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Abstract

We define a vertex labelling for every planar 3-connected graph withn vertices from which
one can answer connectivity queries. Aconnectivity queryasks whether there exists in the
given graph a path linkingu andv that avoids a setF of edges and a setX of vertices. The
verticesu,v and those ofX are given by their labels. The edges ofF are given by the labels
of their ends. Each label has a size ofO(log(n)) bits. Our construction makes an essential
use of straight-line embeddingson n× n grids of simple loop-free planar graphs. Such
embeddings can be constructed in linear time by Schnyder’s algorithm [7].
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Let us review the motivations for looking for compact labellings of graphs.
By compact, we mean of order less thann, the number of vertices. In distributed
computing over a communication network with underlying graph G, nodes must
act according to their local knowledge only, which is updated by message passing.
Due to space constraints on local memory of nodes, and limited message size,
a distributed task cannot be solved in practice by representing the whole graph
G in each node or in each message, but must rather manipulate more compact
representations ofG. Typically, the routing task may involve routing tables, that are
sublinear in the size ofG (preferably of poly-logarithmic size), and short addresses
transmitted in the headers of messages (of poly-logarithmic size too). As surveyed
in [6] many problems including routing and distance computationcan be achieved
usingcompact labels. If nodes or links fail in a network, then recomputation of the
labels is generally required. Courcelle and Twigg studied in [4] the forbidden-set
labelling problem, where in addition to source and destination, the query algorithm
is given a set of failed nodes and edges and it must construct apath that avoids this
set. These labels can be used to quickly recover from failures in a network. In this
framework labellings can be updated by transmitting to all surviving nodes the list
of labels of all defected nodes and links, so that surviving nodes can update their
local data-structures (e.g., their routing tables).

We now state the main theorem and describe the main ideas of the construc-
tion. If G is a graph,u,v ∈ V(G), X ⊆ V(G)− {u,v} and F ⊆ E(G), we let
Conn(u,v,X,F) mean : there exists a path betweenu andv thatavoids X and F,
i.e, a path in the graph(G−F)\X. We call this aconnectivity query(implicitly in
the subgraph ofG defined by excludingX andF). We write Conn(u,v,X) if F = ∅.
A labellingsupports a queryif it makes possible to answer it from the labels of the
arguments.

Main Theorem For every simple undirected3-connected planar graph, we can
construct in O(nlog(n)) time an O(log(n))-bit labelling supporting connectivity
queries.

The problem of connectivity labelling in planar undirectedgraphs is easy with-
out forbidden sets (log(n) bits suffice to identify the connected components). The
problem ofreachability in directed planar graphs is not easy. It is known to be
LOGSPACE-hard [1]. It can be solved efficiently with labelling schemes. Thorup
[8] shows that a planar digraph can be preprocessed in near-linear time, produc-
ing a near-linear space oracle that can answer reachabilityqueries in constant time.
The oracle can be distributed as anO(log(n)) space labelling for each vertex from
which we can determine if one vertex can reach another by considering their two
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Fig. 1. The augmented graph discussed in the example.

labels only.
More difficult queries that we know how to treat for graphs of bounded clique-

width ([4]) but not yet for planar graphs aredistance queriesandrouting (explicit
construction of shortest paths).

For a plane graphG, we letG+ be the plane graph obtained by the addition of
one new vertex in the middle of each face and of edges between this vertex and
those ofG incident with that face. IfG is biconnected, the graphG+ is simple and
can be embedded in them×m-grid wherem= |V(G+)| . A linear-time algorithm
for doing so has been given by Schnyder [7]. We fix such an embedding. For
X ⊆ V(G), we let itsbarrier Bar(X) be a set of edges ofG+ such thatu andv
∈ V(G)−X are separated byX in G iff they are separated inR2 by Bar(X), i.e.,
belong to different connected components ofR

2−Bar(X). Note that Bar(X) is a
set of straight line segments, henceR

2−Bar(X) is a union of connected open sets.
(See [3] for the precise definition of the set Bar(X).)

Example Figure 1 shows a graphH with verticesu,v,w,x,yand edges represented
by continuous lines, and its augmented graphH+

. Dotted lines represent the edges
of H+ that are not inH. The graphH+ is simple sinceH is biconnected and it
is drawn with straight-lines. The barrier of{x,y} consists of the 6 (thick) dotted
edges({x,a},{x,b},{x,c},{y,a},{y,b},{y,c}) wherea,b,c are the face vertices
in H+. It separatesu from v andw.

If, from labels attached to the vertices ofX we can deduce the set of straight-
line segments forming Bar(X), and if we also know the coordinates ofu andv, we
can test whetheru andv are separated inR2 by Bar(X) by means of computational
geometry algorithms (De Berg et al. [2]).

To do so, to each vertexx of G, we attach, not only its own pair of coordinates



in the fixed embedding, but also those of a bounded number of neighbour vertices
of G and of vertices ofG+ representing faces ofG. This can be done because every
planar graph is the union of 3 edge disjoint forests. This fact is used in [7].

However this sketched proof only works for 3-connected planar graphsG, or
rather for those such that every 2 vertices are incident witha bounded number of
faces. Hence, in particular for 3-connected graphs where each edge is subdivided
by the addition of one degree 2 vertex. This is useful, because we can in this way
reduce the problem for 3-connected graphs to the particularcase whereF is empty,
i.e., where one deletes only vertices.

With many additional constructions, we can extend this result to all undirected
planar connected graphs [3]. In a few words, we consider first biconnected graphs
decomposed into 3-connected components, and then connected graphs decomposed
into biconnected components, which gives the general theorem. These decompo-
sitions are expressed as trees. By using a labelling scheme due to Courcelle and
Vanicat [5], we can recognize certain cases whereu andv are separated by one
or two vertices of the given setX. If those separation criteria do not apply, then
we are reduced to connectivity queries in certain 3-connected components, and the
geometric method of the present communication can be used. We conjecture that
the main theorem extends to graphs embedded in a fixed surface.

For undirected planar graphs, distance and routing queriesshould also be in-
vestigated. The problem of reachability in directed planargraphs with obstacles is
a difficult and important open question. Another one concerns the case where the
network is locally modified : how can the labelling be updatedefficiently ?
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