
 

Monadic  second-order  logic 

and  recognizability 

Bruno  Courcelle 
 

Université Bordeaux 1, LaBRI,  and 
Institut  Universitaire  de  France 

 

References : Book in progress,  

Articles with J. Makowsky, U. Rotics, P. Weil, S. Oum, A. Blumensath ;   See : 

http://www.labri.fr/perso/courcell/ActSci.html 



 2 

History : Confluence of 4 independent research directions,  now  intimately 

related : 

1. Polynomial  algorithms for NP-complete and other hard problems on particular 

classes of graphs, and especially hierarchically structured ones : series-parallel 

graphs, cographs, partial k-trees, graphs or hypergraphs of tree-width < k, graphs of 

clique-width < k. 

2. Excluded minors and related notions of forbidden configurations (matroid 

minors, « vertex-minors »). 

3. Decidability of Monadic Second-Order logic on classes of  finite  graphs, and on 

infinite graphs. 

4. Extension to graphs and hypergraphs of the main concepts of Formal 

Language Theory : grammars, recognizability, transductions, decidability questions. 
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    Summary 
1. Introduction 

Extension of Formal  Language Theory notions 

2. Recognizability, an algebraic notion. 

3. Context-free  sets defined  by  equation  systems. 

4. The graph algebras  VR  and  HR.  

5. Monadic second-order logic defines inductive  properties and functions  

6. Monadic second-order  transductions. 

7. Preservation of recognizability by inverse monadic second-order transductions. 

8. Preservation of recognizability by quantifier-free definable  operations. 

Open questions 
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1.  Introduction  :  An  overview  chart  

Graph                   "Context-free" 

operations             sets  of  graphs 

 

Fixed  parameter tractable 

algorithms            Language  theory 

              for  graphs  

              Recognizable 

                                 sets of graphs        

Monadic  2nd   order         Monadic  2nd  order  

logic              transductions 
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Key  concepts of FLT  and  their  extensions 

 
Languages Graphs 

Algebraic structure : 
monoid  (X*,*,ε)  

Algebras based on graph operations : ⊕, ⊗, // 
quantifier-free definable operations 

Algebras : HR, VR 
Context-free languages : 

Equational subsets of (X*,*,ε) 
Equational sets of the 

algebras   HR,VR 
Regular languages : 
Finite  automata  ≡ 

Finite congruences   ≡ 
Regular expressions   ≡ 

Recognizable sets  
of the algebras  

HR, VR 
defined by congruences 

≡   Monadic Second-order 
definable sets of words or terms

∪ 
Monadic Second-order definable sets of graphs 

Rational and other types of 
transductions 

Monadic Second-order transductions 
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Relationships  between  algebraic  and  logical  notions 

for sets  of  graphs  (and  hypergraphs) 
 

 
 

Algebraic
notions 

Algebraic 
characterizations

Logical  
characterizations

Closure 
properties 

  union,  ∩ Rec
equation systems MS-trans(Trees) homo 

 
EQ 

Val(REC(Terms))  MS-trans 

  Boolean opns
congruences MS-def ⊂ REC homo-1 

 
REC 

  MS-trans-1 
 
 
Signatures  for  graph  algebras : 
HR :  graphs  and  hypergraphs  with   “sources” 
VR :  graphs  with  vertex  labels, “ports” 
VR+ :  VR   with  (QF)  quantifier-free operations     (ex. edge complement)
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Another  picture : 
     Value ( MS Transduction) 

REC(Terms)           EQ 
          MS  Transductions 

   Coding     

   (MS Transductions)     MS   Transduction 

 

       Binary trees 

 

Equational sets = MS-Trans(Binary Trees) 

 

Context-free  languages  =  images  of the Dyck  language   (which encodes  trees)  

under  rational  transductions 

Since MS  transductions are closed under composition, the  class  of equational  sets  

is closed under MS transductions 
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2. Recognizable  sets  :    algebraic   definition 
 

F :   a finite set of operations with (fixed) arity. 

