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An  overview  chart  

 

Graph                   "Context-free" 

operations             sets  of  graphs 

 

Fixed   parameter   tractable 

algorithms             Language  theory 

                      for  graphs  

              Recognizable 

                                 sets of graphs        

Monadic  2nd-order           Monadic  2nd -order  

logic              transductions 



 3 

Summary 
1.  Context-free   sets   defined   by   equation   systems          

2.  Two   graph   algebras. Tree-width   and   clique-width        

3.  Recognizability :  an algebraic notion 

4.  Monadic second-order   sentences  define  recognizable  sets.  

       Part  2 

5.  Fixed-parameter   tractable   algorithms; constructions  of  automata.                       

       Part  3 
6.  Monadic second-order   transductions. 

7.  Robustness   results : preservation of classes  under  direct and inverse monadic  

     second-order   transductions.  Short   proofs  in  graph  theory.         (black = graph theory) 

8.  Logic  and  graph  structure theory :  Graph  classes  on  which  monadic  second-order  

logic  is   decidable 

9.  Some   open   questions 
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5.  FPT  algorithms :   Constructions  of  automata  

   k             ϕ    (MS formula) 

                            

      

             Automaton Constructor  

                  Yes  

G                   Graph Analyzer                 t              A(ϕ, k)           

                  No  

       Error : wd(G) > k  

Steps       done  “once  for  all”, independent  of G  A(ϕ,k): finite 

automaton  on  terms  (wd  = tree-width or clique-width or equivalent)  
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Difficulties    
 

1.  Parsing  :  construction  of  terms (based  on  tree-decompositions  or 

other  graph  decompositions). 
 

 The  linear-time  exact  parsing  algorithm  by  Bodlaender (for  tree-width)  and  the  

cubic  approximate  parsing  algorithm  by  Hlineny & Oum (for  clique-width  via  rank-

width)  are  not  implementable. 
 

 Bodlaender   reports  about  usable   algorithms  for  (non-random)  graphs  with  50  

vertices  and  tree-width < 35  
 

Specific  algorithms : (1)  Flow-graphs of  structured  programs  have  tree-width  at  most 

6  and  tree-decompositions  are  easy  from  the  parse  trees  of  programs  (Thorup). 

  (2)  For certain graph classes  of  bounded  clique-width  defined  by  forbidden  

induced  subgraphs,  optimal  clique-width  terms  can  be  constructed  in  polynomial  

time  (by  using  modular  decomposition). 



 6 

2.  Sizes   of   automata 
 

     The  automata   A(ϕ ,k)   may  be  too  large  for  being  practically  

compiled. 

  The  construction  by  induction  on  the  structure  of  ϕ  may  need  

intermediate  automata  of  huge  size, even  if   the  unique  minimal  

deterministic   automaton equivalent  to   A(ϕ ,k)   has  a  manageable  

number of  states.   
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Examples :  Soguet  et  al.  using   MONA  have constructed  automata   for   the 

following  cases ;  no success  for  clique-width  4  : 

       Clique-width 2      Clique-width  3  

  MaxDegree<3    91   states     Space-Out 

  Connected       11   states              Space-Out 

  IsConnComp(X)       48   states                 Space-Out 

  Has<4-VertCov  111 states    1037    states 

  HasClique > 4         21 states    153      states 

  2-colorable               11   states     57       states 
  
 

 Other examples  of  automata  too  large  to  be  constructed,  i.e.,  “compiled”: 

 for k = 2 :  4-colorability, 3-acyclic-colorability, NoCycle    (i.e., is a forest)  

 for  k = 5 :   3-colorability, clique 

 for  k = 4  :   connectedness.  
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This   is   not   avoidable :  
 

  The  number  of  states  of  A(ϕ , k)   is  bounded  by  an  h-iterated  

exponential  where  h  is  the  number  of  quantifier alternations  of  ϕ .  

 There  is  no  alternative  construction  giving  an  upper bound  with  a  

bounded  nesting  of  exponentiations     (Meyer & Stockmeyer, Weyer, Frick & Grohe).  
 

 What   to   do ? 
 

