Rank-width of countable graphs

Bruno Courcelle, LaBRI
oOo

Graph decompositions of finite graphs : useful for FPT algorithms and graph structure (Graph Minor Theorem, perfect graphs). Width measures are frequently associated with decompositions : tree-width, path-width, rank-width, linear rank-width, clique-width.

Graph decompositions and widths of countable graphs: Definitions?

Compactness results : is wd(G) the least upper bound of $w d(H)$, for all H , finite subgraphs of G ?

Yes for tree-width by Kriz \& Thomas.

This talk : rank-width of countable graphs.
Two notions of linear rank-width based on two different linear orders: \mathbf{Q} and \mathbf{Z}

Two notions of rank-width based on two types of trees : quasi-trees (cf. Q) and trees (cf. Z).

Different compactness results :

Rank-width	(quasi-trees)
Discrete rank-with	(trees)
Yes with gap: $\mathrm{n} \rightarrow 2 . \mathrm{n}$	
Linear rank-width	(Q)
Discrete linear rwd	(Z)

Rank-width : Countable, simple, undirected graphs.

If X and Y are disjoint sets of vertices, $A[X, Y]$ is the adjacency matrix of G between vertices in X and in Y .

The rank over $\mathrm{GF}(2)$ of a countable matrix $\mathrm{A}[\mathrm{X}, \mathrm{Y}]$ is the lub (least upper bound) of ranks of its finite submatrices.

A layout of a graph G is a pair (T, f):
T is a tree (without root) of degree at most 3 ,
f : injective mapping : $\mathrm{V}(\mathrm{G}) \rightarrow$ Leaves (T)
Each edge e of T yields a bipartition ($\mathrm{X}_{\mathrm{e}}, \mathrm{X}_{\mathrm{e}}{ }^{\mathrm{C}}$) of $\mathrm{V}(\mathrm{G})$
(X_{e} or $X_{e}{ }^{c}$ may be empty).
rk(e) := rank of $A\left[X_{e}, X_{e}^{c}\right]$ over GF(2)
$\operatorname{rk}(\mathrm{T}, \mathrm{f}):=\operatorname{lub}\{\mathrm{rk}(\mathrm{e}) / \mathrm{e}$, edge of tree T$\}$.
$\operatorname{rwd}(\mathrm{G}):=$ minimal rk(T,f) over all layouts (T, f).

Property : (1) $\mathrm{rwd}(\mathrm{H}) \leq \operatorname{rwd}(\mathrm{G})$ if $\mathrm{H} \subseteq_{i} \mathrm{G}$ (induced subgraph)
(2) If, between X and X^{c}, there are k pairwise disjoint edges, then $\operatorname{rk}\left(A\left[X, X^{c}\right]\right) \geq k$.

Examples: Trees have rank-width 1, cycles have rank-width 2;
nxn square grids have rank-width $n-1$
(Jelinek, difficult proof).

Linear rank-width

Defined from layouts of the special form

Equivalent to $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{d}<\mathrm{e}<\mathrm{f}$: a linear order on vertices. Edge bipartitions $\left(\mathrm{X}_{e}, \mathrm{X}_{\mathrm{e}}{ }^{\mathrm{C}}\right)$ are replaced by Dedekind cuts : bipartitions $\left(X, X^{C}\right)$ such that $X<X^{C}$

These definitions work for countable graphs.

Terminology : discrete rank-width, drwd(G); the good notion of "rank-width" will be different (for countable graphs).

Theorem : Discrete rank-width has compactness, but "only" with gap:

$$
\operatorname{drwd}(G) \leq 2 . \operatorname{Sup}\{r w d(H) / H \subseteq i G, H \text { finite }\}
$$

Proof: Compactness with gap : will come later.
No compactness. Counter-example :
G has vertex set \mathbf{Q} partitioned into two dense subsets A and B.

$$
\text { If } x<y \text {, then } x--y \text { (edge) if and only if } y \in A \text {. }
$$

Every finite induced subgraph of G is a threshold graph, hence of rank-width 1 . But $\operatorname{drwd}(G) \geq 2$ (actually $\operatorname{drwd}(G)=2$ by the first fact).

Wanted: a definition of rank-width giving exact compactness.

Linear rank-width as warming up.
Same as rank-width with layout $=$ linear order on $\mathrm{V}(\mathrm{G})$. Bipartitions are defined from Dedekind cuts ($\mathrm{X}, \mathrm{X}^{\mathrm{c}}$) (such that $X<X^{\mathrm{C}}$).

There are 3 types of layout:
\mathbf{N}, \mathbf{Z}, suborder of \mathbf{Q} (arbitrary linear order).
Hence 3 notions of linear rank-width with:

$$
\operatorname{Lrwd}_{\mathrm{Q}}(\mathrm{G}) \leq \operatorname{Lrwd}_{\mathrm{z}}(\mathrm{G}) \leq \operatorname{Lrwd}_{\mathrm{N}}(\mathrm{G}) \leq 2 . \operatorname{Lrwd}_{\mathrm{Z}}(\mathrm{G})
$$

$\operatorname{Lrwd}_{\mathrm{N}}(\mathrm{G})$ is called discrete linear rank-width, denoted by dLrwd(G).

Lrwd(G) called linear rank-width is based on arbitrary linear orders.

Theorem : (1) Lrwd has the compactness property.
(2) dLrwd has not, even with a gap function.

Proofs : (1) Using Koenig's lemma.

(2) Counter-example :
$P=$ the infinite path isomorphic to \mathbf{N}
$G=$ the union of ω disjoint copies of P
$\operatorname{Lrwd}(G)=1$ for order $\mathbf{N}+\mathbf{N}+\mathbf{N}+\ldots$
$\operatorname{dLrwd}(G)=\omega$.