M = < M, (fM)f ∈ F >  :   an F-algebra. 

 

Definition :  L  ⊆ M   is   (F-)recognizable if it is a union of equivalence classes for a finite 

congruence   ≈    on    M    (finite   means  that   M / ≈   is  finite). 

Equivalently, L = h-1(D) for a homomorphism  h : M → A,  where A is a finite F-

algebra, D ⊆  A. (On terms  : Finite  deterministic automata). 

 

REC(M) is the set of recognizable subsets of M,  with respect to  the algebra M. 

Closure properties : REC(M) contains M and ∅, and is closed under union, intersection 

and difference. 
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The  many-sorted  case  with  infinitely   many sorts  
 

S   :   the countable  set of sorts. 

F  :   an S-signature : each  f  in  F  has a type  s1s2 …sk → s,  with s, si ∈ S  

M = < (Ms)s ∈ S, (fM)f ∈ F  >  F-algebra, Ms ∩ Mt  = ∅, if s  ≠  t 

where fM : Ms1 X  Ms2 X … X  Msk →  Ms 

Definition : L  ⊆ Ms  is    (F-) recognizable  if it is a union of equivalence classes for a  

congruence ≈ on  M  such that equivalent  elements  are  of  the  same  sort and there are  

finitely  many  classes  of  each  sort. 
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3. Equational  (context-free) sets 

 
Equation  systems  =  Context-Free  (Graph)  Grammars  in  an  algebraic  setting 

 
 

In the case of  words,   the  set of context-free  rules  

S  → a S T ;    S  → b  ;  T  → c T T T ;   T  → a 
 

is equivalent to  the system  of  two set  equations: 

  S  =  a S T     ∪    { b }  

  T  =  c T T T      ∪        { a } 

where S  is the language generated  by   S      (idem for T and T). 
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For  graphs  (or  other  objects)  we consider  systems of equations like: 

  S  =  f( k( S ), T  )     ∪  { b }  

  T  =  f( T , f( g(T ), m( T ))) ∪ { a } 

 

where : 

 f   is a binary operation,   

g, k, m   are unary operations on  graphs,   

a, b   denote  basic graphs  (up  to  isomorphism).  

 

An  equational set  is  a component  of the least  (unique)  solution  of such  

an  equation system. This  is  well-defined in any  algebra. 
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4. The  graph algebras   VR   and    HR 
 

HR operations : Origin :  Hyperedge Replacement hypergraph grammars ; associated complexity 

measure : tree-width 
 

Graphs have  distinguished vertices called sources,  pointed  to  by labels from  a  set of 

size k :    {a, b, c,  ..., h}. 

Binary operation(s)  :  Parallel  composition 

G // H     is    the  disjoint  union of  G  and  H and sources  with  same  label  are   fused.  

(If G  and  H are  not disjoint, one  first  makes  a  copy of  H disjoint from  G). 
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Unary operations   :    Forget   a  source  label  

       Forgeta(G)    is   G     without  a-source  : the  source  is  no longer 

                                       distinguished ; it is  made  "internal".  

       Source renaming : 

Rena   b(G)  exchanges  source  names  a  and b     

(replaces  a  by  b   if  b is not the name  of a  source) 
 

Nullary operations denote  basic graphs :  the connected graphs with at most one edge.  

 

For dealing with hypergraphs one takes more nullary symbols for denoting hyperedges. 
 

More precise algebraic framework : a many sorted algebra where each finite set of source 

labels is a sort. The above operations are  overloaded. 
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Tree-decompositions 
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Proposition:  A  graph  has  tree-width  ≤  k  if and only if  it  can  be  constructed   from  

basic  graphs  with   ≤  k+1  labels  by  using  the  operations    // , Rena    b  and  Forgeta .  

