

Monadic second-order logic for graphs.

Algorithmic and language theoretical applications
Part 2

Bruno Courcelle

Université Bordeaux 1, LaBRI, and Institut Universitaire de France

Reference : Graph structure and monadic second-order logic,

book to be published by Cambridge University Press, readable on :

http://www.labri.fr/perso/courcell/ActSci.html

 2

An overview chart

Graph "Context-free"

operations sets of graphs

Fixed parameter tractable

algorithms Language theory

 for graphs

 Recognizable

 sets of graphs

Monadic 2nd-order Monadic 2nd -order

logic transductions

 3

Summary
1. Context-free sets defined by equation systems

2. Two graph algebras. Tree-width and clique-width

3. Recognizability : an algebraic notion

4. Monadic second-order sentences define recognizable sets.

 Part 2

5. Fixed-parameter tractable algorithms; constructions of automata.

 Part 3
6. Monadic second-order transductions.

7. Robustness results : preservation of classes under direct and inverse monadic

 second-order transductions. Short proofs in graph theory. (black = graph theory)

8. Logic and graph structure theory : Graph classes on which monadic second-order

logic is decidable

9. Some open questions

 4

5. FPT algorithms : Constructions of automata

 k ϕ (MS formula)

 Automaton Constructor

 Yes

G Graph Analyzer t A(ϕ, k)

 No

 Error : wd(G) > k

Steps done “once for all”, independent of G A(ϕ,k): finite

automaton on terms (wd = tree-width or clique-width or equivalent)

 5

Difficulties

1. Parsing : construction of terms (based on tree-decompositions or

other graph decompositions).

 The linear-time exact parsing algorithm by Bodlaender (for tree-width) and the

cubic approximate parsing algorithm by Hlineny & Oum (for clique-width via rank-

width) are not implementable.

 Bodlaender reports about usable algorithms for (non-random) graphs with 50

vertices and tree-width < 35

Specific algorithms : (1) Flow-graphs of structured programs have tree-width at most

6 and tree-decompositions are easy from the parse trees of programs (Thorup).

 (2) For certain graph classes of bounded clique-width defined by forbidden

induced subgraphs, optimal clique-width terms can be constructed in polynomial

time (by using modular decomposition).

 6

2. Sizes of automata

 The automata A(ϕ ,k) may be too large for being practically

compiled.

 The construction by induction on the structure of ϕ may need

intermediate automata of huge size, even if the unique minimal

deterministic automaton equivalent to A(ϕ ,k) has a manageable

number of states.

 7

Examples : Soguet et al. using MONA have constructed automata for the

following cases ; no success for clique-width 4 :

 Clique-width 2 Clique-width 3

 MaxDegree<3 91 states Space-Out

 Connected 11 states Space-Out

 IsConnComp(X) 48 states Space-Out

 Has<4-VertCov 111 states 1037 states

 HasClique > 4 21 states 153 states

 2-colorable 11 states 57 states

 Other examples of automata too large to be constructed, i.e., “compiled”:

 for k = 2 : 4-colorability, 3-acyclic-colorability, NoCycle (i.e., is a forest)

 for k = 5 : 3-colorability, clique

 for k = 4 : connectedness.

 8

This is not avoidable :

 The number of states of A(ϕ , k) is bounded by an h-iterated

exponential where h is the number of quantifier alternations of ϕ .

 There is no alternative construction giving an upper bound with a

bounded nesting of exponentiations (Meyer & Stockmeyer, Weyer, Frick & Grohe).

 What to do ?

(1) Focus on MS formulas without quantifier alternation, written with

“powerful” atomic formulas expressing basic graph properties :
 Path(X,Y) : X has exactly 2 vertices linked by a path in G[Y],

 NoEdge(X) : G[X] has no edge,

 Conn(X) : G[X] is connected,

 NoCycle(X) : G[X] is a forest.