(1) Focus  on  MS  formulas  without  quantifier alternation,  written   with  

“powerful”  atomic  formulas  expressing  basic  graph  properties : 
   Path(X,Y)  :  X has exactly  2  vertices  linked  by  a  path  in G[Y], 

   NoEdge(X)  :  G[X]   has  no  edge, 

   Conn(X)  :  G[X]  is  connected, 

   NoCycle(X)  :  G[X]  is  a forest. 

(2)  Using  fly-automata : transitions  are  not  compiled  but  computed as needed  
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Examples   of   graph   properties 
 

(1)  p-colorability   
 

 ∃ X1,…,Xp (Partition(X1,…,Xp)  ∧  NoEdge(X1)  ∧ ..... ∧  NoEdge(Xp) )  
 

(2)  p-acyclic  colorability   
 

 ∃ X1,…,Xp (Partition(X1,…,Xp)  ∧  NoEdge(X1)  ∧ ..... ∧  NoEdge(Xp)  ∧ ... 

   ........... ∧  NoCycle(Xi ∪ Xj)  ∧ ......  )                    (all  i < j).   

  We  use  set   terms  :  Xi ∪ Xj ,  to  avoid  some  quantifications. 

 

(3)  minor inclusion  : H  simple, loop-free.  Vertices(H)  =  { v1,…,vp }  
 

 ∃X1,…,Xp (Disjoint(X1,…,Xp)  ∧  Conn(X1)  ∧ ... ∧  Conn(Xp)  ∧ ... 
   ...  ∧  Link(Xi , Xj)  ∧ ...  ) 
 

     with  Link(Xi, Xj)  for  each edge  vi -- vj of  H ; (there  exists  an  edge  
                between  Xi   and   Xj.) 
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 Remarks   on   Conn(X)                  (connectedness   of   G[X]) 
 
  and  the  automata  for  terms  that  define  graphs  of  clique-width  <  k. 
 
 
  There  are   two  non-deterministic  automata  for  Conn(X)  and    

  ¬Conn(X)   that   have   both   2O(k.k)  states. 

 

  There  is  a  deterministic  automata  for  Conn(X)  (and  also 

  ¬Conn(X) )  that   has  2O(2 ^  k)   states. Its  states  are  the  sets  of 

                subsets  of  [k]={1,…,k} 

  The  minimal  deterministic  automaton  for  Conn(X)   

  has  more  than  2 2 ^ (k/2)  states. 



 11

Construction   of   A(ϕ, k)    for    “clique-width”   terms 
 

 

k  =  the number  of  vertex  labels  =  the  bound  on  clique-width 

 

F  =  the  corresponding  set  of  operations  and  constants : 

       a , ∅ ,  ⊕ , Adda,b ,  Relab a         b  

 

G(t)  =  the  graph  defined  by  a  term  t  in  T(F).   

 

Its  vertices  are  (in  bijection  with)  the  occurrences  of  the  

constants  in  t  that  are  not  ∅ 
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Example  
 

 

 

 

 

 

 

             

                         Graph  G(t)    
 

 

 

       

      Term   t      
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 Terms  are  equipped  with  Booleans  that  encode  assignments  of  

vertex  sets  V1,…,Vn  to  the  free  set  variables  X1,…,Xn  of   MS 

formulas   (formulas   are   written   without   first-order  variables): 

  1) we   replace  in   F  each  constant   a   by   the   constants    

  (a, (w1,…,wn))  where   wi ∈ {0,1}  :   we   get   F(n)    

          (only constants  are  modified); 

  2) a  term   s  in  T(F(n) )  encodes  a   term  t   in  T(F)  and  an  

 assignment  of  sets  V1,…,Vn   to  the  set  variables  X1,…,Xn :   

   if   u  is  an  occurrence  of  (a, (w1,..,wn)),  then    

   wi  =  1  if  and  only  if    u  ∈  Vi . 

  3)  s   is  denoted  by  t * (V1,…,Vn)    
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Example   (continued)  

 

 

 

 

 

               V1  =  {1,3,4},  V2  =  {2,3}   

 

 

 

 

 

   Term   t * (V1,V2)       
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 By  an  induction  on  ϕ,  we  construct  for  each  ϕ(X1,…,Xn)   a  finite  

(bottom-up)  deterministic   automaton   A(ϕ(X1,…,Xn), k)  that  recognizes: 

L(ϕ(X1,…,Xn)) : =  { t * (V1,…,Vn) ∈ T(F(n) )  /  ( G( t ), (V1,…,Vn) )  ⎜ =  ϕ } 

 

Theorem : For  each  sentence  ϕ,  the  automaton  A(ϕ, k)  accepts  in 

time   f(ϕ, k). ⎜ t  ⎜   the  terms  t   in  T(F)   such that    G(t)  ⎜ =  ϕ    
 

 

 It gives  a  fixed-parameter  linear  model-checking  algorithm  for input  

t, and  a  fixed-parameter  cubic  one  if  the  graph  has  to  be  parsed.  