Example : Trees are of tree-width 1, constructed with two source labels, r  (root) and n  (new 

root):  Fusion of two trees at their roots  :  
 

 
Extension of a tree by parallel composition 

with a new edge,  forgetting the old root, 

making   the "new root" as current root :  

E  =  r  •_________•  n 

Renn     r (Forgetr (G // E))  
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From  an algebraic  expression  to  a   tree-decomposition 

Example :  cd // Rena       c (ab // Forgetb(ab // bc)) 

Constant  ab  denotes  a  directed edge from  a   to  b. 

 

                         The tree-decomposition associated  with this term. 
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VR    operations  
 

Origin : Vertex Replacement graph grammars  

Associated complexity measure: clique-width, has no  combinatorial  characterization  

but is defined in terms of  few very simple  graph operations  (whence easy  inductive 

proofs). 

Equivalent notion: rank-width (Oum and Seymour) with better structural and 

algorithmic properties. 
 

Graphs are simple, directed or not.   

k   labels  :  a , b , c,  ..., h.  Each vertex has one and only  one label ;  

a label p may label several vertices, called the   p-ports. 
 

One  binary operation:   disjoint  union    :   ⊕ 
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Unary  operations:  Edge addition denoted  by  Add-edga,b 

 

Add-edga,b(G)   is  G augmented with (un)directed edges  from every   a-port   to 

every  b-port. 
 

 

          G       Add-edga,b(G) 
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Vertex  relabellings :  

Relaba       b(G) is  G with every vertex labelled by a   relabelled into b 
 

Basic graphs  are those with a single vertex. 

 

Definition:  A  graph  G  has  clique-width  ≤ k  ⇔ it can be constructed  from basic graphs  

by means  of  k  labels  and   the  operations ⊕, Add-edga,b   and   Relaba       b   

 

Its (exact) clique-width,  cwd(G),   is the   smallest  such  k. 

 

Proposition :  (1) If  a  set of  simple graphs  has  bounded  tree-width, it has  bounded  

clique-width, but  not  vice-versa. 
 

(2) Unlike tree-width, clique-width  is  sensible to edge directions : Cliques have clique-

width  2, tournaments have unbounded clique-width. 
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Example : Cliques have clique-width 2.  

 
 

Kn  is   defined  by   tn where  tn+1  =   Relabb       a( Add-edga,b(tn  ⊕  b)) 

 

Another  example :  Cographs  are generated  by  ⊕  and  ⊗  defined by : 

G ⊗ H     =   Relabb       a ( Add-edga,b (G ⊕ Relaba       b(H)) 

                = G ⊕ H  with  “all edges”  between  G and H. 
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Inductive  proofs  and  computations  
 

Example : Series-parallel graphs, defined  as graphs with sources 1 and 2,   

generated from  e   = 1             2    and the operations //  (parallel-composition)  and  

series-composition   defined  from other operations by : 

G • H =  Forget3(Ren2        3 (G) // Ren1      3 (H)) 

Example  :  

 

  1 •        G              •        H                            •  2 

        3 

 

   1   •                   • 2 
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Inductive  proofs :  
 

1)  G, H connected implies :  G//H   and   G • H   are  connected, (induction) 

e   is connected (basis) : 

⇒      All  series-parallel graphs are connected. 

 

 

2)     It is not true that : 

G  and  H  planar implies :  G//H is  planar  (K5 = H//e). 

 

A stronger property for induction :  

G has a planar embedding with the sources in the same “face”  

⇒      All  series-parallel graphs are planar.  
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Inductive  computation  :  Test  for 2-colorability  

1) Not all  series-parallel  graphs are  2-colorable  (see  K3)  
2) G, H  2-colorable does not imply that G//H is 2-colorable  (because  K3=P3//e). 
 
