1), etc.

 Describe each line Ui by a binary tree Ti

 Connect trees

 T0,T1,T2,…

 into a single

 tree.

 This tree is a

 layout of G

 of rank < 2.k

 where k = rk(S).