(2) Using fly-automata : transitions are not compiled but computed as needed

 9

Examples of graph properties

(1) p-colorability

 ∃ X1,…,Xp (Partition(X1,…,Xp) ∧ NoEdge(X1) ∧ ∧ NoEdge(Xp))

(2) p-acyclic colorability

 ∃ X1,…,Xp (Partition(X1,…,Xp) ∧ NoEdge(X1) ∧ ∧ NoEdge(Xp) ∧ ...

 ∧ NoCycle(Xi ∪ Xj) ∧) (all i < j).

 We use set terms : Xi ∪ Xj , to avoid some quantifications.

(3) minor inclusion : H simple, loop-free. Vertices(H) = { v1,…,vp }

 ∃X1,…,Xp (Disjoint(X1,…,Xp) ∧ Conn(X1) ∧ ... ∧ Conn(Xp) ∧ ...
 ... ∧ Link(Xi , Xj) ∧ ...)

 with Link(Xi, Xj) for each edge vi -- vj of H ; (there exists an edge
 between Xi and Xj.)

 10

 Remarks on Conn(X) (connectedness of G[X])

 and the automata for terms that define graphs of clique-width < k.

 There are two non-deterministic automata for Conn(X) and

 ¬Conn(X) that have both 2O(k.k) states.

 There is a deterministic automata for Conn(X) (and also

 ¬Conn(X)) that has 2O(2 ^ k) states. Its states are the sets of

 subsets of [k]={1,…,k}

 The minimal deterministic automaton for Conn(X)

 has more than 2 2 ^ (k/2) states.

 11

Construction of A(ϕ, k) for “clique-width” terms

k = the number of vertex labels = the bound on clique-width

F = the corresponding set of operations and constants :

 a , ∅ , ⊕ , Adda,b , Relab a b

G(t) = the graph defined by a term t in T(F).

Its vertices are (in bijection with) the occurrences of the

constants in t that are not ∅

 12

Example

 Graph G(t)

 Term t

 13

 Terms are equipped with Booleans that encode assignments of

vertex sets V1,…,Vn to the free set variables X1,…,Xn of MS

formulas (formulas are written without first-order variables):

 1) we replace in F each constant a by the constants

 (a, (w1,…,wn)) where wi ∈ {0,1} : we get F(n)

 (only constants are modified);

 2) a term s in T(F(n)) encodes a term t in T(F) and an

 assignment of sets V1,…,Vn to the set variables X1,…,Xn :

 if u is an occurrence of (a, (w1,..,wn)), then

 wi = 1 if and only if u ∈ Vi .

 3) s is denoted by t * (V1,…,Vn)

 14

Example (continued)

 V1 = {1,3,4}, V2 = {2,3}

 Term t * (V1,V2)

 15

 By an induction on ϕ, we construct for each ϕ(X1,…,Xn) a finite

(bottom-up) deterministic automaton A(ϕ(X1,…,Xn), k) that recognizes:

L(ϕ(X1,…,Xn)) : = { t * (V1,…,Vn) ∈ T(F(n)) / (G(t), (V1,…,Vn)) ⎜ = ϕ }

Theorem : For each sentence ϕ, the automaton A(ϕ, k) accepts in

time f(ϕ, k). ⎜ t ⎜ the terms t in T(F) such that G(t) ⎜ = ϕ

 It gives a fixed-parameter linear model-checking algorithm for input

t, and a fixed-parameter cubic one if the graph has to be parsed.

 (The parameter is clique-width, or, for undirected graphs, the equivalent
graph complexity measure rank-width defined by Oum & Seymour).

 16

The inductive construction of A(ϕ, k)

 Atomic formulas : discussed below.

 For ∧ : product of two automata (deterministic or not)

 For ∨ : union of two automata (or product of two complete

automata; product preserves determinism)

 For negation : exchange accepting / non-accepting states

 for a complete deterministic automaton

 17

 Quantifications: Formulas are written without ∀

 L(∃ Xn+1 . ϕ(X1, ..., Xn+1)) = pr(L (ϕ(X1, ..., Xn+1))

 A(∃ Xn+1 . ϕ(X1, ..., Xn+1)) = pr(A (ϕ(X1, ..., Xn+1))

where pr is the “projection” that eliminates the last Boolean.

 a non-deterministic automaton.

oOo

 The number of states is an h-iterated exponential,

 where h = maximum nesting of negations.