3) One can check 2-colorability  with 2 auxiliary  properties : 
 

    Same(G) =  G is 2-colorable with sources of the same color, 
Diff(G) =  G is 2-colorable with sources  of different colors 

by  using rules :  
    Diff(e) =  True  ;  Same(e) = False 
 

Same(G//H)  ⇔ Same(G) ∧ Same(H) 
Diff(G//H) ⇔  Diff(G) ∧  Diff(H) 
 

Same(G•H)  ⇔  (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H)) 
Diff(G•H)  ⇔  (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧  Same(H)) 

 

 

We can compute for every SP-term t, by induction on the structure of  t the pair of 
Boolean values (Same(Val(t)) ,  Diff(Val(t)) ).   

 
 We  get  the answer  for  G = Val(t)  (the graph  that  is  the value  of t )  regarding 2-
colorability. 



 24

Recognizability  and  inductive  properties  
 

Definition : A finite  set  P  of  properties  on an F-algebra M is  F-inductive   if  for  
every  p ∈ P  and f ∈ F, there exists a (known)   Boolean formula  B  such that  : 

p(fM(a,b) )  =  B[…,q(a),…,q(b),….,q∈P] 
for  all  a  and  b in M.       (where   q(a),…, q(b) ∈ {True, False}) . 
 

Proposition :  A  subset  L of  M  is recognizable  iff  it is the set of elements  that 

satisfy a property belonging to a finite inductive set of properties P.  

Proof : Let L = h-1(C)  for a homomorphism h : M → A , A  a finite F-algebra  and C a 
subset of  A (domain of A).   

For each a  in  A, let  â  be the property : â(m)= True  ⇔  h(m) = a.   Let  p  be  such 
that  p(m) = True   ⇔  h(m) ∈ C  ⇔  m ∈ L.  

Properties  {p, â / a∈ A}  form an  F-inductive  set. 
If  P is an inductive set of k properties, one can define an F-algebra  structure on the 

set Bk of  k-tuples of Booleans, such that  the  mapping  
h : m ⎜→ the k-tuple  of  Booleans   is   a homomorphism. 
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Inductive  properties and automata on terms 

 1)  The existence of properties  forming a finite inductive set  (w.r.t. operations 

of F) is equivalent  to recognizability in  the  considered F-algebra. 

2) The simultaneous computation of m inductive properties can be 

implemented by a "tree" automaton with 2m  states working on terms  t. This  

computation  takes  time  O( ⎜t ⎜).  

3) An inductive set of properties can be effectively constructed (at least 

theoretically)  from every monadic-second order formula. 

4) This  result extends  to the computation of values  (integers)  defined  by 

monadic-second order formulas (number of  satisfying tuples, distance) 

5) Membership  of  an element  m  of  M  in a recognizable set  L  can be  

tested  by such an automaton  on  any   term   t   in  T(F)  defining  m  (in some for 

an equational, i.e. context-free  set). 



 26

6.  Monadic Second-Order (MS) Logic  
A  logical  language  which specifies  inductive  properties  and functions  

 
=  First-order logic on power-set structures  
 
=  First-order logic extended with (quantified) variables  

denoting subsets  of the domains. 
 
MS properties :   transitive closure,  properties of paths, connectivity,  

 
planarity  (via Kuratowski, uses connectivity),   k-colorability. 
 
 

Examples  of formulas for   G =  < VG , edgG(.,.) >, undirected 
 

Non connectivity : 
∃X ( ∃x ∈ X  ∧  ∃y ∉ X  ∧  ∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∈ X)  ) 

 
2-colorability (i.e.  G  is   bipartite) : 
∃X ( ∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∉ X) ∧ ∀u,v (u ∉ X  ∧  edg(u,v) ⇒ v ∈ X) ) 
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Edge set  quantifications 
 

Incidence  graph  of G undirected,  Inc(G) = < VG ∪ EG, incG(.,.) >. 
 
incG(v,e)   ⇔   v is a vertex of edge  e. 
 
Monadic second-order  (MS2)  formulas  written  with  inc   can use 
quantifications   on sets of edges.  
 