 (The  parameter  is  clique-width, or,  for  undirected  graphs, the  equivalent  
graph  complexity  measure   rank-width              defined  by  Oum & Seymour). 
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The   inductive   construction  of  A(ϕ, k)  

  

 Atomic   formulas  :  discussed  below.  

 

 For   ∧  :   product   of   two  automata       (deterministic  or  not) 

 

 For   ∨  :   union  of  two  automata   (or  product  of  two  complete  

automata;  product  preserves   determinism) 

 

 For  negation : exchange  accepting / non-accepting  states  

       for   a   complete   deterministic   automaton 
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 Quantifications:  Formulas   are   written   without   ∀  
 

  L(  ∃ Xn+1 . ϕ(X1, ..., Xn+1) )   = pr( L ( ϕ(X1, ..., Xn+1)  ) 

  A(  ∃ Xn+1 . ϕ(X1, ..., Xn+1) )   = pr( A ( ϕ(X1, ..., Xn+1)  ) 
 

where   pr  is  the  “projection”   that  eliminates   the  last  Boolean.         

    a   non-deterministic   automaton. 
    

oOo 
 

 The   number  of  states   is   an   h-iterated   exponential,  

 where   h  =  maximum   nesting   of   negations.  
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Some   tools   for   constructing   automata 
 

 Substitutions   and   inverse  images  (“cylindrifications”). 
 

 1) If   we   know  A( ϕ(X1, X2)) , we can get easily  A( ϕ(X4, X3)): 

   L( ϕ(X4, X3) ) =  h-1 ( L( ϕ(X1, X2))   )     where  

 h   maps  (a , (w1, w2 , w3, w4))   to   (a , (w4, w3))   

 We   take   

    A( ϕ(X4, X3)) =  h-1 ( A( ϕ(X1, X2))  )  

 This  construction preserves  determinism  and  the number  of  states.  
                      Set   term    

     2)  From  A( ϕ(X1, X2)), we  can  get  A(  ϕ ( X3, X1∪ (X2 \ X4 ))  )  by h-1 

 with h  mapping  (a , (w1, w2 , w3, w4))  to  (a , (w3, w1 ∨(w2 ∧ ¬w4 )))   
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   Relativization    to    subsets   by   inverse   images. 

 

 If   ϕ  is  a  closed  formula  expressing  a  graph  property  P, its 

relativization  ϕ [X1]   to  X1  expresses  that  the  subgraph  induced  on  

X1   satisfies  P.   To construct   it,  we  replace  recursively  

     ∃ y. θ   by    ∃ y. y ∈ X1  ∧ θ,  etc… 

 However,   there  is  an  easy  transformation of  automata :   

 Let   h   map  (a , 0)   to   ∅    and   (a , 1)   to   a.   

L( ϕ [X1] ) =  h-1 ( L( ϕ) )  

 Hence:   

A( ϕ [X1] ) : =  h-1 ( A( ϕ) )  
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The   inductive   construction  (continued) :   
 

Complete   deterministic   automata   for  atomic  formulas  and   basic   

graph  properties :  automaton   over   F(n)  recognizing  the  set of  terms  

     t * (V1,…,Vn)   in   L(ϕ(X1,…,Xn))   
 

 Intuition :  in all cases,  the  state   at  node  u  represents  a  finite  

information   q(u)   about   the  graph  G(t / u)  and  the restriction of 

(V1,…,Vn)   to   the   vertices   below   u     (vertices  =  leaves) 

 1)  if  u =  f(v,w),   we  want  that  q(u)  is  defined  from  q(v)  and  q(w)  

by   a   fixed   function  :     the  transition  function ;  

 2)  whether  (G(t), V1,…,Vn)   satisfies   ϕ(X1,…,Xn)  must   be  

checkable  from  q(root) :      the accepting states.  
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Atomic  and   basic  formulas   :   

 

X1  ⊆  X2 ,    X1 = ∅ ,    Single(X1), 

 

Card p,q (X1) : cardinality of  X1  is  =  p   mod.  q, 

 

Card < q (X1) : cardinality of  X1  is   <  q. 
 