 18

Some tools for constructing automata

 Substitutions and inverse images (“cylindrifications”).

 1) If we know A(ϕ(X1, X2)) , we can get easily A(ϕ(X4, X3)):

 L(ϕ(X4, X3)) = h-1 (L(ϕ(X1, X2))) where

 h maps (a , (w1, w2 , w3, w4)) to (a , (w4, w3))

 We take

 A(ϕ(X4, X3)) = h-1 (A(ϕ(X1, X2)))

 This construction preserves determinism and the number of states.
 Set term

 2) From A(ϕ(X1, X2)), we can get A(ϕ (X3, X1∪ (X2 \ X4))) by h-1

 with h mapping (a , (w1, w2 , w3, w4)) to (a , (w3, w1 ∨(w2 ∧ ¬w4)))

 19

 Relativization to subsets by inverse images.

 If ϕ is a closed formula expressing a graph property P, its

relativization ϕ [X1] to X1 expresses that the subgraph induced on

X1 satisfies P. To construct it, we replace recursively

 ∃ y. θ by ∃ y. y ∈ X1 ∧ θ, etc…

 However, there is an easy transformation of automata :

 Let h map (a , 0) to ∅ and (a , 1) to a.

L(ϕ [X1]) = h-1 (L(ϕ))

 Hence:

A(ϕ [X1]) : = h-1 (A(ϕ))

 20

The inductive construction (continued) :

Complete deterministic automata for atomic formulas and basic

graph properties : automaton over F(n) recognizing the set of terms

 t * (V1,…,Vn) in L(ϕ(X1,…,Xn))

 Intuition : in all cases, the state at node u represents a finite

information q(u) about the graph G(t / u) and the restriction of

(V1,…,Vn) to the vertices below u (vertices = leaves)

 1) if u = f(v,w), we want that q(u) is defined from q(v) and q(w)

by a fixed function : the transition function ;

 2) whether (G(t), V1,…,Vn) satisfies ϕ(X1,…,Xn) must be

checkable from q(root) : the accepting states.

 21

Atomic and basic formulas :

X1 ⊆ X2 , X1 = ∅ , Single(X1),

Card p,q (X1) : cardinality of X1 is = p mod. q,

Card < q (X1) : cardinality of X1 is < q.

 Easy constructions with small numbers of states :

 respectively 2, 2, 3, q, q+1.

Example : for X1 ⊆ X2 , the term has no constant (a, 10).

 22

Atomic formula : edg(X1,X2) for directed edges

 edg(X1,X2) means : X1 = { x } ∧ X2 = { y } ∧ x y

 Vertex labels ∈ a set C of k labels.

 k2+k+3 states : 0, Ok, a(1), a(2), ab, Error, for a,b in C , a ≠ b

 Meaning of states (at node u in t ; its subterm t/u defines G(t/u) ⊆ G(t)).

 0 : X1 = ∅ , X2 = ∅

 Ok Accepting state : X1 = {v} , X2 = {w} , edg(v,w) in G(t/u)

 a(1) : X1 = {v} , X2 = ∅ , v has label a in G(t/u)

 a(2) : X1 = ∅ , X2 = {w} , w has label a in G(t/u)

 ab : X1 = {v} , X2 = {w} , v has label a, w has label b (hence v ≠ w)
 and ¬edg(v,w) in G(t/u)

 Error : all other cases

 23

 Transition rules

 For the constants based on a :

 (a,00) 0 ; (a,10) a(1) ; (a,01) a(2) ; (a,11) Error

 For the binary operation ⊕: r

 (p,q,r are states) p q

 If p = 0 then r := q

 If q = 0 then r := p

 If p = a(1), q = b(2) and a ≠ b then r := ab

 If p = b(2), q = a(1) and a ≠ b then r := ab

 Otherwise r : = Error

 24

 For unary operations Adda,b r

 p

 If p = ab then r := Ok else r : = p

 For unary operations Relaba b

 If p = a(i) where i = 1 or 2 then r : = b(i)