Existence  of Hamiltonian circuit  is expressible  by an  MS2  formula, but not 
by an MS  formula. 
 
 

Definition :  A set  L  of words,  of trees,  of graphs or relational structures   is  
Monadic Second-Order  (MS)  definable  iff  
 

L  =  { S   /    S  ⎜=  ϕ }  for an MS formula  ϕ 
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Theorem  :  (1) A  language (set  of words or  finite  terms ) is  
recognizable   ⇔   it  is  MS  definable  

 
 

(2) A set  of finite  graphs  is  VR-  or  VR+-recognizable     
⇐  it  is  MS  definable  

 
(3) A set  of finite  graphs  is  HR-recognizable    

⇐  it  is  MS2 definable  
 
Proofs:  
 
(1) Doner, Thatcher, Wright, see W. Thomas, Handbook formal languages, vol.3. 
 
(2) (3)  There  are  two  possible proofs, one of them based on the Fefermann-

Vaught paradigm, saying that the validity of an MS  formula in the disjoint 
union of two structures  can be deduced from those of formulas of no larger 
quantification height in each of the two structures. 
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7.  Monadic  second-order  transductions 
 
STR(Σ):   the set of finite  Σ-relational  structures (or finite directed ranked Σ-hypergraphs). 
 

MS  transductions  are  multivalued mappings  :     τ  : STR(Σ)  STR(Γ) 
 

               S   ⎜              T  =  τ (S)         
where   T  is  : 
 

a) defined by  MS formulas 
 

b) inside  the  structure:  S ⊕ S ⊕ ... ⊕ S  
    (fixed  number  of disjoint "marked" copies of S) 

 
   c) in terms  of "parameters", subsets  X1, …,Xp   of  the  domain  of  S. 
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Proposition  :  The  composition  of  two   MS  transductions  is  an  MS  

transduction. 

 
Remark  :   For  each tuple of parameters X1, …,Xp   satisfying  an MS  property, T is 

uniquely defined.   τ  is multivalued  by  the  different choices of parameters. 
 
 

Examples :  (G,{x})  ⎜           the connected  component containing x. 
 
 
  

(G,X,Y)  ⎜          the minor  of G  resulting from  contraction of edges in X  and 
deletion of edges  and vertices  in Y. 
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Example  of  an  MS  transduction   (without parameters) : The  square  mapping  
δ  on  words:  u  ⎜→   uu 
 
For    u  =    aac, we  have     S  •  →  • → •    
                  a      a      c      
     
  S ⊕ S    •  →  • → •              •  →  • → • 

     a       a     c             a        a     c  
     p1     p1    p1           p2      p2    p2 

 
  δ(S)   •  →  • → •  →  • → • →  •  

     a        a      c        a      a        c  
 
 In δ(S) we  redefine Suc (i.e., →  ) as  follows : 
 
Suc(x,y) :  ⇔   p1 (x) ∧ p1 (y) ∧ Suc(x,y)   v p2 (x) ∧ p2 (y) ∧ Suc(x,y) 
    v p1 (x) ∧ p2 (y) ∧ "x has no  successor"  ∧   "y has no  predecessor" 

 
 We also  remove  the  "marker" predicates p1, p2. 
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The fundamental property of MS  transductions :  
 
     S   ⎜                   τ (S) 
 
     τ #(ψ)              ⎜  ψ 
 

Every  MS  formula  ψ  has  an effectively  computable  backwards  translation τ #(ψ), 
an MS formula, such that : 
 

S   ⎜=  τ #(ψ)    iff    τ (S)   ⎜=  ψ 
 
 The verification of ψ  in  the object structure τ(S)  reduces  to  the  verification  of  
τ #(ψ)   in  the  given structure S. 
 