 

 Easy constructions with  small  numbers  of  states :  

  respectively  2,  2,  3,  q,  q+1. 

 

Example :  for  X1  ⊆  X2 ,  the term  has  no  constant  (a, 10).
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Atomic  formula  :   edg(X1,X2)   for  directed  edges    
 

 edg(X1,X2)  means :   X1  = { x }  ∧  X2 = { y }    ∧   x                y 

 Vertex   labels   ∈  a   set    C   of   k   labels.  

 k2+k+3   states  :  0, Ok, a(1), a(2), ab, Error,      for a,b  in   C , a  ≠  b 

 Meaning  of  states (at  node  u  in  t ; its subterm  t/u  defines    G(t/u)  ⊆  G(t) ).  

 0   : X1 = ∅  , X2 = ∅   

 Ok        Accepting   state :    X1 = {v}  , X2 = {w}  ,  edg(v,w)  in  G(t/u)   

 a(1) : X1 = {v}  , X2 = ∅ ,  v  has  label  a  in  G(t/u)   

 a(2)  : X1 = ∅  , X2 = {w}  ,  w  has  label  a  in  G(t/u)   

 ab  : X1 = {v}  , X2 = {w}  , v  has  label  a, w  has  label  b  (hence v ≠  w) 
             and  ¬edg(v,w)   in  G(t/u)    

 Error   : all  other  cases
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 Transition  rules  

 For  the  constants  based on    a : 

 (a,00)   0  ;  (a,10)   a(1)  ;  (a,01)    a(2)  ;    (a,11)    Error 
 

 For  the  binary  operation  ⊕:      r 

 (p,q,r  are  states)        p             q  

 

  If  p = 0  then  r := q  

  If  q = 0  then  r := p 

  If  p = a(1),  q =  b(2)  and  a  ≠  b   then   r  := ab 

  If  p = b(2),  q =  a(1)  and  a  ≠  b   then   r  := ab 

  Otherwise  r  : =  Error 
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 For  unary  operations   Adda,b            r      
 

                 p     

  If  p = ab   then  r  :=  Ok   else  r  : =  p 

 

 For  unary  operations   Relaba       b  

 

  If   p = a(i) where   i = 1 or 2       then     r : = b(i)  

  If   p =  ac   where  c ≠ a  and  c  ≠  b    then     r : =  bc      

  If   p =  ca   where  c ≠ a  and  c  ≠  b   then     r : =  cb       

  If   p =  Error  or  0  or  Ok  or  c(i)  or  cd   or  dc   where   c ≠ a   

            then     r : = p   
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 Sizes   of   some   deterministic   automata :   
    
 k =  bound   on  clique-width 

 

 

 

 

  Property  Partition 
(X1,…,Xp) 

edg(X,Y) NoEdge

  

Connected,

NoCycle 
for degree <p

Path(X,Y) Connected, 

Nocycle 

Number  of
states 
N(k) 

 

2 

 

k2+k+3

 

2k 

 

2O(p.k.k) 

 

2O(k.k) 

O(k) 
   22 
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Difficulties   with  the  sizes  of  the  automata  A(ϕ, k) 
  

 Examples   of   automata   too   large   to   be  constructed,  i.e.,  “compiled”: 

  

 for k = 2 :  4-colorability, 3-acyclic-colorability, NoCycle   (i.e., is a forest)  

 for  k = 4  :   connectedness, 

 for  k = 5 :   3-colorability, clique. 

 



 27

From   now   on  :  work  in  progress 

Fly-automata :  
 States  and  transitions  are  not  listed  in  huge  tables :    

 they  are  specified  (in uniform ways for all  k) by  “small”  programs. 
 

 Example   of  state  for  connectedness : 

  q = { {a}, {a,b}, {b,c,d}, {b,d,f } },                    

   a,b,c,d,f  are  vertex labels; q  is  the  set  of  types  of   

   the  connected  components  of  the  current  graph. 