 If p = ac where c ≠ a and c ≠ b then r : = bc

 If p = ca where c ≠ a and c ≠ b then r : = cb

 If p = Error or 0 or Ok or c(i) or cd or dc where c ≠ a

 then r : = p

 25

 Sizes of some deterministic automata :

 k = bound on clique-width

 Property Partition
(X1,…,Xp)

edg(X,Y) NoEdge

Connected,

NoCycle
for degree <p

Path(X,Y) Connected,

Nocycle

Number of
states
N(k)

2

k2+k+3

2k

2O(p.k.k)

2O(k.k)

O(k)
 22

 26

Difficulties with the sizes of the automata A(ϕ, k)

 Examples of automata too large to be constructed, i.e., “compiled”:

 for k = 2 : 4-colorability, 3-acyclic-colorability, NoCycle (i.e., is a forest)

 for k = 4 : connectedness,

 for k = 5 : 3-colorability, clique.

 27

From now on : work in progress

Fly-automata :
 States and transitions are not listed in huge tables :

 they are specified (in uniform ways for all k) by “small” programs.

 Example of state for connectedness :

 q = { {a}, {a,b}, {b,c,d}, {b,d,f } },

 a,b,c,d,f are vertex labels; q is the set of types of

 the connected components of the current graph.

 Some transitions :

 Adda,c : q { {a,b,c,d}, {b,d,f } },

 Relaba b: q { {b}, {b,c,d}, {b,d,f } }

 Transitions for ⊕ : union of sets of types.

 28

 This method works for formulas with no quantifier alternation,

 but that use “powerful atomic formulas”.

 Examples : p-acyclic colorability

 ∃ X1,…,Xp (Partition(X1,…,Xp) ∧ NoEdge(X1) ∧ ∧ NoEdge(Xp) ∧ ...

 ∧ NoCycle(Xi ∪ Xj) ∧)

Minor inclusion : H simple, loop-free. Vertices(H) = { v1,…,vp }

 ∃X1,…,Xp (Disjoint(X1,…,Xp) ∧ Conn(X1) ∧ ... ∧ Conn(Xp) ∧ ...
 ... ∧ Link(Xi , Xj) ∧ ...)

 Existence of “holes” : odd induced cycles (to check perfectness ; one

checks “anti-holes” on the edge-complement of the given graph).

 29

 Some experiments with fly-automata (by Irène Durand, LaBRI)

 3-colorability of the 6 x 300 grid (of clique-width 8) in less than 2
hours,

 4-acyclic-colorability of the Petersen graph (clique-width 7) in 17
minutes.

 (3-colorable but not acyclically;

 red and green vertices

 induce a cycle).

 30

Closure properties of fly-automata (can be non-deterministic):

Union (for ∨)

Product (for ∧)

Image (for ∃)

Inverse image (for substitutions and relativization)

 31

New tool : Annotations

 At some positions in the given term, we attached some (finite)

contextual information.

Example :

 At position u in a term t, we attach the set

 ADDt(u) = the set of pairs (a,b) such that some operation

 Addc,d above u (hence, in its “context”) adds edges between the

 (eventual) vertices below u labelled by a and b.

 These sets can be computed in linear time by means of a top-down

 traversal of t.

 32

 Certain automata on annotated terms may have less states.

Example : edg(X1, X2) : 2k+3 states instead of k2 +k +3 (cf. page 21):

 0, Ok, a(1), a(2), Error, for a in C.

 Transitions for ⊕ annotated by R : ⊕,R r

 (p, q, r are states) p q

 If p = 0 then r := q ; if q = 0 then r := p ;

 if p = a(1), q = b(2) and (a , b) ∈ R ∧ then r := Ok ;

 and if (a , b) ∉ R ∧ then r := Error ;

 if p = b(2), q = a(1) : idem ;

 otherwise r : = Error.