Intuition : S  contain all necessary information to describe  τ(S) ;  the MS properties of τ(S)   
are expressible by MS formulas in S 
 
Consequence : If L ⊆ STR(Σ) has a decidable  MS satisfiability problem,  so has  its image  
under  an MS  transduction.  
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 Other results  
 

 1)  A set  of graphs  is VR -equational  iff  it is the image of  (all) binary trees under an  MS 
transduction.   VR-equational  sets  are  stable  under  MS-transductions. 
 

A  set  of graphs has bounded clique-width  iff  it is  the image  of  a  set  of binary  
trees  under  an MS transduction. 
 
 
2)  A  set  of graphs is HR-equational   iff  it is  the image  of   (all) binary trees  under  an 
MS2 transduction.   

HR-equational  sets  are  stable under  MS2-transductions. 
 

A  set  of graphs has bounded tree-width  iff  it is  the image  of  a  set  of binary trees  
under  an MS2 transduction.  
 
3) A  set  of relational  structures (hypergraphs)  is QF-equational   iff  it is  the image  of  
(all) binary trees  under  an MS-transduction.  (QF  =  ⊕ and quantifier-free operations) 

QF-equational  sets  are  stable under  MS-transductions. 
 
4)    Proof  of results  by Seese, Courcelle and Oum  saying that  graphs classes with 
decidable MS2  and C2MS  theories  have bounded  tree-width and clique-width. 
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Recognizability  is  preserved  under  inverse  monadic second-order  
transductions.   (A.Blumensath, B.C., 2004)  
 
More  precisely, QF-recognizability of sets of relational structures is preserved. 
 
Proof sketch :  Every MS transduction is the composition of  MS   transductions of 3 
types :  - Copyk 

- Parameterless  noncopying 
- Guessing   of  unary  relations 

 

1) Copyk  :  
 

S     ⎜    S ⊕ S ⊕  …   S   (k times) 
 

augmented with binary  relations  Yi,j for 1 ≤ i < j ≤ k    defined  as   
 

{(x,y)  /  x is the i-copy, y is the j-copy of some u in DS} 
 

Facts :  a) Copyk(S ⊕ T) = Copyk(S) ⊕ Copyk(T) 
 

       b) For  f  quantifier-free, there is a  quantifier-free  g    Copyk(f(S)) = g(Copyk(S)) 
 

Hence Copyk is “almost” a homomorphism, REC is preserved under  inverse  homo's. 
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2) Forgetting  unary relations : 
 

We let fgtΠ  : STR(Σ ∪ Π)  STR(Σ)  forget Π, a finite  set of unary relations.   
 

Its inverse consists  in guessing  the relations  in Π, this can be done by means  of 
parameters  of an MS transduction. 
 
Lemma  : If L ∈ REC,  then  fgtΠ(L) ∈ REC. 
 

Proof : From  a congruence  ≡  for L,  we  define the  equivalence :  
 

S  ≅ T     iff      { [U] ≡  /  fgtΠ(U) = S } = { [U] ≡  /  fgtΠ(U) = T } 
 

 It  is  finite, saturates fgtΠ(L). It is a  congruence : we use  the fact that  
 

S ⊕ T = fgtΠ(W)     iff     there exist S’, T’ such that   W = S’⊕ T’, 
S = fgtΠ(S’), and  T = fgtΠ(T’), 

 
and a similar observation for  unary  operations. 
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3)  Parameterless  noncopying  MS transductions. 
 

We let L ∈ REC(Γ)  and  τ  be a  parameterless  noncopying  MS transduction : 
STR(Σ)  STR(Γ) of quantifier-height k 
 

We  prove that  τ -1(L) ∈ REC(Σ) 
 

From  a congruence  ≡  for L,  we  define, on each set STR(Δ),   the  equivalence :  
 

S ≅ T   iff    tpk(S) = tpk(T) and  
for every  parameterless  noncopying  MS transduction  
µ : STR(Δ)  STR(Γ) of quantifier-height at most k,  we have  µ(S) ≡ µ(T).  