 Some  transitions :               

  Adda,c :    q            { {a,b,c,d}, {b,d,f } },                    

  Relaba       b: q            { {b}, {b,c,d}, {b,d,f } }   

  Transitions   for  ⊕ :  union  of  sets  of  types.  
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 This  method  works  for  formulas  with  no  quantifier  alternation, 

 but   that  use  “powerful  atomic  formulas”. 
 

 Examples :  p-acyclic  colorability   
 

 ∃ X1,…,Xp (Partition(X1,…,Xp)  ∧  NoEdge(X1)  ∧ ..... ∧  NoEdge(Xp)  ∧ ... 

   ........... ∧  NoCycle(Xi ∪ Xj)  ∧ ......  ) 
 

  

Minor  inclusion : H  simple, loop-free.  Vertices(H)  =  { v1,…,vp }  
 

 ∃X1,…,Xp (Disjoint(X1,…,Xp)  ∧  Conn(X1)  ∧ ... ∧  Conn(Xp)  ∧ ... 
   ...  ∧  Link(Xi , Xj)  ∧ ...  ) 
 

     
 Existence   of  “holes”   :  odd  induced  cycles  (to  check  perfectness ; one 

checks  “anti-holes”  on  the  edge-complement  of  the  given  graph).
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 Some   experiments  with  fly-automata   (by Irène  Durand, LaBRI) 
 
 
 3-colorability  of  the  6 x 300  grid  (of clique-width  8)  in  less  than  2 
hours, 
 
 4-acyclic-colorability  of  the  Petersen  graph  (clique-width 7)  in  17  
minutes. 
 
 (3-colorable but not acyclically;  

 red  and  green  vertices  

 induce  a  cycle). 
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Closure   properties   of   fly-automata    (can  be  non-deterministic): 

 

Union  ( for  ∨  ) 

Product ( for   ∧  ) 

Image   ( for  ∃ ) 

Inverse   image   ( for  substitutions  and  relativization) 
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New   tool :  Annotations 
 

 At   some  positions  in   the  given  term,  we  attached  some  (finite)  

contextual  information. 

Example : 

 At  position  u  in  a  term  t, we  attach  the  set   

 ADDt(u)  =   the  set  of  pairs  (a,b)  such  that  some  operation   

 Addc,d  above  u  (hence, in  its  “context”)  adds   edges   between  the   

 (eventual)  vertices   below   u   labelled  by  a   and   b. 

 

 These   sets   can  be  computed  in  linear time  by means  of  a  top-down   

 traversal  of  t.
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 Certain   automata  on  annotated  terms  may  have  less  states.  

Example :  edg(X1, X2)  : 2k+3  states  instead  of  k2 +k +3         (cf. page  21): 

     0, Ok, a(1), a(2), Error,      for a  in   C. 

 

 Transitions   for   ⊕  annotated   by   R :    ⊕,R                r 

 (p, q, r  are  states)        p                  q  

 

  If  p = 0   then  r := q  ;  if  q = 0   then  r := p  ; 

  if  p = a(1),  q =  b(2)  and  (a , b ) ∈ R  ∧  then   r  := Ok ; 

           and  if  (a , b )  ∉ R  ∧  then  r  := Error ; 

  if  p = b(2),  q =  a(1)  :  idem ; 

  otherwise  r  : =  Error. 
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Other   examples : 

 

 For   Clique(X)   meaning   that   X   induces  a  clique :  

        2 k  +  2   states   instead  of  2 O(k.k) . 

 

 For   Connectedness  :  same   states   but   they  “shrink”  quicker  :  

    cf. the   rules  for  Add a,c   on   page 26. 
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Model-checking   of  MS2  formulas 
 

 

(1) By Kreutzer, Makowsky et al., FPT  model-checking  for  MS2 

formulas (using edge quantifications)  needs  restriction  tree-width as 

parameter  unless  P=NP,  ETH,  Exptime=NExptime   etc… 

 
 

 (2)  The  case   of   MS2  formulas  reduces  to  that  of   MS  ones: 

-  G   of  tree-width  k  >  2   Inc(G)  has   tree-width k, 

    hence,  clique-width  <  2O(k)     (exponential  blow-up !) 

-  every  MS2   property  of   G   is  an  MS   property   of  Inc(G) 
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 (3)   For   a  “direct”  construction,  we  need : 

 

 (3.1) Terms   to  represent  graphs, over  appropriate  operations. 