 33

Other examples :

 For Clique(X) meaning that X induces a clique :

 2 k + 2 states instead of 2 O(k.k) .

 For Connectedness : same states but they “shrink” quicker :

 cf. the rules for Add a,c on page 26.

 34

Model-checking of MS2 formulas

(1) By Kreutzer, Makowsky et al., FPT model-checking for MS2

formulas (using edge quantifications) needs restriction tree-width as

parameter unless P=NP, ETH, Exptime=NExptime etc…

 (2) The case of MS2 formulas reduces to that of MS ones:

- G of tree-width k > 2 Inc(G) has tree-width k,

 hence, clique-width < 2O(k) (exponential blow-up !)

- every MS2 property of G is an MS property of Inc(G)

 35

 (3) For a “direct” construction, we need :

 (3.1) Terms to represent graphs, over appropriate operations.

 (3.2) A representation of vertices and edges by occurrences of

operations and constants in these terms.

 (3.2.1) : For “clique-width” terms : we have no good representation of

edges because each occurrence of Adda,b may add simultaneously

an unbounded number of edges.

 (3.2.2) : For “special terms”, i.e., “clique-width” terms where each

occurrence of Adda,b adds a unique edge, we have such a bijection.

This is OK for graphs of bounded special tree-width (but not for

bounded tree-width). (cf. my lecture to FST-TCS 2010).

 36

Special tree-width is the minimal width of a special tree-decomposition

(T,f) where :

 (a) T is a rooted tree,

 (b) the set of nodes whose boxes

contain any vertex is a directed path

Motivations : (1) Comparison with

 clique-width (no exp. blow-up)

cwd(G) < sptwd(G)+2

(2) The automata for checking

adjacency are exponentially smaller

than for bounded tree-width

 37

Special terms :

 The leaves represent the

 vertices.

 The nodes labelled Adda,b

 and Adda,c represent the

 edges ; each occurrence

 of Adda,b represents one of

 the two parallel edges

 38

 (3.2.3) : Case of terms characterizing tree-width

How to handle them “directly”, as for special terms ? The difficulty

is to have a bijection between nodes in the term and the vertices

and edges of the graph.

Vertices are in bijection with

the occurrences of Forget operations.

The edges are at the leaves

of the tree, below the nodes

representing their ends.

The automaton for edg(X,Y)

has 2Θ (k.k) states (O(k2) for sptwd). Too bad for a basic property !

 39

An improvement using annotations

 Undirected graphs of tree-width < k-1 are denoted by terms over

the operations of the HR algebra : //, Forgeta and the constants a, ab

for a,b ∈ [k]={1,…,k}. Without renamings of labels.

 The vertices are in bijection with the occurrences of the Forget

operations.

 The annotation : at each occurrence u of Forgeta representing a

vertex x is attached the set of labels b such that the first

occurrence of Forgetb above u represents a vertex adjacent to x.

 The automaton for edg(X,Y) has 22k +2 states (instead of 2Θ (k.k)).

 40

 Remarks :

 incidence : in(X,Y) uses k2 + 3 states (for undirected graphs)

(only k+3 states for directed graphs).

 adjacency : edg(X,Y), can be written ∃ Z (in(Z,X) ∧ in(Z,Y))

 (for undirected graphs) which gives a deterministic

 automaton with 2O(k.k) states.

 With this annotation, incidence and adjacency are handled

 separately on “redundant” representations of graphs by

 terms.

 41

Conclusion

 Using automata for model-checking of MS sentences on

graphs of bounded tree-width or clique-width is not hopeless if we

use fly-automata, built from (possibly non-deterministic) “small”

automata for basic graph properties (and their negations), and for

sentences without quantifier alternation (in order to keep flexibility, by

allowing variations on the input sentences).

 More tests on significant examples are necessary, and also

comparison (theory and practice) with other approaches : games,

monadic Datalog, specific problems, “Boolean width”.

 Can one adapt fly-automata to counting and optimization

problems?