 

 
(tpk(S) is the MS theory of S of  quantifier height at most k.) 

 
It  is  finite, saturates τ -1(L) (because  τ  is  one of   the considered   transductions µ).  
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Claim : It is a  congruence.   
 

a)  We consider  f   unary,  quantifier-free.   Let  S  ≅ T  : 
 

tpk(f(S)) = f@( tpk(S)) = f@(tpk(T)) = tpk(f(T))  
 

For every µ, µof  is a parameterless  noncopying MS transduction of quantifier-height k: 
 

µ(f(S)) =µof(S) ≡ µof(T) = µ(f(T)). Qed 
 

b)  Remains ⊕  : Let S ≅ T, S’ ≅ T’, we want S ⊕ S’   ≅ T ⊕ T’. 
 

We have  tpk(S ⊕ S’) = tpk(T ⊕ T’)     (by the Fefermann-Vaught paradigm) 
 

For every µ :   µ(S ⊕ S’) = f [tpk(S ⊕S’)](Mk,m(S⊕S’))    (m = MaxArity(Γ)) 
 

     = f [tpk(S ⊕S’)] (⊕$[tpk(S), tpk(S’)](Mk,m(S), Mk,m(S’))) 
 

and similarly for µ(T ⊕ T’)                                     
Since Mk,m is an MS transduction of quantifier-height ≤  k : 

Mk,m(S) ≡ Mk,m(T), Mk,m(S’) ≡ Mk,m(T’) 
Also :   ⊕$[tpk(T), tpk(T’)] = ⊕$[tpk(T), tpk(T’)] 

And          f [tpk(S ⊕ S’)]       = f [tpk(T ⊕ T’)] 
Since  ≡ is a QF-congruence, and  f[p], ⊕$  are in QF : 

µ(S ⊕ S’) ≡ µ(T ⊕ T’) , hence    S ⊕ S’ ≅ T ⊕ T’ 
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Notation and facts : 
Let S in STR(Σ), a1, …,an  in DS  (the domain of S). 
 

tpk(S, a1, …,an) =  
{ ϕ  /   S  ⎜= ϕ (a1, …,an), ϕ ∈ MS(Σ, x1, …,xn) of quantifier-height ≤ k }  

∈  P(MSk(Σ, x1, …,xn))  
=   (k,n)-Types 
 

tpk(S, a1, …,an) is a local  information relative to   a1, …,an  in  S. 
 

tpk(S) is a global  information relative to  S. 
 
Annotation : S ⎜  Mk,m(S) = (DS, (Tp) p ∈ (k,n)-Types, n≤ m). 
 

Tp(a1, …,an) : ⇔ tpk(S, a1, …,an) = p.   
 

Mk,m(S) = S  +  local  information 
 

Facts :  Mk,m is an MS transduction of quantifier-height  k. 
 

M0,m is a quantifier-free transduction. 
 

The inverse  of Mk,m is a quantifier-free transduction ; 
it  is  functional  because  Mk,m  is injective.
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Homomorphic  properties  of Mk,m  
 

Proposition : 
1)  Mk,m(S⊕T) = ⊕$ [tpk(S), tpk(T)] (Mk,m(S), Mk,m(T)) 

 

2)  For g quantifier-free :     Mk,m(g(S)) = g$ (Mk,m(S)) 
 

where g$, ⊕$ [p,p’] are compositions of QF operations. 
 

Proof sketch :  1)   By the Fefermann-Vaught  paradigm  : 
S⊕T ⎜= ϕ(a1, …,an, b1, …,bq )   

iff  for some i : 
S  ⎜= ψi(a1, …,an)  and T ⎜= θi(b1, …,bq) 

where ψi  and θi  are MS formulas of quantifier-height   ≤  that of ϕ, and that only depend 
on ϕ.  Hence  :        Mk,m(S⊕T) = f(Mk,m(S) ⊕ Mk,m(T)) 

 

where f redefines the types in S and in T (in terms of tpk(T) and tpk(S)) and  creates 
appropriate relations for the types concerning both  S  and  T (using addU,V,W). 
 