 (3.2)  A  representation  of  vertices  and  edges  by  occurrences  of 

operations  and constants  in  these terms. 

 

 (3.2.1) :  For “clique-width”  terms : we have no good representation of 

edges  because  each  occurrence  of  Adda,b   may  add simultaneously  

an  unbounded  number  of  edges. 

 (3.2.2) :  For “special  terms”, i.e.,  “clique-width”  terms where each 

occurrence  of   Adda,b  adds  a  unique  edge, we  have  such  a  bijection. 

This  is  OK  for   graphs of  bounded  special   tree-width  (but  not  for 

bounded tree-width).                 (cf.  my   lecture   to   FST-TCS  2010). 
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Special tree-width  is  the  minimal  width  of  a  special tree-decomposition  

(T,f)  where : 

  (a) T  is  a  rooted  tree, 

  (b)  the  set  of  nodes  whose  boxes   

contain any vertex  is  a  directed  path 
 

Motivations : (1)  Comparison  with 

 clique-width    (no  exp. blow-up) 

cwd(G)  <  sptwd(G)+2 
 

(2) The  automata   for  checking   

adjacency   are  exponentially  smaller  

than  for  bounded  tree-width 
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Special  terms : 
 

           The  leaves  represent the   

           vertices. 
 

           The nodes labelled  Adda,b 

           and  Adda,c   represent  the 

           edges ;  each  occurrence 

           of  Adda,b  represents  one  of 

           the  two  parallel  edges 
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  (3.2.3) :  Case  of   terms  characterizing  tree-width 
 

How  to  handle them  “directly”,  as  for  special  terms ?  The difficulty  

is  to have a bijection  between  nodes  in  the  term  and  the  vertices  

and  edges  of  the  graph. 
 

Vertices   are   in  bijection with   

the   occurrences  of  Forget  operations.  

The   edges  are  at   the  leaves   

of   the  tree,  below   the  nodes   

representing  their  ends.  
 

The  automaton  for  edg(X,Y)   

has  2Θ (k.k)  states  (O(k2 )  for  sptwd). Too  bad  for  a   basic  property ! 
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An   improvement   using  annotations   
 

 Undirected  graphs  of  tree-width  <  k-1  are  denoted  by  terms  over  

the operations of  the  HR  algebra :  //, Forgeta  and the constants a, ab  

for  a,b  ∈  [k]={1,…,k}.   Without   renamings   of   labels. 
 

 The   vertices  are  in   bijection  with   the  occurrences  of  the  Forget  

operations.   
 

 The  annotation :  at  each occurrence  u  of  Forgeta   representing  a  

vertex x  is  attached  the  set  of  labels b  such  that  the  first 

occurrence  of  Forgetb   above  u  represents  a  vertex  adjacent  to  x. 

 The   automaton  for  edg(X,Y)  has  22k +2 states  (instead of  2Θ (k.k) ).  
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 Remarks : 

  incidence  : in(X,Y)  uses  k2  +  3  states  (for  undirected  graphs) 

(only  k+3  states  for  directed graphs). 
  

  adjacency :  edg(X,Y),   can  be  written  ∃ Z ( in(Z,X)  ∧   in(Z,Y) )  

     (for   undirected  graphs)   which   gives  a  deterministic   

      automaton   with  2O(k.k)   states.   

    

  With  this  annotation,  incidence  and  adjacency  are  handled   

   separately   on  “redundant”   representations  of   graphs  by  

   terms. 
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Conclusion 
 

  Using  automata  for  model-checking  of  MS  sentences  on  

graphs  of  bounded  tree-width  or  clique-width  is  not  hopeless  if  we 

use fly-automata, built  from  (possibly  non-deterministic)  “small”  

automata  for  basic  graph  properties  (and their  negations), and  for  

sentences  without  quantifier alternation  (in order  to  keep  flexibility,  by  

allowing  variations  on  the  input  sentences). 
 

  More  tests  on  significant  examples  are  necessary,  and also  

comparison  (theory  and  practice)  with  other  approaches : games,  

monadic  Datalog,  specific  problems,  “Boolean  width”. 
 

  Can  one  adapt  fly-automata  to  counting  and  optimization  

problems? 