Rank-width based on quasi-trees.

In order to apply Koenig's lemma, we need a notion of tree closed under countably many insertions of nodes on a path, hence has least upper bounds for topological ordering.

We will define quasi-trees whose "paths" between two nodes can have countably many nodes.

Betweenness : If T is a tree, let $\mathrm{B}_{\mathrm{T}}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ mean that y is on the path that links x and z. The following properties hold:

```
A1: \(B(x, y, z) \Rightarrow x \neq y \neq z \neq x\).
A2 : \(B(x, y, z) \Rightarrow B(z, y, x)\).
A3: \(B(x, y, z) \Rightarrow \neg B(x, z, y)\).
A4: \(B(x, y, z) \wedge B(y, z, u) \Rightarrow B(x, y, u) \wedge B(x, z, u)\).
A5: \(B(x, y, z) \wedge B(x, u, y) \Rightarrow B(x, u, z) \wedge B(u, y, z)\).
A6: \(B(x, y, z) \wedge B(x, u, z) \Rightarrow\)
\(y=u \vee(B(x, u, y) \wedge B(u, y, z)) \vee(B(x, y, u) \wedge B(y, u, z))\).
A7: \(x \neq y \neq z \neq x \Rightarrow\)
\(B(x, y, z) \vee B(x, z, y) \vee B(y, x, z) \vee(\exists u \cdot B(x, u, y) \wedge B(y, u, z) \wedge B(x, u, z))\).
```

Definition: A quasi-tree is a pair (N, B) where N is a set (its nodes) and B a ternary relation that satisfies Properties A1A7. It is discrete if for each x, z, the set of nodes y between x and z (i.e., such that $B(x, y, z)$ holds) is finite. Then $B=B_{T}$ for some tree T.

An increasing sequence of finite quasi-trees has a lub that is a quasi-tree.

A cut is a partition $\left(X, X^{C}\right)$ such that X and X^{c} are convex; X is convex if $B(x, y, z) \wedge x \in X \wedge z \in X \Rightarrow y \in X$.

Degree. Nodes y and z are in the same direction relative to node x if :

$$
\begin{aligned}
& y=z \vee B(y, z, x) \vee B(z, y, x) \vee \\
& \exists u(B(y, u, x) \wedge B(z, u, x) \wedge B(y, u, z))
\end{aligned}
$$

This is an equivalence relation. Its classes are the directions relative to x .

The degree of x is the number of directions relative to it. A leaf has degree 1 (it is not between two nodes).

A layout of G is a quasi-tree $\mathrm{S}=(\mathrm{N}, \mathrm{B})$ whose nodes have degree ≤ 3 and such that $\mathrm{V}(\mathrm{G}) \subseteq$ Leaves(S).

If $\left(X, X^{c}\right)$ is a cut of S :
$\operatorname{rk}\left(X, X^{c}\right):=\operatorname{rk}\left(A\left[X \cap V(G), X^{C} \cap V(G)\right]\right)$
rk $(S):=\operatorname{Sup}\left\{r k\left(X, X^{c}\right) /\left(X, X^{c}\right)\right.$ is a cut $\}$
$\operatorname{rwd}(\mathrm{G}):=\operatorname{Min}\{\mathrm{rk}(\mathrm{S}) / \mathrm{S}$ is a layout $\}$
drwd(G) := $\operatorname{Min}\{r(S) / S$ is a discrete layout $\}$ $=\operatorname{Min}\{r k(T, f) /(T, f)$ is a layout, T tree $\}$

Theorem : (1) rwd has the compactness property. (2) $\operatorname{drwd}(G) \leq 2 . \operatorname{rwd}(G)$.

Proof: (1) With Koenig's lemma, as for Lrwd.

(2) $\operatorname{drwd}(G) \leq 2 . \operatorname{rwd}(G)$.

First : $\operatorname{drwd}(\mathrm{G}) \leq 2 . \operatorname{Lrwd}(\mathrm{G})$.

A countable linear order is described by a rooted binary tree.

$$
a b c \cdot . . . \operatorname{def} \ldots g h i \ldots
$$

Let \leq witness that $\operatorname{Lrwd}(G) \leq k$.
We describe \leq
by a binary tree.
We get as layout of G
a tree of degree ≤ 3.
An edge e yields a bipartition of $\mathrm{V}(\mathrm{G})$
of the form $(X \cup Z, Y)$. We have:
$r k(A[X \cup Z, Y]) \leq r k(A[X, Y])+r k(A[Z, Y])$

$$
\leq \operatorname{rk}(A[X, Y \cup Z])+\operatorname{rk}(A[X \cup Z, Y]) \leq 2 k .
$$

For proving that $\operatorname{drwd}(G) \leq 2$. $\operatorname{rwd}(G)$, we use essentially this idea: we encode a layout S by a binary rooted tree.

Structuring of a quasi tree S .
Choose a leaf r.
Maximal lines $\mathrm{N}_{0}, \mathrm{~N}_{1}, \ldots$ containing r .
$\mathrm{U}_{0}:=\mathrm{N}_{0}$,
$\mathrm{U}_{1}:=\mathrm{N}_{1}-\mathrm{U}_{0}$,
$\mathrm{U}_{2}:=\mathrm{N}_{2}-\left(\mathrm{U}_{0} \cup \mathrm{U}_{1}\right)$, etc.

Describe each line U_{i} by a binary tree T_{i}

Connect trees
$\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \ldots$
into a single tree.

This tree is a layout of G of rank $\leq 2 . k$ where $\mathrm{k}=\mathrm{rk}(\mathrm{S})$.