2)     By the fact that  : tpk(g(S), a1, …,an) = g@(tpk(S, a1, …,an))   for some mapping 
g@ :  (k,n)-Types  (k,n)-Types (by  using backwards translation relative to g).  

We let g$ replace q  by  p whenever g@(q) = p 
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Factorization :  
 

Through  Mk,m  annotations,  MS  transductions of  quantifier-height ≤ k  
reduce  to quantifier-free ones : 
 

If g : STR(Σ)  STR(Γ)  is an MS transduction of  quantifier-height ≤ k, and  
m = MaximumArity(Γ) : 

 
g(S) = f [tpk(S)] (Mk,m(S)) 

 
where f [p] : STR(Σk,m)  STR(Γ)  is quantifier-free. 
 
 

Easy construction, using renamings of the type relations  and  deletions  of elements. 
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Initial  question : Which  graph operations  preserve recognizability ? 
 
Facts : 
1) The class of  recognizable sets  of an algebra M is not  preserved under the operations 

of M. (The class  of equational sets is).  
 

2) The concatenation of two languages  is. A proof not using automata  (but finite 
congruences)  can be done based on the fact that : 

              uv = xy   iff    for some w  :    uw= x and v = wy   or    u= xw and wv = y 
 

3) By  this  type of argument, I could prove  (Math. Struct. In Computer Science, 1994) that 
the class of HR-recognizable  sets of graphs  is closed  under the  HR operations. 

 
Question :   What about  the  VR  algebra ? 
 
The operation  adda,b   does not preserve recognizability. 
 a        b 
 a        b 
      ……                                        the  graphs  Kn,n  
 a        b    
 
Why ?  this  opertion  is not  invertible  unless  we  use  edge set quantifications. 
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MS  invertible  operation : 
 

relaba         b  : it fuses two sets of vertices ; to invert it suffices to guess the 
                      former  set of vertices labelled by a.  
This can be done  by an MS transduction with one set parameter. 

 
Theorem : If the inverse of a unary  operation  f  is an MS transduction, then f 
preserves  QF-recognizability. 
 

Immediate consequence  of the result with Achim (AB-BC-2004). 
 
 
For  the VR-algebra. 
 

One can limit  adda,b   to graphs  that have  no edges  between  a-vertices and 
b-vertices : for them  this operation is  MS  invertible. 
 
Open question : What about  relational structures ? No such trick is known (to me).  
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Relationships  between  algebraic  and  logical  notions 
 
 

Algebraic
notions 

Algebraic 
characterizations

Logical  
characterizations

Closure 
properties 

  union,  ∩ Rec
equation systems MS-trans(Trees) homo 

 
EQ 

Val(REC(Terms))  MS-trans 

  Boolean opns
congruences MS-def ⊂ REC homo-1 

 
REC 

  MS-trans-1 
 
Signatures  for  graphs and hypergraphs : 
 
HR :  graphs  and  hypergraphs with “sources” 
VR :  graphs with  vertex  labels (“ports”) 
VR+ :  VR  with quantifier-free operations  (ex. edge complement) 
QF :  hypergraphs, i.e., relational structures  (disjoint union ⊕ and   
             quantifier-free  definable  unary  operations) 
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9. A  few   open  questions 
 

Question 1 (A. Blumensath, P. Weil, B.C.): Which operations, quantifier-free definable or 

not, yield extensions  of VR, HR, QF  that are equivalent ? 
 

 

Question 2 : Is  it  true  that  the decidability  of the MS (and not of the C2MS)  satisfiability  

problem for a set of graphs implies bounded clique-width, as conjectured by D. Seese ?    

 

More  important (IMHO) : 

 

Question 3 :   What  about  sets  of hypergraphs or  relational structures ?  

 


